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Sub-Poissonian light from a laser with an injected signal
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We show that the injection of an external 6eld in a laser helps to improve amplitude squeezing and
sub-Poissonian light generation close to threshold, but spoils quantum noise reduction for very high
pumping rates. A general nonlinear theory is developed for the resonant case (no detunings), without
any assumption on the relative magnitudes of 6eld and atomic decay constants, thus encompassing
a large class of lasers. Several possible pumping schemes are accommodated, ranging from regular
to Poissonian. We carry out a detailed stability analysis of the general equations of motion, relating
it to the noise-reduction problem. Both the photon-number variance inside the cavity and the
homodyne spectra of the output are discussed.

PACS number(s): 42.50.Dv, 42.50.Lc, 42.55.—f, 42.50.Ne

I. INTR.ODU CTION

The search for bright sources of light exhibiting either
subshot noise or quadrature squeezing has stimulated a
strong renewal of interest in basic laser theory. In fact, it
has been shown that careful consideration of the pump-
ing mechanism leads to a reformulation of the theory
for non-Poissonian pumping and to new possibilities of
sub-Poissonian light generation [1,2]. Correlated emis-
sion schemes, in which the lasing atoms are initially pre-
pared in a coherent superposition of the resonant states,
lead to amplitude squeezing [3] or, in the special case of
two-photon lasers, to phase squeezing [4]. Closed sys-
tems of states lead to dynamic pump-noise suppression
through the recycling of the active laser electron &om
the lower to the upper laser level via a multistep process
[5]. On the other hand, open-system lasers operating
in regimes where the atomic variables behave in a non-
adiabatic way may also emit sub-Poissonian light, even
when no attempt is made to regularize the pumping [6].
This is true even in the rate-equation regime, as long as
the Geld decays in a time scale comparable to that for
the upper atomic lasing level [6].

In this paper, we discuss in detail the spectral prop-
erties of a laser with an injected signal. This system
has been the object of many discussions in the litera-
ture, especially in regard to its classical dynamics, since
Spencer and Lamb [7] showed that the output intensity
may exhibit oscillatory behavior. The chaotic regime has
been studied in detail by many authors [8]. Our treat-
ment does not make any assumption about the relative
magnitudes of the atomic and field decay constants and
it is therefore applicable to a wide variety of laser sys-
tems. We consider here the resonant case: the efFect of
detunings between the injected. field, the atoms, and the
cavity mod. e will be considered elsewhere. We are led to

two main conclusions: as compared with the situation
in which there is no injected signal, there is an enhance-
ment of squeezed-state production for operation not far
above threshold and a lowering of the minimum pumping
rate necessary for a certain degree of squeezing to appear.
In particular, we show that a Poisson-pumped laser may
produce sub-Poissonian light, with up to 50% of noise
reduction in the output field. Although reminiscent of
the noise quenching found in Ref. [6], the introduction
of an external coherent signal leads to the possibility of
getting sub-Poissonian output in a region much closer to
the oscillation threshold than the one found in [6].

We also undertake an analysis of the stability of this
system, d.iscussing the connection between some of the
main features of the fluctuations spectra and the posi-
tions of the roots of the characteristic polynomial ob-
tained in the stability analysis. Two of the main conse-
quences of the nonlinearities in the atom-field interaction,
namely, the production of sub-Poissonian light and the
appearance of instabilities, are thus related.

Our model is deGned in Sec. II, where the Heisenberg-
Langevin equations of motion for the field and atomic
operators are derived. By choosing a normal-ordered rep-
resentation, equivalent stochastic c-number equations are
written in Sec. III. They allow us to discuss the proper-
ties of the steady state, and to obtain the quantum fluc-
tuations around it. In the same section we calculate the
spectra of amplitude and. phase quadrature components
of the cavity-field fluctuations. The spectra of fluctua-
tions for the output Geld are calculated in Sec. IV and
our conclusions are summarized in Sec. V. In the Ap-
pendix we make a stability analysis of the model here
considered, making sure that the calculated spectra in-
deed correspond to stable regions. The results obtained
in the Appendix are also useful to the discussion made
in Sec. IV on the connection between the spectra of fluc-
tuations and the instability thresholds.
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II. HEISENBERG-LANGEVIN APPROACH

We consider a system of homogeneously broadened
two-level atoms in resonant interaction with a mode of
the electromagnetic field in a ring cavity of length L and
volume V. The field in the cavity is damped at rate p/2,
due to both internal losses and transmission through the
mirrors, and driven by an external coherent optical signal
A(t), also resonant with the cavity mode. We neglect here
the phase difFusion of the injected signal since it has no
inBuence whatsoever on the amplitude squeezing eKects
considered in this paper.

In the electric dipole and rotating-wave approxima-
tions, the Hamiltonian describing this system can be
written as

H = 5Bota+ ) (E rr' + @bob~)

+ hg ) O(t —t, )(Ja, e *""+ atoe'"'"')
2

+ i h — Ae ' 'at —A*e'+'ay'2
where at and a are the photon creation and annihila-
tion operators, 0& is the polarization operator for the jth
atom, and o~ and ob are the upper- and lower-level pop-
ulation operators, respectively, for the jth atom. E and
Eb are the energies of the atomic upper and lower lev-
els, respectively, with E —Es = hO. 8(t) is the step
function, which guarantees that the jth atom starts in-
teracting with the field (either because it is pumped to a
resonant level or because it enters the cavity) at the in-
stant t~. The constant g corresponds to the electric dipole
coupling between the two-level atoms and the field, while

r~ is the position of the nucleus of atom j.
We follow closely the method used by Kolobov et

al. [6]. The interaction between the atoms and the field
is described by a set of Heisenberg-Langevin equations of
motion, obtained Rom (1) by adding to the correspond-
ing Heisenberg equations of motion the damping terms
and respective Huctuation forces associated with the cou-
pling to the atomic and field reservoirs [9,10]:

a(t) = —iOa(t) —ig) 8(t —t, )o~(t)e
2

——a(t) + —Ae ' ' + F (t), (2a)

o~(t) = —iOcri(t) + ig8(t —t, ) o'(t) —o~~(t) e'"'"'a(t)

—r~, (t) + f.(t), (2b)

cr~ (t) = igO (t —t, ) at (t)o; (t)e '" "~ —o t (t)a(t) e'" "
—(1'. + r.'):(t) + f:(t), (2c)

0j (t) = —ig8(t —t ) at (t) 0 . (t)e '"' ' —crt (t)a(t) e'"'"'

—r, , (t) + r'. :(t) + f,'(t)
where I', I', I'b, and I" are atomic polarization and pop-
ulation decay rates. Note that I" refers to the nonradia-
tive decay from state a to state b, while I' and I b refer

to the decay of levels a and b towards other levels.
The correlation functions of the field Langevin noise

operators F~(t) are calculated assuming that the field
interacts with a heat bath, producing [9,10]

(F,'(t)F, (t')) = nT h(t ——t,'), (3a)

(3c)

where nT is the average number of thermal photons in
the laser cavity. We assume for simplicity that the heat
reservoir is at zero temperature, so that nT ——0. The
generalization of our results to nonzero temperatures is
straightforward.

