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Following Bhatia and Temkin [Rev. Mod. Phys. 38, 1050 (1964)] we decompose the Hamiltonian
of a two-electron atom (or ian) with a fixed nucleus in terms of Euler angles, and thereby reduce the
energy-eigenvalue problem to a set of coupled equations involving only three lengths, the distance
of the electrons from each other and the distances from the nucleus. However, our equations differ
from those of Bhatia and Temkin since we use a different expansion of the wave function. When the
total orbital-angular-momentum quantum number L is zero or one our equations are the same as
those derived by Hylleraas [Z. Phys. 48, 469 (1928)] and Breit [Phys. Rev. 35, 569 (1930)].We give
the transformation relating the generalized Hylleraas-Breit equations to the equations of Bhatia and
Temkin. Our derivation is facilitated by a special factorization of one-particle angular-momentum
operators.

PACS number(s): 31.15.—p

I. INTRODUCTION

Ignoring electron spin, a two-electron atom (or ion)
with a fixed nucleus has six degrees of &eedom, e.g. , the
coordinates rq and r2 which locate the electrons relative
to the nucleus. The Hamiltonian of the system is (we use
atomic units throughout)

1 2 1 2H = —-V —-V'
r1

1+
r3

K=L

K=—L„(—Z) ~=a
i' (~ »&)&~(r r r ) (2)

It follows that the energy-eigenvalue problem, i.e.,
II ~C&' ) = E[e'&' ), can be reduced ta a set af caupled
diBerential equations for functions in the three variables
Ty) T2) and T3.

A set of equations in these three variables was origi-
nally worked out for S states (L = 0) by Hylleraas [2],

where r3 = rq —r2 is the separation between the elec-
trons. Since the Hamiltonian is invariant under a rota-
tion, we may assume that an eigenfunction of the Hamil-
tonian is simultaneously an eigenfunction of the total
orbital-angular-momentum operator I and its projec-
tion L along a fixed axis, say the z axis, with eigenval-
ues L(L + 1) and M, respectively. Eigenfunctions af L2
and L, are finite linear combinations of the rotation ma-
trices 17& ' (a, P, p), where the Euler angles n, P, and p

M, K

specify the orientation of a body-fixed Cartesian system
(z', y', z') relative to a space-fixed system (x, y, z) (see,
e.g. , the book by Edmonds [1]). Here K is an eigenvalue
of the projection of the total orbital angular momentum
along the z' axis, and if II (= kl) is the parity we have
II = (—1) . The complete eigenfunction 4»' (ri, r2)
can therefore be expressed as the finite sum

(» r.)
L,M (, = sin(0i) e*~',

(2 ——sin(0g )e'~'. (4)

Note that, with l ~ and l2 non-negative integers,
L, (i'g2™ = (li + l2)(i'(~'. Furthermore, denoting the
angular-momentum raising and lowering operators by
L+ and L, respectively, we have L+(~"(z' ——0. It
follows that (i'(&' is an eigenfunction of both L2 and
L„with eigenvalues L(L+ 1) and L, respectively, where
I = li + l2. There are I + 1 passible (linearly indepen-
dent) terms (i'(z' for which li + l2 ——L, and each term

and later for I states (L = 1) by Breit [3]. [The equations
of Breit were based on an expansion that is difFerent from
Eq. (2) —see below. ] Subsequently, Bhatia and Temkin
[4] gave a general derivation, applicable to arbitrary L.
While the equations of Bhatia and Temkin are equivalent
to those of Breit when I = 1, the form of their equa-
tions is somewhat more complicated; see Appendix III of
Ref. [4]. In this paper we generalize the Breit equations
to all L by expanding 4&' (ri, r2) in terms of special
linear combinations of the rotation matrices; this expan-
sion coincides with Breit s expansion when L = 1. Our
derivation follows that of Bhatia and Temkin in so far as
we make an Euler angle decomposition of the Hamilto-
nian, but by contrast we utilize a special factorization of
one-particle angular-momentum operators which greatly
facilitates our analysis. In the Appendix to this paper
we give the (nontrivial) transformation relating our set of
equations to those of Bhatia and Temkin. However, while
we have chosen to decompose the Hamiltonian in Euler
angles in order to make contact with Bhatia and Temkin,
a simpler derivation of the generalized Breit equations
can be given by expressing the Hamiltonian in Cartesian
coordinates, as indicated at the end of this Introduction.

