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Cherenkov radiation emitted by solitons in optical fibers
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We demonstrate a simple, fully analytic method of calculating the amount of radiation emitted by op-
tical solitons perturbed by higher-order dispersion effects in fibers and find good agreement with numeri-

cal results. It is pointed out that this radiation mechanism is analogous to the well-known Cherenkov ra-
diation processes in nonlinear optics.

PACS number(s): 42.50.Rh

I. INTRODUCTION

Optical solitons in fibers have long been an experimen-
tal reality, and they are expected to play an important
role as information carriers in future high-speed com-
munication systems. Since the mechanism for forming
optical solitons is well known both theoretically and ex-
perimentally, current research is devoted to examining
how solitons behave when perturbed. The present work
is devoted to optical solitons perturbed by higher- (i.e.,
third- or fourth-) order dispersion.

The governing equation for optical solitons in fibers is
the nonlinear Schrodinger (NLS) equation [1]

i +— +~u~ u=sP(u),. Bu 1 8 u

Bz 2

where we have included a perturbative operator P in the
right-hand side. The parameter c is assumed to be
sufficiently small for solitons to exist (see below). In this
paper we will consider 8=iB /Bt and P= —8 /Bt, cor-
responding to third-order dispersion (3OD) and fourth-
order dispersion (4OD), respectively. The unperturbed
(a=0) soliton solution of Eq. (1) is

u„,(x, t)= A sech(At)exp[ik„, z], (2)

Xexptik„&z+i E[2A t —3tanh( A I')], (3)

where y=t —E. A z. Thus, the first-order corrections to
the soliton (2) only affect the phase and the velocity of the
soliton, leaving the amplitude, width, and shape unper-
turbed. Furthermore, it has been shown numerically [5]
that the condition for solitons to exist in the presence of
3QD is 3 c &0.04. The physical interpretation of this is
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where k„&=A /2 is the soliton wave number. In the
particular case of 3OD, it was shown in Refs. [2—4] that
the corrected form of the soliton, to first order in c., is

u,'g (x, t) = A sech( Ay)

that a sufficiently large part of the soliton spectrum must
lie in the anomalous group velocity dispersion (GVD} re-
gime.

In general, nonlinear Schrodinger solitons (2} are very
robust [1], but under certain perturbations they are un-

stable, e.g., periodic amplification [6] or higher-order
dispersion [5]. The instability due to third-order disper-
sion was first predicted by Wai et al. [5], and it manifests
itself as radiation at the specific frequency coo=1/2E.
This lies in the normal GVD regime, and is separated
from '(but still overlaps} the soliton spectrum. We will

show below that it is this overlap that is the main cause
of the radiation. In the case of fourth-order dispersion, it
was recently shown [7] that the soliton radiates at the
two frequencies +I/&(2E), and the relation to the insta-
bility discovered by Wai et al. was emphasized.

Analytically, the problem of soliton radiation due to
higher-order dispersion has been considered previously,
both for NLS solitons [3,8—12] and for solitons governed
by the Korteweg —de Vries (KdV) equation [12—14]. The
primary interest is in two properties of the radiation, viz. ,
its frequency and its intensity. In the case of NLS soli-
tons, the frequency was estimated to first order in c in the
early numerical work [5], but more accurate expressions
have been obtained using perturbative inverse scattering
methods [8—10]. We will point out below that the same
result follows from simple physical arguments. The in-
tensity of the radiation is more dificult to calculate; it
has been done in Refs. [3,8,11] by combined numerical
and analytical methods. However, these approaches are
rather involved, and the physics might in some cases have
been obscured by cumbersome mathematics. In the case
of the KDV solitons, similar methods have been applied
[13,14]. However, recently another somewhat simpler
method was proposed by Karpman for both the NLS and
the KdV equations [12]. Our aim here is similar —we
present a simple, analytical, and physically intuitive
derivation of the unstable frequency, and of the intensity
of the radiation. Our final expressions are found to be in
good agreement with the previous seminumerical results
of Refs. [3,8, 11]. Moreover, since this radiation is emit-
ted from a wave packet (the soliton) with a phase velocity
exceeding the linear phase velocity of the medium, we
point out the formal equivalence of this radiation and the
well-known Cherenkov radiation processes in nonlinear
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optics [15—18]. The relation to Cherenkov radiation was
also briefly mentioned by Karpman [12], and in another
context by Cao and Meyerhofer [19]. However, in this
work we discuss the underlying physics in some more de-
tail. In particular, we point out that the Cherenkov con-
cept can be generalized to include all processes in which
solitonlike pulses (or beams) transfer power to linear
waves, e.g. , periodic amplification of solitons, transition
to stationary states in nonlinear fiber couplers [20], or ra-
diation by solitons in birefringent fibers [19,21].