The correlation functions of the atomic Langevin noise
operators are obtained directly &om the generalized Ein-
stein relations [9,10], so that, if

(f (t) f-(t')) =2D -~(t —t')

then

2D„„=—(D„A„)—(A„D ) + —(A„A ).d

In this way, the following nonvanishing correlation func-
tions are obtained:

(f"(t)f'(t')) = (21' —1' —1".)(o'.(t)) ~(t —t'), (4a)

(f (t)ft (t')) = (2I' —I's)(o&(t)) + 1" (o. (t)) b(t —t'),

(4b)
(4c)

(4d)

(4e)

(4f)

(4g)

(4h)

As usual, we define the slowly varying field and po-
larization operators in the kame rotating at &equency
0:

ci(t) = e' a(t), cr, (t) = e'"'cr, (t)

The corresponding Langevin equations are then identical
to those for a(t) and o~ (t) with the difi'erence that terms
proportional to 0 disappear, as well as the explicit time
dependence in the term proportional to A, viz. , the expo-
nential e ' . In the following we drop the tilde on the
operators, keeping in mind that &om now on all opera-
tors are defined in the rotating kame.

We are interested in the behavior of macroscopic

—„A„=D„+f„(t)

with D„being an arbitrary function of the operators A,
and
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atomic operators, obtained by adding up the individual
atomic operators, taking into account the corresponding
injection times,

M(t) = i )—8(t —t, )~, (t)e
—'" "',

2

N. (t) = ) 8(t —t, )~'.(t),
2

N&(t) = ) 8(t —t, )~', (t).
3

(5.)

(5b)

(5c)

—g [a'(t) M(t) + M'(t) a(t)]

+) 8(t —t )f~(t)

The operator M(t) represents the macroscopic atomic
polarization, while N (t) and Nb(t) represent the macro-
scopic populations of the upper and lower levels, respec-
tively. One should note that these operators depend on
the distribution of injection times. Thus, as noted else-
where [2,6], average values or correlation functions in-
volving these macroscopic operators should include not
only the quantum-mechanical average, but also the clas-
sical average over the statistics of the injection times tz.
This last average depends on the nature of the pump-
ing process, and it becomes relevant when the equations
for the macroscopic operators are written down. The
Langevin equations for the macroscopic atomic opera-
tors are found by differentiating Eqs. (5) and substituting
Eqs. (2b) —(2d) for the time derivatives of the individual
atomic operators. Thus, for the operator N (t) we obtain

B of the upper lasing level:

() d(t —t, ) = Rf dt, d(t —t, ) = R.
2 S

The same procedure is adopted for the other macro-
scopic atomic operators. In order to separate the drift
terms from the noise terms in Eq. (6) we add and sub-
tract the expectation value of the Grst term, adding the
difference between the injection impulses and the rate R
to the fluctuation force, which becomes then

E.(t) = ) 8(t —t, )f.'(t) + ) b(t —t, )~'. (t, ) —R.

a(t) = gM (t) ——a(t) + —A + E~ (t), (10a)

M(t) = g N. (t) —N&(t) a(t) —rM(t) + EM(t), (1Ob)

N. (t) = R —g a'(t)M(t) + M'(t)a(t)
—(I' + I" )N (t) + E (t),

N(, (t) = g at (t)M(t) + Mt (t)a(t)
—I' N (t) + I"N (t) + F (t). (1od)

The evaluation of the correlation functions of the above
Langevin forces involves the calculation of

The new Langevin operator E (t) is the total noise oper-
ator for the macroscopic atomic population N (t). It in-
corporates the fluctuations of the population of the upper
level due to both radiative decay and pumping. Applying
the same method to all macroscopic atomic operators, we
are led to the following set of equations:

The Brst term on the right-hand side of Eq. (6) is made
up of a series of impulses, associated with the pumping
of the atoms at times t~ into the upper lasing level. The
expectation value of this term is given by

) d(t —tt)a'(t, ))

In the above expression, a double average is made, as
mentioned before. For the quantum-mechanical average,
we use the fact that the atoms are initially prepared in
the upper state, so that (o~(t~)) = 1. The remaining
classical average over the injection times is indicated by
the index S on the angle brackets in Eq. (7). The average
of the last sum in Eq. (7) yields the mean pumping rate

I

I(t, t') = ) b(t —t, )b(t' —t„)
j,k S

This can be easily done in two extreme cases. For regular
pumping, we may set tz ——to + j7-, where w is the con-
stant time interval between two successive atoms and to
is an arbitrary time origin. Since there are then no pump
fluctuations, the average of the product of b functions in
(11) can be disentangled into the product of two separate
averages, each of which is equal to the pumping rate R.
We get therefore

) b(t —t, )h(t' —t„) = R'
j,k S

(regular). (12)

On the other hand, for Poissonian pumping, t~ is com-
pletely uncorrelated to tk, unless of course j = k. We
have then

) h(t —t, )h(t' —t„) = ) b(t —t, )b(t' —t, ) + ) h(t —t, )h(t' —t„) = Rb(t —t') + R'.
j,k S 2 s S
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In the general case, one gets [2]

(2r —r. —r.')(N. (t)) + R h(t —t'), (15a)

(14)

where p is a parameter that characterizes the pumping
statistics: a Poissonian excitation corresponds to p = 0,
while regular pumping corresponds to p = 1. The inter-
mediate cases between these two extremes are described
by values of p between one and zero.

Using the above results, we Gnd that the only non-
vanishing correlation forces of the Langevin forces in (10)
are

(+' (t)+ (t'))

We choose the normal ordering at, Mt, N, Ng, M, and
a. Since Eqs. (10) are already written in normal order,
the corresponding c-number equations are, simply,

(16d)

where the Xb(t) are stochastic Langevin functions with
the properties

P (t)) =o
(& (t)&(t')) =» h(t —t').