Choosing the z axis to be the polar axis, and defining
ei and Pi to be the polar and azimuthal angles of ri, and
82 and P2 to be the polar and azimuthal angles of r2, we
intro duce

1050-2947y95y51(1)/257(9)/$06. 00 51 257 1995 The American Physical Society



258 MARCEL PONT AND ROBIN SHAKESHAFT 51

has parity (—1)L. Since, for fixed L and M, there are
L+ 1 linearly independent rotation matrices with parity
(—1)L, an eigenfunction of L2 and L, with eigenvalues
L(L + 1) and L, and with parity (—1)L, is, in general,
composed of all possible terms (1'(2' for which li+t2 = I .
Therefore, if II = (—1),we can expand an eigenfunction
for which M = I in the form

411'
( 1)L (ri, r2) = ) ri'r2'(1'(z'fl~ l~(ri, r2, rs).

11jig —L

To develop the corresponding expansion for the case
II = —(—1), we restrict li and t2 to ti + l2 ——L —1, so
that $1"(2™has parity —(—1)L and is an eigenfunctions of
L and L with eigenvalues L(L —1) and L —1, and we

multiply (1"gz' by an angular function 0 which has posi-
tive parity and is such that I+0 = 0 and L 0 = O. The
L linearly independent terms 8(1'(2' are eigenfunctions
of L and L„with eigenvalues L(L+ 1) and L, and each
term has parity —(—1) . Referring to the expressions for
L, and L+ given by Eqs. (29) and (31) below, we see that
a suitable choice for 0 is 0 = e' sin P. Hence, noting
that there are L linearly independent rotation matrices

with parity —(—1)L, we can expand an eigenfunction for
which M = L and II = —(—1) in the form

L,M=L
@H= —(—1)I. (rl, r2)

= e' sin(P) r ir2 sin(812)

l1+l2 ——L—1
1 T2 ~1 ~2 fly, l2 (r» r» T3) r (6)

where 0~2 is the angle between r~ and r2, and where we
have introduced the factor r~r2 sin oq2 since its inclusion
leads to the simplest form of the radial equations.

Eigenfunctions with total magnetic quantum number
M ( L can be generated by application of L; the ac-
tion of L on an eigenvector of L and I is straight-
forward to evaluate. Incidentally, if S is the total
spin quantum number, the Pauli principle implies that
f, , („,T„T,) = (-)'+ IIA

The result of applying H to an S-state eigenfunction
(L = 0 = M) was worked out many years ago and is[2]

H 4 (1 1' 12):H fp p(ri T2 T3)

where H is the difFerential operator

~(o)—o 1 8 2 8 0 2 0 0

('r2 —r +. T2) cl f r —r
riT3 ) BT10T3 ( T2T3 )

In this paper we show that, for all L, and parity (—1)L,

4 0
P3 Of'3

a2

OT 207'3

Z Z +
r2 r3

L,M=L l1 lg l1 lg LHa@'ll
( 1)r(ri r2) ,

— g ri. T2 ~1 C2 'Vl, l (Tl ) T2) T3) )

l1+lg
—L

where, suppressing the arguments r~, r2, and r3,

L (p) L f lg 8 l2 0 (ll + l2) 8
(Ti Bri T2 c)T2 T3 Ors )

t ~1 + 1 'l ~Ay+1, lg —1 (~2 + 1 l ~A, —1,lg+1
r3 ) BT3 ( r3 ) BT3

while for parity —(—1)L

(9)

(1O)

Haorl ( 1)L (rl r2) = e' »n(P) Tir2»n(012)

where

l1+l2 ——I —1

l1 lg l1 lg L
1 T2 Cl C2 Ql~, l~ (T1~ T2 1 T3) 1

(p) L K(11 + 1) 0 (l2 + 1) 8 (li + l2 + 2) 0
T C)r j

+ ' '' +](I, +1') ~fi, +il, 1 ('l2+1& fl,
) l9T3 ( T3 ) clr3 (12)