II. RADIATION FREQUENCY

k„„(a)) = —
—,'coz —ca)',

k i;„(co ) —
&

co + sdl

(4a)

(4b)

The indexing (a) and (b) of this and all subsequent equa-
tions refers to the cases of 3OD and 4OD, respectively.
We see that in the absence of the perturbation,
s =0, ki;„&0, and since k,«) 0, the soliton is stable [22].
In the presence of the perturbation, however, the soliton
is in resonance with the dispersive waves at k„&=k&;„, i.e.
at the frequency coo, defined by

A
~ COp CCOp (sa)

A 2 4o+~~o ~ (5b)

The main reason for the robustness of solitons is that
the wave numbers of the solitons lie in a range that is for-
bidden for linear dispersive waves. Therefore, linear
waves cannot be in resonance with the soliton, and ener-

gy cannot be transferred from the soliton to the linear
waves. On the other hand, this fact makes solitons sensi-
tive to perturbations having the soliton wavenumber,
since the soliton then is in resonance with the perturba-
tion, and can transfer power to it. More specifically, the
soliton of Eq. (2) has a wave number k„i= A /2, and the
linear dispersion relation corresponding to Eq. (1) is ob-
tained by substituting exp[i(kh„z+cot )] into Eq. (1) and
neglecting the nonlinear term

Since we are in the frame of reference in which the soli-
ton is stationary, these are the velocities at which the
linear radiation leaves the soliton. It is evident that 3OD
causes radiation behind (in front of) the soliton when
s)0 (a&0). The radiation from 4OD will be in both
temporal directions, due to the symmetry of Eq. (1). We
also see that the resonant frequency cop depends on the
soliton amplitude A, as pointed out by Elgin [9]. Howev-
er, this dependence is rather weak due to the condition
that A c needs to be sufficiently small for soliton creation
(see Sec. I). Nevertheless, the dependence must be taken
into account when integrating the total radiated energy
(see Sec. IV}.

III. RADIATION INTENSITY

In order to calculate the exact intensity of the disper-
sive radiation, one may refer to complicated analytical-
numerical analyses, similar to those of Refs. [3,8,11].
However, an accurate estimate can easily be found by us-

ing the following method. Guided by the numerical re-
sults [3,5,7], we know that the solution of Eq. (1) is given
by u (z, t)=u„i(z, t)+f(z, t), where the radiation part is

much less than the soliton part, i.e., ~f(z, t) ) &&
~ u„i(z, t) ~,

over the body of the soliton. Moreover, if c(&1, the
radiation amplitude appears to be proportional to
exp[ —1/e], i.e., it is "beyond all orders" [8] of correc-
tions for the shape and the phase of the soliton itself.
This means that we can calculate the shape and the phase
of the soliton up to all orders in c, and after that we can
calculate the amplitude of radiation using the expression
for the corrected soliton. Thus, for 3OD we take u»&(z, t)
from Eq. (3) and for 4OD we take u»i(z, t} from Eq. (2).
To simplify the calculations, we restrict ourselves to the
first-order corrections for the soliton given by Eq. (3).
Higher-order terms in c. would give additional correc-
tions, which we ignore here. Now, linearizing Eq. (1) in

i +— —sP(f)+2~u„, ~ f+(u„, ) f*=eP(u», ),
Z t'

which is the phase-matching condition for the instability.
To lowest orders in c, this is

co0= ——[—,'+2(sA ) +O(sA )4)],1

coa= — [1+(A~/s)2+0(( A~a) )],1
(6b)

Bco ~—~0 4E

ak„„
QQ7 co= +coa

(7a)

(7b)

as found numerically [5,8]. In the case of 3OD, there is
only one unstable frequency, but for 4OD the problem is
spectrally symmetric and the unstable frequencies are
+cop and —coo. The group velocities at the unstable fre-
quencies are easily calculated to be

where according to the discussion above, u„& can be
given by either Eq. (2) or Eq. (3), depending on the accu-
racy we want. It may be noted that an exact way of solv-
ing this equation has been devised by Elgin [9], but this
does not give any simple explicit expressions for the radi-
ation f, which we are interested in.