(17a)
(17b)

A(t) = gM(t) ——A(t) + —A+ X,(t),

M(t) = g A (t) —Aq(t) A(t) —rM(t) + W~(t), (16b)

A'. (t) = R —g A*(t)M(t) y M*(t)A(t)

-(r. + r'.yr. (t) + ~.(t),
JVb(t) = g A*(t)M(t) + M*(t)A(t)

rbJV—&(t) + I.'JV. (t) + Xb(t),

(E (t)P (t')) = (2r —r )(N (t))

+r'. (N. (t)) h(t - t'), (15b)

The diffusion coe%cients Vy~ are determined kom the
requirement that the t"-number equations for the second
momenta should be identical to the corresponding nor-
mally ordered operator equations [2]. We get then

yM(t) s'. (t')) = (r. + r'. ) (M(t)) h(t —t'),

(EM(t)Eb(t')) = —I" (M(t)) h(t —t'),

y, (t)zM(t')) = rb(M(t)) h(t —t'),

(15c)

(»d)

(15e)

Equations (3), (10), and (15) describe completely the
laser dynamics as well as the dynamics of the quantum
fluctuations for arbitrary pumping statistics. Note that
the field Langevin force already takes into account the
Poisson statistics of the injected signal. That is, for all
purposes an injected field in a coherent state can be con-
sidered as classical [11].

(E (t)E (t')) = (I' + I" )(N (t)) + R(l —p) h(t —t'),

(15f)
(F-(t)+b(t')) = -r'. (N-(t)) h(t —t') (15g)

(Eb(t)Eb(t')) = I', (N, (t))+I".(N. (t)) h(t —t') (15h).

m~. = (2r —r. —r'. )yf. (t)) + R, (1Sa)
217~~ = 2g (M (t)A(t) ), (1sb)

2Vb~ = rb(M(t)), (18c)
217 = (I' + I" )(JV (t)) + R(1 —p)

—g (A* (t)M (t) + M* (t)A(t) ), (18d)

2'Dbb = rb(JVb(t)) + I" (JV (t))
—g (A*(t)M(t) + M'(t)A(t)), (18e)

217 b = —I' (JV (t)) + g (A*(t)M(t) + M'(t)A(t))

(1sf)

B. Steady state

The steady state is obtained from Eqs. (16) by neglect-
ing the fluctuations and setting the time derivatives equal
to zero, leading to the following set of nonlinear algebraic
equations:

III. FLUCTUATIONS AROUND STEADY STATE

A. Normal ordering representation

gM, ——A, + —A=O,

R —(r. + I '.y/. , —g(A:w. + w*.A.) = o,

r'.N. —r,a, +g(A.*w. +W.'A. ) =o,
g(A. —A; )A. —rw. = o.

(19a)

(19b)

(19c)
(19d)

The nonlinear equations for macroscopic operators ob-
tained in the preceding section may be transformed into a
more manageable form by introducing a c-number repre-
sentation for the atomic and Geld operators. We impose
the condition that the corresponding t"-number equations
must lead to the same results as the original operator
equations for the average values of operators and second-
order correlation functions. The actual form of the c-
number equations will depend on the choice of the or-
dering for products of the atomic and Geld operators.

R prrb (
(I' +I'b) 2g'(I' +I'b) q A, P

'

&r (,
2g E' A. )'

iA. ,
2g ( A. )

(20a)

(20b)

(20c)

Expressing the atomic variables in terms of the steady-
state field A„we get
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solution of the equationwhere ~, is a so

'A + A=O'Y

(r. + r.)r,r + 2g2(r. + r„
(21)

n ma be written in term s of the nor-
h(I) d tho t (I,)malized intensities for t ehe laser wit

an injected signal,

respectively, where

r +I.' rI. bl~-il'= r +r 2g,

sit for A = 0 an dis the saturation intensi y

, (R —
)

(22)

(23)

I„, P, /A,

tead -state intensity I versursus a nor-
-si nal intensity I&, Eq. 2, anj K

etw ' t d-si0;nal and cavity- etio betw
reshold laser operation.Eq. (25), for above-thres o ase

tensit for above-threshold opera-

hr ho ld to i tpressed in terms of the thres o

(24)
d small fluctuating term:steady-state value an a sma

Equation (21) becomes then

I —IoA= A, .I+1 (25)

A(t) = A. + b'A(t),

M(t) = M. +bM(t),
X.(t) =N..+uf. (t),
A'i, (t) = A'i, . + blab(t)

(I —Ip) 2

I~ —
( ), I (26)

'n E . 25).0 y
nd 26 are plot te inEquations (25) an ( )

can see that there are three possible
b thr h ld Th tr o eration a ove . obranches for laser op

it -Beld phase diKeringes ond to a cavity- elowest ones corresp
er of vr's from t e injec en

' ted signal phase.
t b h lwe show that t ese wo

h b h lbl The stability of t e uppeways unsta e.
checked in the Appendix.

E . (25), that the ratio A/A, is real
th t d—1 and+1. There ore, e

d- 1 h (A= ~Ai

vit -field phase is
and P is the injected-signa p

A~ /~AS i~ is related to the norma ize ca '

tensity through the expression

bA(t) = ——= ——hA(t) + gbM (t) + X,(t),
()=- ()+ ( -. —JV —Ai, .)bA(t)

+g bA' (t) —bA'b(t) A, + X~(t),
l" bA'. (t) —g A.*bM(t) + A.bM*(t)

—g M, bA*(t) + M,*bA(t) + X (t), 2 c

av. (t) = —r,ur. (t) + r'.b)v. (t)
+g'A.*bM(t) + A.bM*(t)

+ g M.bA*(t) + M.*bA(t) + xb(t).

(27a)

(27d)

e now converted into algebraic equa-These equations are now conver e i ua

hvariables (for simp icity, @re u
f th Fourie t nsform pairtation for bot functions o t e our

h their arguments):di6'erentiating them therefore t oug

s. 16 and neglect-se ex ressions into qs.

the following set of linear i eren i

C. Quantum Huctuations bG((u)e ' 'd(u,
2K

te now the small fluctuations os of the field
t adables around t e s ea y s

as usual, eac oh f these variab es as ein
bG(~) = bG(t)e*-' dt,

2K
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so that

i—urbA((u) = ——bA(~) + gbM(~),
2

i—u)bM(cu) = —rbM((u) + g(lV —lVb. )bA(~)
+g bJV ((u) —blab(u)) A, + X~(~),

(29a)

(29b)
;~@V.( ) = -(r. +r'.)uf. (~)

—g A;bM(~) + A, bM*(—~)

—g M, bA'( —(u) + M,*bA(~) + X (~),
i~bA'g(—(u) = —rgb''g(ur) + I"bed (ur)

+g A.*bM(~) + A, bM*(—(u)

+g M, bA'( —(u) + M;bA(~) + &g(~).