It is simple to extend Eqs. (9) and (ll) to M ( L since
the angular-momentum lowering operator L commutes
with H . The eigenvalue problem H ~4L&™)= E~4&' )
gives rise to the M-independent coupled equations

v(„i, = @A„i,L

since each term on the right-hand sides of Eqs. (5), (6),
(9), and (11) is linearly independent (for we may hold
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ri, r2, and rs fixed while varying (i). For I = 1 we
recover the Breit equations [3]. Accurate calculations of
atomic properties of helium have been performed by, for
example, Kono and Hattori [5] and Drake [6], who used
basis functions in the coordinates ri, r2, and rs [multi-
plied by vector-coupled spherical harmonics P&~iM, which
for M = L are equivalent to our angular functions for
the case II = (—1)+]. It is often more convenient to
work with perimetric coordinates, which are special lin-
ear combinations of ri, r2, and rs, see, e.g. , Pekeris [7],
or more recently Wintgen and Delande [S]. The relevant
equations for the eigenvalue problem in perimetric coor-
dinates may be obtained directly from Eqs. (13).

In the next section we discuss the Euler angles and
in Sec. III we discuss the angular-momentum opera-
tors. While the material in these first two sections is
not new, it is introduced as a preliminary to Sec. IV,
where we describe the key development —the factoriza-
tion of the one-particle angular-momentum operators in
terms of derivatives with respect to the Euler angles and
the angle Oi2. This factorization is an invaluable tool in
simplifying the two-electron Laplacian, which is carried
out in Sec. V.

We conclude this Introduction by returning to our ear-
lier remark that the generalized. Breit equations, i.e. ,
Eqs. (13), can be derived without decomposing the
Hamiltonian in Euler angles. We 6rst recognize that the
factor (ri(i) '(r2(2) ' in the expansion of Eq. (5) can be
written as (2:i + iyi) '(x2 + iy2) ', which is a polyno-
mial in Cartesian coordinates, and is in fact a solution
of the Laplace equation. Therefore, the application of
the Laplacian to the right-hand side of Eq. (5) can be
carried out if the Laplacian is expressed in Cartesian co-
ordinates (note ri, r2, and rs are simple functions of
Cartesian coordinates). A similar statement holds for
Eq. (6) upon recognizing (see the next section) that the

sin(p) rir2»n(0i2)(ri(i) ' (r2(2) ' can be writ-
«n as —i[(~i+i@i)z2—(&2+~y2)~i](»+iyi)" (&2+iy2)';
again, this factor is a solution of the Laplace equation.

ri+ r2
2 cos(0i2/2)

'

r"
2 —r" i

2 sin(0i2/2)
'

„I ri X r2I
Sin 0]2

It follows that

(17)

(is)

ri ——[cos n cos P cos(p —20i2) —sin n sin(p —
2 0i2)]x

+[sin n cos p cos(p —20i2) + cos n sin(p —
2 0i2)]y

—sin P cos(p —20i2) z, (2o)

r2 ——[cos n cos p cos(p + 20i2) —sin n sin(p + 20i2)]x

+[sin n cos p cos(p + 20i2) + cos n sin(p + 20i2)]y
—sill P cos(p + 2 0i2) z. (21)

Note that r"i and r"2 are interchanged. by changing the
SigIl of Oi2.

Since 0i and Pi, and 02 and P2, are the polar and
azimuthal angles of ri and r2 relative to the space-
fixed frame, we have the following useful relations which
summarize the transformation &om (0i, Pi, 02, P2) to
(n, P, p, 0i2) [see Eqs. (20) and (21)]:

cos 0i ———sin P cos(p —20i2),
cos 02 = —sin P cos(p + 20i2),

sin(0i)e+'~' = e ' [cosPcos(p —20i2)
+i sin(p —20i2)],

sin(02)e+*~' = e+' [cos P cos(p + 20i2)

+i sin(p + 20i2)].