Away from the soliton, k,«~0 and Eq. (8) becomes
homogeneous and thus has solutions in terms of linear
dispersive waves. We can interpret the term on the
right-hand side as a source term for these waves. The
terms 2~ «u~ f and u„,f* are responsible for frequency
variations along t inside the range where u„& =0, i.e., in-
side the soliton. The radiated energy is mostly governed
by the source term, and the two above-mentioned terms
give corrections to it. Hence, in principle, in order to es-
timate the radiated energy, we can omit these two terms
in favor of the source term. Our numerical simulations
show that the corrections related to these two terms are
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less than 10% of the full amplitude of radiation. This is
certainly acceptable for the rough estimates we are doing
here. Obviously, the linear waves in our approximation
have to have the same dependence on z as the source
term, viz. , f ~ exp[ ik„iz ], as was explained in the
preceding section. After canceling the common factors
exp[ik„iz], we rewrite Eq. (8) in terms of its Fourier
components

[
—k„i+ki;„(co)]F(co)+—f U(co co')F—(co')dco'

+ oo+ f U(co co')—F(co')dco'=EP(co), (9)2'

f (t)=a exp[icoat]= —,H(ts)exp[icoat], (1 la)

F(~)= f +
f(t)exp[ icot]d—t,

F(co)= f f(t)"exp[ i cot]dt—,

U(co) = f u»i(t)exp[ icot ]d—t,
P(co)= f P(u, i(t))exp[ icot]dt —.

According to the discussion above, we can omit the con-
volution integrals, and the function I' may then be writ-
ten as

"'=-k +k
sP(co)

(10)—k„,+k„„co
The function F(co) can be transformed back to the time
domain by contour integration in the complex plane.
The contour consists of the real axis, a small semicircle
around the pole at ~0, and a large semicircle in the upper
(lower) half-plane for t )0 (t & 0). The main contribu-
tion to the integral comes from the pole at
co=coa (co=+coa for 4OD). All other poles in the upper
half-plane correspond to evanescent waves that vanish for
large t. We therefore neglect their contribution, and ob-
tain

~P(co0)~= [—' —rtAE+O((As) )]exp3 2 4AE

(12a)

~P(co0)~= [1+4A s+O(A E )]exp
2E, 2A

1 — A s H(t)exp= 5~ 2~
4c. 5 4c.A

(13a)

&COp

~a+ = —H(+ t)exp
2&2E 2A

(13b)

We can see that the dominant factor in these expressions
is the spectral value of the source term at ~p. This is
satisfying from a physical point of view, as the radiation
amplitude is proportional to the spectral amplitude of the
soliton at the radiation frequency. It is thus the spectral
tail of the soliton in the normal GVD regime that boosts
the radiation.

The only difference between our expression and the
seminumerical one obtained by Wai et al. [8] lies in the
function of As in front of the exponential in Eq. (13a).
Karpman [12] obtained similar results, although an un-
determined constant prevented it from being a fully
analytical one. All previous expressions for the radiation
amplitude [as well as our Eq. (13a)] have the same ex-
ponential factor, but the factor in front of the exponential
differs in the different papers. A comparison between
those factors the present Eq. (13a), that of Wai et al. [8],
and that of Karpman [12],yields

(12b)

In deriving Eqs. (12a) we have used the first-order expres-
sions for co0 from Eqs. (6). In the exponential in (12b),
however, we retain the full dependence of A in cop. This
is important when integrating to get the total energy (see
Sec. IV ). Thus, the moduli of the Fourier amplitudes of
the radiation become

f (t) =a+ exp[i coat ]+a exp[ icoat ]—
P(~0)

H( —t)exp[i coat ]
Vs '(co0)

5m 2m4' 5" (present),

ImI ( A E)
~

= 13.2 —36A E (Wai et al. ), (14)

P ( —co0)
H( t)exp[ i coat]-

Vs '( —co0)
(1 lb)

where H(x) is the Heaviside step function. In the 3OD
case, it shows that the radiation only exists on one side of
the soliton. The amplitude in front of the exponential
term exp [icoat] is what we need for further calculations.
Taking into account additional poles and the two terms
omitted in Eqs. (8) and (9) will change the step function
into a smooth transition function, and it will also alter cop
inside this transition region. We now treat 3OD and
4OD separately. Following the discussion given around
Eq. (8), we use the first-order expression (3) to calculate
P(co0) in the case of 3OD. In the 4OD case we use the
unperturbed soliton (2). We find

eB—
2

( Karpman ),
where Im I is some function of A c that was numerically
computed in Refs. [3,8, 11] and it is fairly well approxi-
mated with a linear function of Ac in the region of in-
terest ( A E &0.04). Karpman's result is a constant B that
has to be numerically obtained. Our function is approxi-
mately a factor of 3 lower than the numerically computed
function in the interval 0 ( A c. & 0.05, but it has the simi-
lar functional dependence on 3c. It should be observed
that if perturbed soliton, Eq. (2), had been used to calcu-
late the radiation in Eq. (12a), then the terms ( —,