(29c)

gA—.&b(~) + ([t-"(~) + IA I'1&~(~)

-A'. &n (—~))(r~ —i~) (30)

mean value and all normal-ordered correlation functions
are equal to zero at zero temperature, in view of (3).
This is actually one of the advantages of using normal
ordering: (3b) implies that this will not be true for other
orderings.

It is straightforward to solve Eqs. (29). As we are inter-
ested on the spectra of Buctuations of the Geld quadrature
components, we write the Fourier amplitudes of the Geld
fluctuations bA(&u) and bA'( —u) in terms of the Fourier
transform of the Langevin functions. We get Gnally

In the above equations, we have set X~(t) = 0, since its
I

where

D(~) = (d [C(~) + 2~A, ~'j (~ + 1) —i~ —,,~ ~ (I' —i(u).

The expression for bA (—u) is obtained by performing the complex conjugation and substituting cu by ~ in Eq—. (30).
We choose the injected signal as real, which leads to a real steady-state Geld. In this case, the amplitude and phase

quadrature components of the cavity-field Quctuations are deGned, respectively, as

1-
bX((u) = —'bA((u) + bA*( —cu),

1-
bY((u) = —bA((u) —bA*(—cu) .2i-

(3la)

(»b)

Note that bX*(w) = bX(—ur) and bY*(w) = bY'( —w), so that bX(t) and b' Y (t) are real, as expected
Replacing Eq. (30) for bA(u) —as well as the corresponding expression for bA*(—w) —in (31), we arrive at the

following expressions for the quadrature components:

bX(u)) =

(32a)

(32b)

It is easy to see that the Fourier-transformed Langevin noise functions obey the equations

{Wg (cu) W) ((u')) = 2'DI, i b(u) + cu'),

which result &om the fact that the correlation functions of the time-dependent Buctuation forces depend only on
the time differences (stationary process). In view of this, the autocorrelation and cross-correlation functions of the
amplitude and phase quadrature components are b correlated:

{bX(~)bX((u')) = (bX') b(~+ (u'),

{bY((u)bY(~')) = (bY ) b(~+. ~'),
{bX(~)bY(u)')) = (bXbY) b((u + (u').

(33a)
(33b)
(33c)
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We calculate now the power spectra of the amplitude and phase quadrature components of the cavity-field Huctu-
ations, de6ned as the Fourier transform,

Wx(te) = f e '*(SX(0)tX(t))dt,

with an analogous definition for Wy. (u). Upon replacing bX(0) and hX (t) in this expression by their Fourier transforms
(28), it is easy to show that ~x.(w) = (tIX ), where (bX ) is defined by Eq. (33a).

From Eqs. (18), (32), and (33), we get the following expressions for the spectra of the quadrature components of
the cavity-Beld Huctuations:

(bX') (r +rt)2+~2
2

g (r +rb) +4~ 4 2 —~ +(u C((u)+2A

2 2 2

rr', ~. + ' z+ (r —r. —r'.yf.'. +,',",r, (r. +r'.)(r. +r,)+2~'(r. +2r'. )

g2A', B
, (r, —r'. ) (pr, + 2r. + (2 —&)r'. ) + ~'(1 + 2) (34a)

g rJV.
2 )

+(d 2 +I

and (8XbY) = 0.

IV. FLUCTUATIONS SPECTB.A
OF THE OUTPUT FIELD

We investigate now the Huctuations spectra of the field
transmitted through the cavity port. We use well-known
methods [12,13] which allow us to calculate these spec-
tra &om the correlation functions of the internal Geld,
given by Eqs. (33) and (34). The normalized spectrum
of Huctuations corresponding to a quadrature

Xe = a~„,(t)e ' + at„,(t)e'

component defined by 0. Complete squeezing at some
frequency u occurs when V(0, u) = 0.

The spectrum of amplitude Huctuations is obtained
from the above equation by setting 0 = 0, while for
0 = 7r/2 one gets the spectrum of phase fiuctuations. For
0 between those two angles, Eq. (37) produces the spec-
trum of fluctuations in a quadrature component, which
is a mixture of amplitude and phase quadrature compo-
nents. It is straightforward to show that the best squeez-
ing occurs when

is defined as
Re S((u)
ls(~) I

'
Im S((u)

ls(~) I

'

V(t, e') = f e (X (t e+ ), eX*(t)e) de, (36)

where (X, Y) = (XY) —(X) (Y). For a stationary field
this quantity is time independent.

Expression (36) can be related to the c-number av-
erages of the field fluctuations de6ned in the normally
ordered representation [12,13]. Hence the spectrum of
output Huctuations for a quadrature component, defined
by the angle 0, can be written in terms of the corre-
lation functions for the quadrature components t)X(~)
and hY(w) of the intracavity field fluctuations (neglect-
ing internal losses):

V(0, (u) = 1+4'[(8X ) cos 0+ (bY ) sin 0

+2(bXSY) cos 0 sin 0] . (37)

The first term on the right-hand side of the above equa-
tion comes &om the commutator of the outgoing boson
operators and corresponds to the shot-noise contribution.
For a coherent state, V(0, ur) = 1. Therefore, V(0, cu) ( 1
means that we have found squeezing in a quadrature

where S(u) = (bX ) —(hY ) + 2i(hXhY) . Since
(t)Xb'Y) is zero, due to a perfect resonance between cav-
ity, atoms, and injected signal, the best squeezing is, in
this case, obtained for 0 = 0 (amplitude quadrature),
when V(~) becomes

V~(~) = 1+4'(hX ) (38)

x—= A/A. ~ =~/p, a=I' /p,
t) = rb/p, c—:r/p, a'—:I" /p.

In terms of these new variables, Eq. (20a) can be rewrit-
ten as

1 (6 —a')
A . = B+BT, (1 —x) (40)

We turn our attention therefore to the amplitude Huctu-
ations spectrum.