(22)

(23)

(24)

III. ANGULAR-MOMENTUM OPERATORS

Temkin [4] (with a minor difference in the definition of
the Euler angles —see the Appendix) and define the
body-fixed. triad as

II. EULER ANGLES

Let the unit vectors x, y, and z form a right-handed
triad (i.e. , z = x x y) fixed in space. Let the unit vectors
w', y', and z' form a body-Axed right-handed triad, whose
orientation relative to the space-6xed frame is specified
by the standard Euler angles n, P, and p (see, e.g. , [1]):

x' = (cos n cos p cos p —sin n sin p) x
+(sin n cos p cos p + cos n sin p) y
—(sin p cos p) z,

y' = —(cos o. cos p sin p + sin n cos p) x
+(—sill ct cos p slil "f + cos o!cos p)y
+(sin p sing)z,

z' = cos n sin px + sin n sin py + cos pz,

(14)

(i5)
(i6)

with 0 & n & 2', 0 & P & x, and 0 & p & 2m. The
"body" is the atom, whose electrons are located relative
to the nucleus by the coordinates r~ and r2. Hence, with
oi2 the angle between ri and r2, we follow Bhatia and

The one-particle angular-momentum operators in the
space-fixed frame are, suppressing the subscript 1 or 2
temporarily,

(26)

(8' 0 1 cr' )
80 80 8$ (27)

~~( 0 . 0&
l~ = e+'~

~

6—+ i cot 0 (2s)

where l~ = l 6 il„. Note that (' is an eigenfunction of
both l and i„with eigenvalues l (l+1) and l, respectively.

The total angular momentum operator in the space-
fixed frame is j = /i + l2, and the total angular-
momentum raising and lowering operators are L~
l~ i + l~ q. We want to express these operators in terms
of derivatives with respect to the Euler angles, and to
this end we first show that
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0I, = —i
Bo!

We can verify Eq. (29) by writing

(29)

(30)

IV. FACTORIZATION OF ONE-PARTICLE
ANGULAR-MOMENTUM OP ERATOR

In the space-Gxed kame the one-particle angular-
momentum operator L» has the simple and well-known
factorization

and letting ct/Bn act on both sides of Eqs. (22)—(25) to
yield the coefficients A», A2, B», and B2. Thus, letting
8/orn act on both sides of Eq. (22) gives Bi ——0, and
doing the same with Eqs. (23)—(25) gives B2 ——0, Ai ——

A2 ——1, thereby establishing Eq. (29).
In a similar fashion we can verify that

~

sin01 +i
I ~

sin01 —i
~ i) ( ~01 ~1)

(39)

More generally, if we introduce the three functions f~
and y, with

|9
i = —si—n(n) L + cos(n) L&, (32)

0 I ( 8 8
L~ = e+' +~ + .

~
cosp~ —

g I

. (31)8 sin ( Ba Op)

Since L and L~ do not contain derivatives with respect
to 012, we can use Eqs. (29) and (31) to express deriva-
tives with respect to the Euler angles in terms of I, I»
and I, ; we find, in addition to Eq. (29), that

f+f =1-

we can factorize l» as

( 0 i 0
001 sill 01 0/1

(8 i 0't
X

(001 sin01 t9$1)
'

where, taking into account Eq. (40),

(4o)

(41)

19
i = cos(n)—sin(P)L + sin(o. ) sin(P)L„+ cos(P)L, .

8 It'

(33)

Noting that L = 2(L+L + L L+) + I, we also have
&om Eqs. (29) and (31)

0' 0 1 ( 0' 8' l

—2 .
cot p 0
sin p BnOp

(34)

The invariance of L under the interchange of o, and
p suggests it would be useful to introduce new angular-
momentum operators de6ned by interchanging o. and p:

y=cot01 —
I &0

+ . 0 & I /f+
(Bf+ i 8f+ l

1 S1I1 1 1 )
(0 i Bl

~ (f sin01) /(f sin 01). (43)(80 slI101 8 1)
We recover Eq. (39) by putting f+ ——sin 01 (which yields
y = 0). We now express the operators

0 z 0
801 sin 01 BQI

in terms of derivatives with respect to 0»2 and the Euler
angles, thereby obtaining a factorization of E» which is
useful in simplifying the two-electron-atom Hamiltonian.

Referring to Eq. (21) we see that r2 depends on p and
0»2 through the combination p+ 20»2. It follows that,
with | and D angle-dependent coefficients,

0
L', = —i (35)

|9 1 0
00»2 2 Op

C 0 0+D
slI101 DPI 801

(44)

L~ ——e+'~ + + .
~

cos p —
~

. (36)
8 i ( 0 0)

op sin ( ap On)

We have, of course, L = L, and combining Eqs. (35)
and (36) with Eqs. (29), (32), and (33), using Eqs. (14)—
(16), we can see that

sin P sin(p —
2 012) = D sin 01. (45)

Letting both sides of Eq. (44) act on sin01e+'~', using
Eq. (24), yields

Letting both sides of Eq. (44) act on cos 01, using
Eq. (22), yields

L' =z'. L,

Li~=(—x'+iy') L.