' —mA E)
would have been replaced with a factor of 1. This shows
that the erst-order correction of the soliton gives a better
description than the unperturbed soliton. If expressions
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for the soliton to higher order (in e) had been used in the
calculation of Eq. (12a), the result would have been even
better. In the limit of using the exact, infinite-order
correction to the soliton, the exact amplitude found nu-
merically by Wai et al. is reached. Finally, it should also
be observed that Ref. [3] predicts approximately a factor
of 3 higher radiation amplitude than Refs. [8,11]. In view
of the mutual disagreement between the seminumerical
works, and the fact that our calculations are much
simplified and fully analytic, we believe that our result is
quite reasonable. It gives us at least an analytical expres-
sion rather than the numerical ones obtained in previous
works.

IV. RADIATED ENERGY

Using the formulas for the radiation given above, we
may now calculate the energy loss of the solitons. The
first invariant of Eq. (1) can be expressed as a "continuity
equation" in integral form:

f Iu I'dr = —[Q...], (15)

where

Q ~d (QQi Qiu ) E(QQ)i +Bi)'a Bi I )
1

[Q„d], ', = Ia I (coo+3Ecoo)

25m 4m
1 — Ac exp (17a)

64'. 2cA

t =to
[Q,.d]i=-'t =2Ia+ I'(E4~o —~0)

VT'COp

exp
8s&2E

(17b)

Physically, this means that the energy radiates away with
the group velocity, i.e., Q„d=IaI U '. lt is now a
straightforward task to find A(z) numerically from Eq.
(15) for every case of interest. This works well in the case
of 40D, but for 30D complications arise due to the tern-
poral (and spectral) asyminetry. These complications,
due to the "spectral recoil" effect, are briefly outlined
below.

The second invariant of Eq. (1) is the conservation of
momentum, i.e.,

(16b)

define the energy Aux at any t, and ktp are arbitrary
boundaries of integration. Equation (15) tells us that the
decrease of energy in the range [ to, + to] is equa—l to the
energy How out of this region. It is reasonable to set ktp
beyond the main body of the soliton, where only small-
amplitude radiation exists. Then the integral in Eq. (15)
is, to a good approximation, the soliton energy 2A, and
the energy How is determined by the dispersive waves,
1.e.)

f + oo

(u u( 1l) Q )dr =0 .
BZ —oo

(18)

Physically, this means that the spectral center of mass is
invariant. Thus, if a soliton loses energy by emitting
linear waves in the normal dispersion regime, it will
"recoil" into the anomalous regime of the spectrum
[23,24]. This is the physical reason for the frequency
shift (or temporal velocity shift) of order e that was given
in Eq. (3). Moreover, this spectral recoil sets a lower
limit on the proximity to the zero-dispersion frequency at
which solitons can be launched. As mentioned in Sec. I,
this criterion can be expressed as A c &0.04. If this con-
dition is not fulfilled, the soliton radiates at cop and recoils
further into the anomalous regime. Since the recoil
pushes the soliton spectrum away from the frequency of
radiation cop, the amplitude of the radiation decreases.
Finally, a quasistationary state is reached, where the radi-
ation rate is so small that the spectral recoil of the soliton
is negligible [23,24]. This can be expected to occur at
A c, =-0.04. The soliton therefore stabilizes itself through
the radiative losses, which is a rather unexpected example
of soliton robustness. Using 3 =1 and v=0.04 in Eq.
(17a) we find Q„d =10 ', in good agreement with the
numerics of Ref. [8]. In comparison with the efFects of
fiber loss, this effect is negligible, and we can therefore
make the important conclusion that radiative losses due
to third-order dispersion are negligible in communication
systems utilizing stationary solitons. It should be noted
that the spectral recoil effect prevents us from integrating
the energy loss of the soliton using Eq. (16), since the
above analysis (as well as Refs. [3,8,11])neglects the spec-
tral shift of the soliton.

In the case of 4OD, the radiation is spectrally sym-
metric, and the spectral recoil from each sideband can-
cels out. Therefore, the perturbative character of Ac, is
less important than it is in the 30D case, and we may use
Eq. (16) to calculate the radiative losses. The most
significant contribution to Q„d comes from the exponen-
tial, and it is therefore important to retain the full func-
tional dependence of A in cop..