In order to simplify the analysis, we define the dimen-
sionless variables
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while, from (34a) and (40), Eq. (38) becomes

V~(~) =1+, (b'+ ~') [(a+ a')'+ a'] r+ i,—1 in
b —a' D~ (a+a )

+2' [(b —a') + u ](n — pr) ——[(b —a')(a+ a') + u ]
a+ 2a'

na+ a'

+[(a+a')'+~']I, n ——,(1 —x) i

2 ( a' b(b —a')
(a+ a' c (a+ a') ) (41)

where r—:R/Bz is the dimensionless pumping parame-
ter. We also used the definitions

r(a+a')+(b —a')(1—x), iU = I,bc(a+ a')
a+b '

2 a+b)

D((d) = 2cx —(d —Z(d(C+ 2) (a+ a —Xld)(b —Z(d)

2
+2iU'(b + a —2ia ) —,

' (2 —x) —i~

It is worth noticing that so far we have not made
any assumptions about the relative magnitudes of the
atomic and cavity decay rates. The expression for the
amplitude Ructuations spectrum, Eq. (41), is completely
general. However, that expression is quite long and
does not allow a deeper analysis unless we take some
special choices of parameters. In order to make this
choice as systematically as possible we use the classi-
fication, introduced by Abraham et al. [14], for single-
mode lasers, in terms of relations between the magni-
tudes of the cavity and atomic decay rates. According
to this classification, single-mode lasers can be grouped
into four inain classes, namely, (i) I', I', I'&, I" )) p, dye
lasers; (ii) I' )) p I', I'q, I", helium-neon (0.6 and
1.15 pm) and argon-ion lasers; (iii) I' )) p )) I', I'b, I",
ruby, Nd: YAG (yttrium aluminum garnet), carbon diox-
ide, and semiconductor lasers; and (iv) p )) I', I', I'b, I",
near-in&ared noble-gas lasers and many far-in&ared gas
lasers (including He-Ne at 3.39 pm). We start our anal-
ysis of the spectrum of amplitude fluctuations with the
first of the above classes of lasers.

A. First class ef lasers

This is the simplest case, where the atomic decay is
much faster than the field relaxation. Usually, when con-
sidering just this case, one proceeds to the adiabatic elim-
ination of the atomic variables. It corresponds, in our
case, to the limit a, 6, c, a' )) 1. Under these conditions,
we calculate in the following both the spectrum of am-
plitude fluctuations and the photon-number variance.

Amplitude Puctuationa

In the limit a, b, c, a' )) 1 and for dimensionless fre-
quencies of the order of unity u 1, Eq. (41) reduces
to

4r(1 —x)
4r ld + r(x —2) + 2(x —l)2

b —a' ( r l (a+ a') a'
X pia+ b pl —x j (a+ b) (b —a')

2b

b —a'

V~(~) = 1—

if
(1 —x (42)

The above expression can be simplified even more if we
set r )) 1, i.e., consider the laser operating far above
threshold. In particular, assuming regular pumping (p =
1) and setting a' = 0, we get

1 —2; b
V~(cu) =- 1—

~2 + -'(x —2)2 (a -t b)
(43)

Expression (43) is fully discussed in Ref. [6] for zero in-
jected signal (x = 0). It reproduces, in that case, the
known result [1] that complete squeezing at zero fre-
quency is achieved for a decay rate of the lower atomic
level much higher than the decay rate of the upper one
(b » a).

The presence of an injected signal modifies the previ-
ous result in two ways. We see &om (43) that, for op-
eration far above threshold, the injected signal reduces
the amount of squeezing at u = 0, which becomes van-
ishingly small as x approaches its upper limit 1. On
the other hand, the injected signal produces an enhance-
ment of noise reduction for laser operation not far above
threshold. This efFect is clearly displayed in Fig. 2, where
we compare, for three difFerent values of the pumping
rate, normalized spectra of amplitude fluctuations with
and without the injected signal, the amplitude of the in-
jected signal being chosen so as to maximize squeezing,
for a given pumping rate. Notice that the closer to the
threshold, the higher the discrepancy between the results
for lasers with and without an injected signal. From this
analysis, the advantage of injecting a signal in order to
increase squeezing becomes evident.

Squeezing at low pumping rates with the injection of
an external signal in lasers of the first class was studied
by Agarwal et al. [15] in the case that the signal is in-
jected from the side, i.e., driving the atoms directly, and
within the &amework of a perturbative treatment of the
laser field. It is easy to show [16] that these two mod-
els, driving the cavity or driving the active atoms, can
be transformed one into the other, the only difFerence
being a displacement of the cavity-6eld amplitude. Our
analysis, being nonperturbative, extends, however, the
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(a)
by (K) ); see Ref. [17]). For stronger amplitude squeez-
ing, the photon-number distribution broadens away, be-
coming super-Poissonian and oscillatory, which can be
explained in terms of the interference in phase space be-
tween the squeezed state and the number states [18].
Therefore,

(b) ((b p)') = 4A'. ([bX(t)]') .

On the other hand, from (28) and (33a), we get

+OO

(PX(t)l ) = " (bX )

(46)

(47)

From Eqs. (44), (46), and (47) and identifying A2 with
(n), we get

d(u(hX ) (48)

FIG. 2. Normalized spectra of amplitude Buctuations for
the erst class of lasers. Dotted and solid curves correspond
to lasers without and with an injected signal, respectively.
Curves corresponding to difFerent pumping rates are plotted.
(a) r = 1.1 and x = 0.83; (b) r = 3 and x = 0.58; (c) r = 5
and x = 0.4. For all curves a' = 0) a = 10, 6 = 5 x 10 ) and
p = 1. The values of the variable x for the solid curves were
chosen in order to produce the best noise reduction for each
value of r, by minimization of expression (42).

previous results over the whole range of laser intensities,
including the region far above threshold, where the pos-
sibility of getting important squeezing was pointed out
before [1,2,6].

2. Photon-number vari ance

In previous treatments [1,2,6], special attention has
been given to the photon-number variance of the intra-
cavity Beld. This quantity can be easily expressed in
terms of the spectrum of amplitude Quctuations of the
output Beld, starting &om the relation

(44)

where ((Ep)z) is the norinal-ordered steady-state vari-
ance [this contribution vanishes for a coherent state, so
that (44) yields, in this case, the characteristic result of
a Poisson distribution]. Sufficiently far above threshold,
so that the Geld fluctuations are much smaller than the
steady-state Geld amplitude, we may write

(51)

Setting also 6 &) a and x = 0, we recover the well-known
result [1]

(Sm') = (K)
~

1 ——~.2) (52)

B. Second and third classes of lasers

We treat now together the second and the third classes
of lasers, since both require the same approximation
c )) 1 in Eq. (41) for the normalized spectrum of am-
plitude Buctuations. Setting c ~ oo in that expression
and keeping the parameters a and 6 arbitrary, we get

which can be expressed in terms of the spectrum of am-
plitude Huctuations of the output field by using (38)

+oo
(dN ) = (N) (1+— (Vx(~) —1]dZ) . (49)2'

For the first class of lasers the amplitude Quctuations
spectrum is given by Eq. (42). Neglecting for simplicity
the nonradiative decay between the two resonant atomic
levels (this corresponds to setting a' = 0), we get then

((EN)') = (N)(1+

X
2(a+ b) (1 —x) + bp(1 —x —r)

