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Interaction between a moving mirror and radiation pressure:
A Hamiltonian formulation
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We present a nonrelativistic Hamiltonian of the interaction between a moving mirror and radiation
pressure. This Hamiltonian is derived directly from the equation of motion of a moving mirror, and
the wave equation with time-varying boundary conditions. We discuss the canonical quantization
of both the field and the motion of the mirror.
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I. INTRODUCTION

The mechanical interaction between a moving mirror
arid a radiation Geld has been an important topic for the
study of very high precision optical interferometers in
which radiation pressure efFects cannot be ignored [1—4].
The subject is interesting, not only because of practical
purposes, but also because a coupled field-mirror sys-
tem represents a fundamental system in quantum optics.
Surprising quantum phenomena, such as photon emis-
sion &om a nonuniformly moving mirror [5—9], resonance
enhancement of Casimir force [10,11], and the vacuum
mode locking efFect [12] have been predicted according
to quantum theory. Recently, there are also experimental
proposals indicating that radiation pressure and a mov-
able mirror can be used to generate squeezed light [13,14]
and perform quantum nondemolition measurements [15].

One fundamental question regarding the moving-
mirror system is the Hamiltonian formalism. Among the
previous works on the moving-mirror system there is a
lack of a rigorous Hamiltonian approach which can be
used to determine the self-consistent coupled dynamics
of mirror and field. If a Hamiltonian of the system does
exist, it can provide us with a fundamental basis for the
mirror-field interaction. More importantly, the Hamilto-
nian can serve as a starting point for a fully quantized
theory in which both the (macroscopic) coordinates of
the mirror and the (microscopic) field variables are quan-
tized. It has been a challenging question how to quantize
an electromagnetic field when its boundary (e.g. , a mir-
ror) moves under the effect of radiation pressure. The
situation is complicated by the fact that the boundary
condition provided by the movable mirror depends on
the field itself. Quantum fiuctuations of the field can
change the position of the mirror which would in turn af-
fect the field again [16]. Therefore a reasonable approach
is to consider the mirror and the Geld as a self-consistent
system and the corresponding Hamiltonian becomes the
key to the whole problem.

The main purpose of this paper is to present a non-
relativistic Hamiltonian of a coupled mirror-field system.
This Hamiltonian is constructed directly &om Newton's

equation of the mirror and the wave equation of the field
with appropriate boundary conditions. As Fulling and
Davies [6] pointed out, the radiation process of a moving
mirror is analogous to the radiation by a moving charge,
and we find that the mirror-field coupling indeed shares
some similarities to the minimal coupling in electrody-
namics. For the sake of simplicity, we shall discuss only
a one-dimensional configuration. The Hamiltonian is first
derived &om a classical consideration. We then discuss
the canonical quantization of the system.

II. EQUATIONS OF MOTION

02A(x, t) 02A(x, t)
Bx2 Ot2

(2.1)

We begin by considering a one-dimensional cavity
formed by two perfectly re8ecting mirrors. One of the
mirrors is fixed at the position x = 0 and the other moves
in a potential well V(q). The motion of this movable
mirror is also inBuenced by the radiation pressure of the
cavity fields. We label the mass and the position of the
movable mirror by m and q(t), respectively. The mir-
ror and the cavity field constitute an energy conservative
system. The Hamiltonian of the system, however, can-
not be written down immediately. This is because the
explicit form of the mirror-field interaction is not known
and there is no obvious way to define the canonical mo-
mentum of the mirror, which is not necessarily identical
to the kinetic momentum. Our strategy is to examine the
equations of motion of the field and the mirror, and to
try to identify the Hamiltonian structure of the system.
We should mention that when the position of the moving
mirror q(t) is treated classically and is a prescribed func-
tion of time [i.e., q(t) is not a dynamical degree of free-
dom], one can find an effective Hamiltonian for the fields

[9,17—19]. We shall generalize the effective Hamiltonian
in [19] to include the mirror's position and momentum
as dynamical variables.

The vector potential A(x, t) of the cavity field is de-
fined in the region 0 ( z ( q(t) and obeys the wave
equation (c = 1),
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We impose the time-dependent boundary conditions [5] Here the position-dependent frequencies ~A, are given by

A(o, t) = A(q(t), t) = o (2.2) kyar

~k(q) = (2.8)

so that the electric fields are always zero in the rest frame
of the mirror surface. Notice that it is suKcient to treat
A(x, t) as a scalar field in our one-dimensional situation
because the two polarizations of the field do not interact
with each other.