1/2
I++I+8eA

4e
(19)

In Fig. 1, we show the peak intensity A (z) for some
different values of c.. The specific case v=0.08 was solved
numerically in Fig. 1 of Ref. [7] to yield A (z = 16)=0.7,
which is in excellent agreement with our value
A (z=l6)=0.74. It is clearly seen in Fig. 1 that the
asymptotic decay at high z is very slow. As the soliton
loses energy, its spectral width decreases. The intensity
of the radiation, which is proportional to the spectral in-
tensity of the soliton at the unstable frequency cop, wi11

therefore decrease. Thus the soliton will radiate less as
its total energy loss becomes greater, in analogy with the
30D scenario outlined above. Similarly, a quasistation-
ary state will be reached with negligible radiation loss.
Due to the absence of spectral recoil, however, a longer
propagation distance is required to reach this state than
for the 30D soliton.
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FIG. 1. Decaying intensity
A (z) of a soliton perturbed by
fourth-order dispersion, for
E= [0.04,0.08,0. 12,0. 16,0.2I,
and A(z =O)=1.

10 20

V. RELATION TO CHERENKOV RADIATION

Classical Cherenkov radiation appears when a small
object (particle) moves in a medium with a velocity
exceeding the phase velocity of the waves in the given
medium [15—18]. It is assumed that the source has di-
mensions much smaller than the wavelength. The source
of radiation does not necessarily have to be a real parti-
cle, but can be, for example, waves of polarization in-
duced in a nonlinear medium by external fields. If the
size of the source is finite and comparable with the wave-
length at least in one direction, then the radiation is
defined in this direction by the "Cherenkov conditions"
rather than full phase-matching conditions. Usually in
nonlinear optics, the range of the induced polarization is
large in comparison with the wavelength, so that satisfy-
ing full phase-matching conditions is necessary for the
emission of radiation. In the latter case, the direction of
the radiation is defined by these phase-matching condi-
tions or the "resonance between the acting force connect-
ed with the presence of the source and the oscillators of
the acting fields" [15].

In nonlinear optics, the concept of Cherenkov radia-
tion was introduced by Tien, Ulrich, and Martin in 1970
[17]. Their experiment shows that a thin-film pump
beam can generate a second-harmonic (SH) beam in the
substrate below the film. The phase velocity of the in-
duced nonlinear polarization is higher than the phase ve-
locity of the waves in the substrate, or equivalently, the
e6'ective wave number of the polarization in the film must
be shorter than the wave number of the waves in the sub-
strate at the SH frequency. The emerging SH beam is
therefore tilted with respect to the longitudinal direction
of the pump, due to the longitudinal phase matching of
the wave vectors. This is therefore an example of
Cherenkov radiation with longitudinal phase matching,
but without transverse phase matching.

The same considerations apply to the radiation emitted
by solitons in fibers. In this case, the radiation can be
considered as phase matched along the z direction and
not phase matched along the "transverse" t axis [see Fig.
(2)]. Moreover, the "phase velocity" of the soliton in the
z direction is higher than the phase velocities of linear

waves outside the soliton. The physical consequence af
this fact is that radiation is emitted in the ' direction"
that is inclined to the z direction at the angle P, defined

by»nP=~o/Q(k, ',i+coo). The intensity of this radia-
tion is proportional to the square of the spectral corn-
ponent of the source. It decreases when the width of the
source increases, but becomes higher for small soliton
widths as would be expected for Cherenkov radiation
without phase matching. It should be observed that, in
this sense, all perturbations, that match linear waves to
solitons in at least one direction can be considered as
Cherenkov radiation. One more example of Cherenkov
radiation by solitons was given in a recently published pa-
per [19], in which two colliding solitons in a birefringent
fiber transformed into a Cherenkov-emitting breatherlike
state. Similarly, the radiation emitted when an initial
condition evolves towards a stationary "solitonlike" state
in other coupled nonlinear Schrodinger systems [20,21] is

soliton

FIG. 2. Interpreting the retarded time t as a transverse coor-
dinate, we can view the radiation process as Cherenkov radia-
tion under the longitudinal phase-matching conditions

k„,=k„„.The radiation is emitted at the "Cherenkov angle" P
defined by sing=coo/Q(k„, +coo).
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Cherenkov radiation.
In conclusion, we have demonstrated a straightforward

analytic method for investigating the radiation emitted
by solitons due to higher-order dispersion. We have
found good agreement with previous numerical results.
Emphasizing the physics of the problems we have
identified the radiation as Cherenkov radiation in the t-z
plane.
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