2(r —1) —x(r —4) —2x2 (50)

which is a generalization of expressions previously ob-
tained in the literature (see, for instance, [1]). Far above
threshold (r )) 1), the photon-number variance becomes

Ap(t) = hA (t) = 2A, bX(t),
since A„ the steady-state amplitude, is taken to be real
and bX represents the amplitude fluctuation. This rela-
tion should be approximately valid in the case that the
squeezing is not too pronounced, which is the case here
(we get at most a 50% reduction in the photon-number
Buctuation, far away &om the minimum possible photon-
number variance of a squeezed state, given approximately

V~(~) = 1+ (b + ~ )(a + ~ )—

ab ( r+-
(a+ b) (1 —x

x (b + a )(n —'pr) —(ba+ ~ )(r —-n)

(53)
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where

D(~) = D, (~) + D, (~) ~ D, (~),

with

D2(~) =

Ds(~) =

D ( ) 2(l 2+ 2)( 2+ 2)(b2+ 2)

a'b'c' ( r
(a+ b)' &I —*
x (a+ b) +4~ -'(2 —x)

abc 2 (' r
2(a+. b) (1 —x

x cu +ab a+b 4~ +x2 —x

—4~ (1 —x)(2&~ y a + 5 )) .

0

(b)

For simplicity, we have made a' = 0 in the above expres-
sions.

As in the case where no signal is injected [6], expres-
sion (53) exhibits noise reduction even with Poissonian
atomic pumping. This results &om the negative contri-
bution of the last term on the right-hand side of Eq. (53),
which does not depend on p. Because this contribution
is proportional to r for large r, while the remaining pos-
itive terms become proportional to r, we consider the
situation r )) 1, corresponding to far-above-threshold
laser operation. In order to keep only this negative con-
tribution, we set p = 0, thus isolating it from the eKects
associated with the regularization of the atomic pump-
ing. We obtain therefore

V~(~) = 1+ 2(1 —x) (a —b)~'
b (a+ b)2+4~2 ~(2 &)2+ ~2 (54)

Setting a (( b, in order to obtain maximum noise reduc-
tion, we arrive at

2(1 —x)(u2

(b' + 4u)' (-'(2 —x) ' + ~') '
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FIG. 3. Normalized spectra of amplitude Quctuations for
second and third classes of lasers with pumping parameters
(a) r = 10 and (b) r = 10 . Dotted curves correspond to
lasers without an injected signal, while the solid curves corre-
spond to lasers with the injection of a strong signal (x = 0.85).
For all curves a' = 0, a = 10, b = 10, c )) 1, and the
pumping is Poissonian (p = 0).

which shows a minimum noise level

2(1 —~)
VA(a )min = (56) —0.2

at the frequency uo ——gb(2 —x)/4. From Eq. (56) one
can see that, as for the first class, squeezing is smaller
in the presence of the injected signal. However, as be-
fore, lasers with an injected signal exhibit squeezing for
pumping parameters much lower than lasers without that
signal, as displayed in Fig. 3.

In Fig. 3(a) one observes that a strong injected signal
can lead to squeezing for a pumping rate of the order of
10, which is not enough to achieve squeezing in lasers
with no injected signal. On the other hand, Fig. 3(b)
shows the increase in noise levels when a signal is in-
jected at higher pumping rates. As in the first class of
lasers, injecting a signal allows the production of squeez-
ing closer to threshold, but spoils noise compression for
very high pumping rates.

I I I I I I I I I I I I

—j. .5 —1

Re(y)
—0.5 0

FIG. 4. Behavior of the three roots of the characteristic
polynomial corresponding to the second and the third class
of lasers, for a pumping rate r = 10 . The three roots are
represented by a dashed line, a solid line, and the symbol x,
respectively. The normalized injected field changes from 0
to 1. For x = 0, two of the roots are complex conjugates,
with the real part approximately equal to —0.1 and the imag-
inary part approximately equal to 0.3. As x increases, the
imaginary part of the two complex roots first increases and
then decreases down to zero, when x = 0.797, while the real
root remains practically unaffected. From then on these roots
become real and distinct.



257O MARCIA T. FONTENELLE AND L. DAVIDOVICH 51

2In fact, squeezing for a zero injected signal at r = 10
is destroyed by the "quasiunstable" behavior in this re-
gion of parameters. This is the origin of the peak present
in Fig. 3(a). Indeed, the roots of the characteristic poly-
nomial of the drift matrix, given by Eq. (A 2) of the Ap-
pendix, are displayed in Fig. 4. One Ands that, for a zero
injected signal, there are two complex-conjugate roots
and one real root. The real part of those roots is nega-
tive, indicating stable behavior, but its absolute value is
very small (that is, much smaller than 1), justifying our
denomination quasiunstable. The real root would tend to
increase noise at zero &equency. This efFect is balanced,
however, by a vanishing numerator in the expression for
the spectrum [cf. Eq. (54)]. On the other hand, the
imaginary parts of the two complex-conjugate roots, in
absolute value, coincide with the normalized &equency
w where the peak occurs. For r = 10, the magnitude
of those imaginary parts is u 1, leading to the peak
exhibited in Fig. 3(a). As the pumping rate is increased,
the magnitude of the imaginary parts of the complex-
conjugate roots is displaced towards higher values of u
(for r = 104 we get w 8), so the noise peak is displaced
outside the region of interest. This explains the absence
of a peak in Fig. 3(b). As the intensity of the injected
signal is increased, the real part of the two complex roots
becomes more negative (see Fig. 4). When a strong sig-
nal (x ) 0.797) is injected, the two complex roots become
real, with large negative values. This allows squeezing to
be seen, as shown in Fig. 3(a).

lasers graphically. The parameters are chosen so that
the steady state is stable, according to the analysis de-
veloped in the Appendix. Figure 5 shows comparisons
between normalized spectra of amplitude Huctuations for
lasers without an injected signal and those with a strong
signal injected, operating far above threshold, where the
former displays squeezing even for Poissonian pumping,
as pointed out in Ref. [6]. Again, in this limit (far above
threshold), the injected signal increases the noise level,
but it decreases the pumping rate needed for achieving
the squeezing, as one can see &om Fig. 5(a). That fig-
ure displays a situation (r = 10 ) where squeezing is not
reached without the injected signal, but a noise level 11%%

below shot-noise is obtained with a strong injected signal.
For regular pumping, the situation is even better. This

feature is shown in Fig. 6, where squeezing is obtained
with an intense injected signal for a pumping rate as low
as three times the threshold pumping rate. Here again,
we notice the presence of a quasiunstable behavior, which
can, as before, be analyzed in terms of the roots of the
characteristic polynomial of the stability analysis, made
in the Appendix, Sec. 1. We get again a pair of complex
roots with the real part very close to zero, both with and
without an injected signal. Their imaginary parts are of
the order of unity for r = 10, thus spoiling squeezing in
the region u 1. For higher pumping rates the peaks
are pulled to higher &equencies such that, for r = 10
and x = 0.85, which correspond to the solid curve in
Fig. 5(b), the absolute value of the imaginary parts of
the roots is u 8 and, for r = 10s [Fig. 5(c)], w 80.