(37)

(3s)

e+' [cos P sin(p —2012) ~i cos(p ——012)]

= [+iC + D cos 01]e+'~'. (46)
Hence L' is an angular momentum operator in the body-
fixed kame (but note that its projection along the x' axis
is L' rather than L' —) As is well kno.wn, L (=L 2),
L, and L' are a commuting set of operators whose eigen-
functions are the rotation matrices 17& ' (o., P, p), with
K the eigenvalue of L', (see, e.g. , Ref. [1]).

Solving Eqs. (45) and (46) for C and D gives

C = —cos P/ sin 01,
D = sin P sin(p —

& 012)/ sin 01.

Note that C + D

(47)

(4s)
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Equation (44) is one of two identities that we need to
accomplish our goal. The second identity is based on
the observation that, since r l = 0, the operator r2 - L
is simply r"

2 lq, and therefore involves only derivatives
with respect to the angles of rq. Hence, with C' and D'
angle-dependent coefFicients, we can write

C' 8, 81
r2 L = i sin(—0i2) ~ . +D'

(Sin 1 1 1 j (49)

New, putting n = P = p = 0 on the right-hand side of
Eq. (21) (so the unprimed and primed coordinate systems
coincide) gives

where Xq and Yj are the operators

8 1 8
08y2 2 l9+

/ L,' +e '~"/
Y:—1 = +

2 sin Oy2

l& has the factorization

li = Pl Ql-.

Similarly, l2 has the factorization

l2 = P2Q2—,

(63)

(64)

(65)
r2 = cos( 2 0i2)x.' + sin( 20i2)y,

so that [recall Eq. (38)]

r2 L = —cos(20i2)L' + sin(20i2)L'„
i ( i81g/2L 1 ~ —X01g/2L

+

(5o)
where

P2 =—X2+ Y2+ cot 0g2,

Q2 = X2 —Y2,

and where X2 and Y2 are the operators

(66)
(67)

Let ting both sides of Eq. (49) act on cos 0i, using
Eqs. (51), (36), and (22), yields

cos(P)/sin0i = D'. (52)

Letting both sides of Eq. (49) act on sin0ie+'~', using
Eqs. (51), (36), and (24), yields

19 1 l9

812/2L l + eig1g/2L(
Y =—2 = +

2 sin Oy2

(68)

(69)

—e+' sin P = [+iC' + D' cos 0i]e+'~'.

Solving Eqs. (52) and (53) for C' and D' gives

C'=D,
D' = —C.

It follows from Eqs. (44), (49), (54), and (55) that

(53)

(54)
(55)

V. LAPLACIAN

The Laplacian for both electrons is

l9 2 l9 0 2 0'71+ "72= 0 2+ —
0 + 0 2+ —

0
l l1 2
r2 r2

1 2

(70)

8 18 r2 L . /'8 i 8)D+iC
80i2 2 8p sin 0i2 (80i sin 0i 8/i j

(56)

This suggests that we choose f~ = D + iC, which is
consistent with Eq. (40) since C2+D2 = 1. Hence, from
Eqs. (41) and (56), we have, using Eq. (51),

1'

( 8
X

1 t9 +20'/

1 |9
2 Bp

ei 61g /21 1 + e i811/2 I—
&

+xf
2 sin 012 j

1e2i/sL,&2+ e *s12/211—
+
2 sin eq2

It remains to determine y. Since

X = cot(0i2)/f (59)

Consequently, if we introduce

P~ = X~ + Y~ + cot 0~2,

Qi =—Xi —Yi,
(60)
(61)

f~ = [sin P sin(p —
2 0i2) ~ i cos P]/ sin 0i,

we have, using the left-hand side of Eq. (56) to carry out
the differentiation on the right-hand side of Eq. (43),

Since we have expressed, through Eqs. (60)—(69), the
one-particle angular-momentum operators in terms of
I', (= i8/8p), I+,—and 8/80i2, we could easily work
out the effect of applying the Laplacian to a finite lin-
ear combination of the rotation matrices. Recall that
the rotation matrices are eigenfunctions of L, I', and
L 2 (= L2), and that both L~ and L+ are raising and
lowering operators (see the Appendix). Thereby we could
reduce the energy-eigenvalue problem to a set of coupled
radial equations. (Ultimately we change variables from
0i2 to rs. ) These equations would be similar to those
derived by Bhatia and Temkin [4]. However, as noted
in the Introduction, we obtain a simpler set of radial
equations if we apply the Laplacian to the terms on the
right-hand side of Eq. (5) or (6). We first do this for the
case II = (—1)+, i.e. , we apply the Laplacian to the terms
gi'(2™gwhere g = ri'r2™f&, &, (ri, r2, rs) We make u. se of
the factorization of l& and l2 developed in the preceding
section, noting the following properties. (i) The action
of Xq on a function of r2 only, or the action of X2 on
a function of rq only, yields zero; recall that rq depends
on 7 and Oq2 through the combination p —

2 Oi2, while r2
depends on p and Oq2 through the combination p+ 20~2—see Eqs. (20) and (21). (ii) The action of Yi on a
function of r2 only, or the action of Y2 on a function of
ri only, yields zero; recall that Yi ———(r2 . li)/sin(0i2)
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and Y2 ———(rl . l2)/sin(012). (iii) The action of Yl or
Y2 on a function of rl, r2, and rs only (e.g. , the function

g) yields zero since such a function is invariant under a
rotation (it is independent of the Euler angles) so that

I

the action of L+ yields zero.
Using these properties, along with Eqs. (60)—(64), and

observing that Xlg = Og/0012, noting that later we
change variables &om O12 to r3, we obtain

—lip,"(2 g = (P1Q1)(1"t 2"g

= Pl (Q1C1')C2'g+ Cl'C2'
~012

(Ql(1 ) (Pl —cot 012)g + (P1Q1(1 )g + +(Pl(1 ) + (1 (Pl —cot 0]2)
12 12

(Pl + Ql) &1' —g&1&1' + &1'
Og

12 12
(71)

Since Pl +Ql ——2X1+cot 012, and since ll(1' ——ll (ll+
l)(1', we have

cos O2
X1 cos O1 ——cot O12 cos O1-

Sln O12
(76)

—ll(1"g2" g = (2" (2X1 + cot 012)gI'
12

02—ll(ll + 1)&1'g + &1'
12

Next, we show that

Xl (1' ——l l cot (012)Cl' — . Cl (2.
Sln O12

(72)

(73)

Applying I+ to both sides of Eq. (76) gives

Xl(1 = cot(012)(1—
Sin O12

(77)

2 l l l l
2 0—ll(1 (2 g —(1 (2 + cot(012)
12 12

and using Xi /1 = nr', 1 Xi /1 yields Eq. (73). This yields
finally

Xl cos 01 ———sin P sin(p —012/2).

We can rewrite the right-hand side of Eq. (74) using

—sin 012 sin(p —012/2)

(74)

We start by noting that &om Eqs. (22) and (62) we have t9
+ll

/
2cot(012) —(ll + 1) [ gl )

P L1 —1&l2+1
Sln O12 OO12

g. (78)

= cos(p + 012/2) —cos(p —012/2) cos 012. (75)

From Eqs. (22), (23), (74), and (75) we obtain

A similar equation holds for L2, we replace l1 by /2, and
interchange ll and l2, and (1 and (2.

Collecting together the results obtained so far in this
section, we have

028820(11 t i 00
~rl &1 rl r2 &2 r2 rl ~2 ) 0 12 12 )

—,
~

2cot(012) —(ll + 1)
~
+ —,

~
2cot(012) —(l2+ 1)

~
g

12 )12

~lg —1 ~lg+1 2ll ~ lg+l~lg —1 2l2

rl sin 012 ~012 &2 sin 012 ~012
g.

We can change variables &om O12 to r3 by using r3 ——

r1+r2 —2r1r2 cos O12. After some straightforward algebra
we obtain, upon including the Coulomb potentials, the
desired result given by Eqs. (8)—(10) for the case of parity
11 = (-1)~.