C. Fourth class of lasers
V. CONCLUSION

This is the case where the dynamics of the atomic po-
larization is fully considered. We analyze this class of

We have shown, through a detailed analysis which
does not involve the adiabatic elimination of Geld or

(b)

0
I

2
0

0
I

0.2
I

0.4
I

0.6 0.8

FIG. 5. Normalized spectra of amplitude Huctuations for
the fourth class of lasers with Poissonian pumping statistics
and a = 10, 6 = 10, and c = 0.5. The dotted line corre-
spoponds to no signal injected and the solid line corresponds to

2 4 6x=0.85. (a) r=10, (b) r =10, and (c) r=10

FIG. 6. Normalized spectra of amplitude Buctuations for
the fourth class of lasers with regular pumping statistics

parameter is r = 3. The dotted line corresponds to no signal
injected and the solid line corresponds to x = 0.85.
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atomic variables, that an injected signal helps to improve
both amplitude squeezing and sub-shot-noise behavior
for lasers operating close to threshold, spoiling noise re-
duction, however, for high pumping rates. Several cases
have been analyzed so as to cover all laser families. The
noise increase in some cases is related to the proximity
of instability thresholds. Regularization of the pumping
helps to get sub-Poissonian light, which can, however,
also be obtained for Poissonian pumping, in the situation
when the polarization can be adiabatically eliminated,
and the laser is described by rate equations. In this case,
injection of an external signal helps to reduce the pump-
ing necessary for noise compression to be obtained.

and (A6) are P, = nm and 8, = (n+ t)n, where n and t
are integers. Their stability can be easily checked &om
the drift matrix, obtained by linearizing Eqs. (A5) and
(A6) around the steady state,

2 2 p,( —~ ~(1 ——"cosP, ) l
q r —'r

The above matrix has eigenvalues

p P0,'+ = ——+ V) CI = ———V)
2

'
2

where

ACKNOWLEDGMENTS

This work was partially supported by the
Brazilian Agencies Conselho Nacional de Desenvolvi-
mento Cienti6co e Tecnologico, Coordenacao de Aper-
feigoamento do Pessoal de Ensino Superior, and Secre-
taria de Ciencia e Tecnologia.

APPENDIX: STABILITY ANALYSIS

p = (r+ 2), &—: 4@2 —~z —cosP, .2 pe

Inspection of the eigenvalues o.+ and o. shows that both
have a negative real part, indicating a stable steady state,
if and only if cosP, ) 0. This means that the stable
steady phase is P, = 0 (mod 2vr), for a real positive in-
jected signal, or, better, the ratio A jA, is always positive.

We are now able to check the stability of the steady-
state amplitudes. In order to shorten the notation, we
deffne u, —:cos(8, —P, ). Linearizing Eqs. (Al) —(A4)
one gets the drift matrix

1. General case

We analyze here the stability of the steady-state solu-
tions for the laser with an injected signal. In order to
simplify the analysis, we write the dynamic equations for
c-number variables, Eqs. (16), in terms of their corre-
sponding amplitudes and phases. So we de6ne

I'P(1 A
)pe—~p. (1 —,—".)

( ~p. (1 —
—,".)

—I' gp, u,
—2gp, u, —(I + I" )
2g&.u. r'.

0

gpsus
0

-r, j
(A7)

whose eigenvalues are the roots of the characteristic poly-
nomial

A= pe'~, ~ =me',
f(y) = coy + cly + c2y + cay+ c4. (AS)

getting the equations

JV (t) = B —(I' i I" )JV (t)
—2grn(t) p(t) cos 8(t) —P(t),

A;(t) = -r,X,(t) + r.'N. (t)
+2gm(t) p(t) cos 8(t) —P(t) (A4)

p(t) = gm(t) cos 8(t) —p(t) —r p(t) + &p cas p(t),
(Al)

m(t) = —I'm(t) + g A (t) —~~(t) p(t) cos 8(t) —P(t)
(A2)

The coeKcients c~, written in terms of the dimensionless
parameters a, a', b, c, r, and x, as defined in Eq. (39),
are

Co= 1)

cy = G+G +b+c+
c2 ——b(a+ a') + (a + a' + b) (-' + c)

(a+ a') r c
+2cb 1 + x )(a+6) 1 —x 2

cs = b(a+ a') (2 + c) + —(a + a'+ b)x
2

for the amplitudes and

P(t) = sin [8(t) —P(t) j —— »n P(t),
gm(t)
p(t) 2 p(t)

8(t) = — [lV (t) —JV$(t) sin 8(t) —y(t)m(t)

(A5)

(A6)

+cb(a+ a')
1 —x

+ cb (2 —x)
(a+ a')
a+b

cb , r(2 —x)
c4 ———(a+ a')

2 1 —x
—2(1 —x)

for the phases. Notice that, in the above equations, we
have chosen j3 = 0 for the injected signal phase, that is, A

is real and positive. This choice is of course irrelevant and
our results can be easily generalized to complex inputs.

The steady-state solutians corresponding ta Eqs. (A5)

Since the coefficients c~ da not depend an u, = cos(8, —
P, ), we conclude that the steady-state atomic polariza-
tion phase 8, = P, +br, far any / integer, is always stable.