We now outline how the result given by Eqs. (11) and

(12), for the case of parity II = —(—1)+, can be ob-
tained. We start by noting a few identities involving
the operators Xl and Yl of Eqs. (62) and (63) and0—:e' sing: (i) X18 = 0; (ii)Y18 = —i[cot(012)(2—
(1/sin012j/sin012, (iii) X'1Y10 = —cot(012)Y18; (iv)
Yl(1 ———iO; (v) Yl 8 = 8/(sin 012). We briefly out-



51 DECOMPOSITION OF THE TWO-ELECTRON-ATOM. . . 263

line their proof. The relation (i) follows since 0
e' sinP does not depend on either p or 812. The ac-
tion of Y~ is easily calculated by applying the expres-
sion for L'~, see Eq. (31). Hence it is straightforward
to obtain (iv). Similarly, we obtain YIe = (2/sin812
where Q = e' [cos(p + 812/2) + i sin(p + 812/2) cosp].
After some simple manipulation (2 can be expressed
as $2

———i[cot(812)Q —Q/sin812], thus proving (ii).
Since XI(2 ——0 we have XIYIO = (2XI(1/sin812)—(2 cot(812)/ sin 812, and now relation (iii) follows imme-
diately. Using (ii), and (iv) in the second step, we get

(2l1 + 1)
S111 812

(8o)

Replacing g by gsin812 in Eq. (80) and Eq. (78) and
combining Eqs. (78) and (80) gives

YI 0 = iYI(I/(sin 812) = 0/(sin 812), thus proving (v).
Proceeding in a similar way as we did in deriving Eq. (78)
we obtain

l2 Ogler
(la Ol2(lx pig 0(lg —I qlg+I 1 12

sln612 '

—BIO sIn(812)$1'g2'g = 0 sIn(812)$1'g2' 2 + cot(812) + (l1 + 1) 2 cot(812) —(l1 + 2) l g
0 0

12 12 0012

12

A similar expression holds for —l20 sin(812)(I'gz'g. This yields

(V, + 7'2)Osin(812)(I" g2" g

(81)

2l2 0
2 g.

P2 sin 012 0012

g 82 2 0 ( 1 1 ) f 82 0
csin(8»)qI q2", + — +, + — +

l
—,+ —,

l l, + cot(8»)
l gOf'I TI Brl r2 P2 r2 K PI P2 ) E 12

+Osin(812)$1'(2' 2 I
2cot(812)

&
—(iI+2)

l
+ 2 l

2cot(812) —(l2+2)
l g

(l1+ 1) 8 't (l2+1) I' ct

12 ) )12

2l1—0 sin(812) $1' g2' 2 . g —e(»n 812)(I"+'(2"
P1 Sln 12 12

(82)

Changing variables &om 012 to r12, we obtain after
some straightforward algebra Eqs. (11) and (12).

by Bhatia and Temkin differ only very slightly &om our
Euler angles (n, P, p); we have n = 4 —vr/2, P = 0, and
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1. Laplacian

We first show that our factorized expression for L1,
given by Eqs. (60)—(64), i.e. ,

APPENDIX l1 = —(XI + YI + cot 812)(XI —YI), (A1)

In this Appendix we make contact with the work of
Bhatia and Temkin [4]. The Euler angles (4, 0, 4) used

is equivalent to the expression of Eqs. (63) and (64) of
Bhatia and Temkin:

0 t9 1—l1 =
2 + cot(812) + 2 (—L + cos(812) [sIn(2&) A2 —cos(2p) AI]
12 2 Sln 012

0 (1 1+ s'n(812) [sin(2p) AI + cos(2p) A2]) — —-' cot(8,2)
12 (4 2sin 812) 82''

0 0
AI=2~P2+~ 2+L )

'Y

(A2)

cotP 0 0
A2 =—2 —(1+ 2 cot P)sinP On t9+

2 0
sin P BPOo. OPOp

(A4)
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[Xi,Yi] = —cot(0i2) Yi,

we have, from Eq. (Al),

(A5)

It follows &om the equivalence of the expressions for I,z
that the expressions for the Laplacian are also equivalent.

Noting that
L+L' + L' L+ ——2(L —L ),

( 8'l= 2
I

I.'+
~& )

(A7)

Substituting our explicit expressions for Xi and Yj [see
Eqs. (60)—(64)], and using

—l i = X i —Yi + cot(012)Xl. (A6) yields

|9 6+ cot(Oi2)
12 12

0
00~2 0P

1

Sln 012

8 t'1—
2 cot(0i2)

Bp (4

f L' )812 + + ~
—&812

!

— + 1+2
)

2sin Oi2) 0 p

(A8)

(A9)

This expression is equivalent to Eqs. (A2) —(A4) if we
can identify

fK(ri » rs) = ). ri'r2'A„~, (ri r2 rs)«„~, (0»)
l1+l2 ——L

I ~2 ——e+ '~(Ai + iA2). (A10) (A11)

These identities may be readily established upon squar-
ing L+, utilizing Eq. (36), and comparing with Eqs. (A3)
and (A4).

2. Transformation between difFerent expansions

Now we derive the connection between the coefBcients
fK(ri, r2, rs) in the expansion of Eq. (2), which is similar
to Bhatia and Temkin's expansion, and the coeKcients
f, , (ri, r2, rs) of Eqs. (5) and (6), which lead to the gen-
eralized Breit equations, Eq. (13). With a conveniently
chosen phase for the rotation matrices 'D& ' (n, P, p), the
result is

for the case of II = (—1)+, while

fK(ri, r2, rs)

= 2rir2 sin(Oi2)

L1+L2 ——L—1
r,'r2' f&, &, (r ir» rs)C.. ., (0i2) (A12)

for the case of II = —(—1) . In the above equations the
functions C& & (Oi2) are given by [with 2Fi a hypergeo-
metric function]

CK 0
( 14(lx+L K2)/2 l!1 ~

[(li —l2 —K) /2]! [(li + l2 + K)/2]!
xe '&"+ / l " 2Fi( —2(li + l2+ K), —l2, 2(li —l2 —K) + l, e ' "), (A13)

with

(2L+ 1)
8~2

N = —1
(2L)!

(L —K)!(L+K)! (A14)

valid for both parity cases. Note the syminetry property C&
& (Oi2) = Ct & (—Oi2).

Let us start by defining the rotation matrices 27& ' (n, P, p), with our phase convention:

g, (~ P ) ( 1 ) [ (
K—M !+K+M ] / 2+, sin !K—M

( (P / 2) cos )
K+M

( (P / 2 )
Mick 1K

2Fi[—L + -', IK —Ml + 2 IK + Ml L + 2 IK —Ml + 2 IK + Ml

+1,1+ !K—Ml, sin (P/2)],

where the normalization constant NL ' is

(2L+1) (L+ -'. IK+ Ml+ -', IK —Ml)' (L —
—,'IK+ Ml+ -', IK —Ml)'

(L ——.'IK+ Ml —-', IK —Ml)' (L+ -'IK+ Ml —-'. IK —Ml)'
1

!K —Ml!
(A16)
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Note that 'D& ' (n, P, p) = 17I ' (P, o, p). Our phase
convention is in accord with

L~17( ' ——J(L ~ M)(L + M + 1)17) ' (A17)

g(L ~ It-)(L y ~ ~ 1)Z)M, K+1 (A18)

[cos2 (P/2)e ~+s~~~ sin (P/2)e ~+ &2 j2)]

(A21)

'DI. ' (~ ~ &)&i„i,(~»)

Some simple algebraic manipulations readily yield
L

)
K=—L, (—1)~ =(—1)+

It suKces to consider the case M = L, for which the
rotation matrices take a particularly simple form:

~I,K
( p ) ~K sI oL sRp I'~ IC

(p—/2) I +IC (p/2)

(A19)

for the case of II = (—1), while

2 Sin 6

(A22)

To prove Eqs. (All) and (A12) we first invoke Eqs. (24)
and (25): K=—1., (—y) &=—(—y) L

17~' (a, P)p)C. ..(Hi2), (A23)

gi ——e* [cos (P/2)e'(~ "~ ) —sin (P/2)e '(~ "~ )]

(A20)

for the case of II = —(—1)+. Substitution of these expan-
sions into Eqs. (5) and (6), respectively, and comparing
with Eq. (2), yields Eqs. (All) and (A12).
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