In order to avoid finding the roots of (AS), we use,
at this point, the IIuruntz criterion [19], which a11aws
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us to check, directly &om the properties of the matrix
D, whether Re(y) & 0. According to that criterion, the
roots of the polynomial (A8) have a negative real part if
and only if the following conditions are fulfilled:

co co co

and the principal subdeterminants H~ (Hur. witz determi-
nants) of the quadratic scheme

cq co 0 0
C3 C2 Ci CO

0 C4 C3 C2

0 0 0 c4

satisfy the inequalities Hi & 0, H2 ) 0, . . . , H4 & 0.
For a degree-four polynomial, the Hurwitz determi-

nants read as

H2 = cy c2 —coc3,
H3 —C3H2 Ci C4 H4 —C4H3 ~

2

It is easy to see that the erst Hurwitz condition is satis-
fied for any positive x, which is the region we are inter-
ested in, since the phase analysis showed us already that
steady-state solutions with negative x are unstable. We
are left with the second Hurwitz condition. But, since
Hi is clearly positive and H4 is positive unless H3 is not,
we only have to examine H2 and H3. For simplicity, we
set a' = 0. After some algebra we get the following ex-
pressions:

(A9)

(A10)

1 2c c(1 + 2c) x
H2 ——abc + r+

1 —x a+ b (a+ b)(1 —x) 4 1 —x

(1 —x) + (1+.2a+ 2b) + a(a+ b)(b+ c) + (a+ b)c+ b c+ c
abc (a+ b) (a'+ b')

a+b 4 a+b
2b2c2r2

H3 — [(1 —x)(2c —1) —(1 —x) + (a + b + 1)(a + b + 2c)](a+ b)'(1 —x)'
aber+

8(a + b) 2(1 —x)
(2c(l —x) [(a + b) (2a + 2b —2c —1) + 8ab]

+ (1 —x)([(a+ b) (1+2c)(1 —4c) —4(a + b ) —4(a+ b) c —4ab(a+ b)(1+ 2c) + 16abc(1 —2c)]j
+ (2(a+ b) 4(a+ c)(b+ c) + (1+6c) + (a+ b) 1+6c+ ab(12 —c)

+ 2(a+ b)c[1+ 2c —ab(4+ c)] + 16(a + b )c j)
+ (c (1 —x) ([(a+ b) + 2ab][(a+ b)(1+ 2c) —4ab]j8(a+ b)2

+(1 —x)(—1(a+ b) (1+2c) —(a+ b) (1+2c) —4ab + (a+ b) (1+2c)(4ab —2c) + 4abc

+ ab(a+ b) (2c —1) + 8(c —ab) + 4a b a+ b+ 2c(2c —1) j
+ (2c(a+ b) (1+2c) + (a+ b) (1+4c)(2ab+ c) + (a+ b) c (2c+ 1) + ab(1+ 4ab —8c )
—abc(a + b) (1 + 12ab + 6c) —2abc (a + b) (1 + 2c) + 4(a + b ) c j).

a. Ear above threshold (r )) &)

In this case, Eqs. (A9) and (A10) reduce to

r
H2 ——abc

1 —x
2c1+ (a+ b)

(1 —x)
(a+ b)

(A11)

a2b2c2 r2
H3 =

(a + b)' (1 —*)'-(1 —*)(2c—1) —(1 —*)'

+(a+ b + 1)(a+ b + 2c) (A12)

Both expressions Eqs. (All) and (A12) become nega-
tive, implying an unstable steady state, when

The above expressions are too big for a full analysis.
However, we can examine them in some special regions
of parameters. The following two regions are particularly
interesting for our purposes, since they lead to squeezing.

(1 —x) ) a+ b+ 2c.

Otherwise, the steady state is stable. This will be the
case whenever one of the constants a, b, or c becomes
much larger than unity, implying that the first three
classes of lasers are always stable, far above threshold.
This does not necessarily hold, however, for the fourth
class. The parameters involved in the analysis presented
in Sec. IVC were chosen, however, so that H2 and H3
above are positive.

b. Strong injected signal

One can easily see that setting (1 —x) « 1 while keep-
ing r 1 in Eqs. (A9) and (A10) produces

H2 ——abc 1 + 2c c(l + 2c) x
(A13)

1 —x a+b 4 1 —x'
a2b2C2 r2

Hs —— (a+ b+ 1)(a+ b+ 2c),a+b2 1 —x2
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which are positive for any value of a, b and c, indicating
stability.

f(y) = coy + c~y + c2y+ cs

has coefEcients

2. Second and third classes of lasers

In this case, the atomic polarization can be adiabat-
ically eliminated, hence the dynamic equations for the
c-number variables become

Cy = 2(a + b )(1 —x) + (a + b)(1 —x)x + 4abr
2(a + b) (1 —x)

2ab(a + b)r + 2ab(x + r —1) + (a + b) (1 —x)x
2(a+ b)(1 —x)

A(t) = —A'. (t) JV&(—t) A(t) ——A(t) + —A, (A15)=r 2 2

A'. (t) = B- A'. (t) -A&(t) iA(t)i'

-(r. + r'.yf. (t),

Jvg(t) = A (t) —leg(t) ~A(t)
~

-r,x,'(t) + r'.N. (t). (A17)

Linearization of the above equations around steady state
leads to a 3 x 3 drift matrix whose characteristic polyno-
mial

ab r —(1 —x)2

2(1 —*)
where we have again set I' = 0 in order to simplify the
analysis.

One can easily see that the coeFicients co, c~, c2, and c3
are positive for any x positive. So the first Hurwitz con-
dition is fulfilled. On the other hand, the second Hurwitz
condition for a third-degree polynomial reads as

Hg ——ci &0, H2 —cg c2 coc3 + 0) H3 —c3H2 + 0

Thus instability may only come &om the second Hurwitz
subdeterminant

1
H2 —— (2(a + b )(1 —x) x+ 4a b (a —x) + 2r + 8ab(a + b )(1 —x)r + (a + b )(1 —x) x4(a + b) (1 —x)

+ ab(a+ b)(1 —x)x 2r + (1 —x) + 4ab(a + b )(1 —x)r + 4a b (a+ b)(l —x+ 2r)r —6ab(a+ b) (1 —x) r
—2ab(a + b )(1 —x) —3ab(a+ b)(1 —x) x). (A18)

We analyze first two limit cases, which will be useful for the discussion of the general situation.

a. Far above thmshoEd

By setting r )) 1 in expression (A18) we get

which is clearly positive, indicating stability.

2a b2(a+ b+ 1)
(a + b)'(1 —x)'

b. Foe aEE u with v

In this case, Eq. (A18) reduces to

1
H2 ——

4(a+ b)2(1 —x)
(4ab(a + b )(a+ b) + 2(a + b )(1 —x)x+ 2ab(a + b )(5 —x)x

2a262
+(a + b )(1 —x)x+ ab(a+ b)(5 —3x)x )+ 1+a+ b —(1 —x)(a+ b)'(1 —x)' (A19)

Simple inspection of the above expression shows that H2 is positive also for r = 1. These two special cases allow us
now to consider the general situation. Since H~ is positive for both r )) 1 and r = 1, there is just one possibility for
a change of signal at an intermediate r: a negative minimum in this region. The only minimum of H2 occurs at

ro — — [(a + b)(1+ 3x) + 2(a + b ) + x],
(1 —x) {1—x)(a + b)

1 + a + b 8ab 1 + a + b
(A2O)

which is below ttueshold (r = 1). We conclude that H2 stays positive for all values of r & 1. Therefore, the second
and third classes of lasers are always stable.
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