The nonrelativistic (Newton's) equation of motion of
the mirror is given by

and the dimensionless coefficients gk~ are given by [20]

(2.9)

O, k=~. (2.1o)

Therefore the dynamics of the coupled Geld-mirror sys-
tem is defined by Eqs. (2.6) and (2.7).

OV(q) 1 5 BA(x, t) )
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2.3
III. THE HAMILTONIAN AND QUANTIZATION

The radiation pressure force, which is the second term of
the right side of Eq. (2.3), can be derived from the ra-
diation pressure force appearing in the rest kame of the
movable mirror. This is because in the co-moving kame
the radiation pressure force is given by B' /2, where B'
denotes the magnetic Geld on the mirror's surface in the
co-moving frame (the corresponding electric field in the
same frame is always zero according to the boundary con-
dition). A straightforward transformation of the force to
the laboratory kame in the nonrelativistic limit would
yield the force expression given in (2.3). It should be
noted that the value of q(t) is strictly positive or zero.
The potential well V(q) at q = 0 acts like an infinite po-
tential wall which forbids the moving mirror from pene-
trating through the fixed mirror.

The dynamics of the system is completely specified by
Eqs. (2.1), (2.2), and (2.3). We now define a set of
generalized coordinates (Qk) by

Now the basic question is whether the dynamical equa-
tions (2.6) and (2.7) can be considered as a consequence
of a set of Euler-Lagrange equations with respect to a
Lagrangian I By e.xamining Eqs. (2.6) and (2.7), we
find that one can indeed construct a Lagrangian L,

1(q, q, Qk, Qk) = - ) . Q'. -~.'(q) Q'. + -mq' —V(q)

2
q—).gkjQkQj + 2 ).gkjgklQiQj)
q

A, i

(3.1)

so that the corresponding Euler-Lagrangian equations
are equivalent to (2.6) and (2.7). The Hamiltonian asso-
ciated with this L is defined by

II(Pk, Q, , S, q) =—pq+). PkQk —L(q q Qk Qk)

q{&) kmx
dxA(z, t) sin

q t q
(2.4) (3.2)

where A: are positive integer. The meaning of Q~ is ob-
vious from its definition, it is basically the mode decom-
position of the fields, but unlike the usual situation, the
mode basis functions used here are determined by the
instantaneous position of the mirror [19]. The complete-
ness of the mode functions enables us to write

2 . kyar x
A(z, t) = ) Qk(t) sin

qt qt (2.5)

Equation (2.5) is a general expression of A(x, t) obeying
the time-dependent boundary condition (2.2).

With the help of (2.5) and the orthogonality of the
mode functions, we can show that (2.1) and (2.3) are
equivalent to

where Pk and p are canonical momenta conjugate to Qk
and q, respectively,

Pk = Qk ——).gk~Q~) (3.3)

1
p = mq ——) gk, PkQ, .

q
(3 4)

p+ —).g P Q + V(q)2m

We see that the mirror's canonical momentum p is not
equal to the kinetic momentum mq for nonzero Gelds.
The explicit expression of the Hamiltonian (3.2) now
reads

~ ~ ~

2 qq —q
Qk = ~kQk + 2 —).gk~Qj + 2 ).gkj Qi +-) [ '+ kQk (3.5)

2

+ 2 gjkgjlQl ) It is not dificult to check that H itself represents the
total energy of the system, i.e.,

mq = — + —) (—1) 'u)k~, QkQ, .)9V(q) 1

Oq q
(2.7) II = Hg;, tg+ —mq + V(q) )

1 .2

2
(3.6)
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where Kfg, ig is the field energy defined by

1 ~~'l BA(x, t) )
2 Ot )

(a~(*,t) &
'

+
)

(3.7)

As a remark, when q(t) is treated as a prescribed time-
dependent parameter (i.e., not as a dynamical variable),
one can recover the same effective Hamiltonian obtained
in Refs. [18,19] from our Lagrangian (3.1). The Hamilto-
nian (3.5) is a more general expression because the mirror
is included as a dynamical degree of &eedom, and so al-
lows us to consider the effects of radiation pressure.

The classical Hamiltonian (3.5) provides us with a ba-
sis for the quantization of the system. Following the
canonical quantization procedure, we let the variables
p, q, P~, Qi, be operators, which obey the commutation
relations

[q, Q, ] = [q, Pi, ] = [p Qi] = [p, PI, ] = 0, (3.8)

[q, p] =ih, [Q, , Pg] = ib, gh. (3.9)

In order to specify the quantum state of the field in the
Fock space, we define the cavity-length-dependent cre-
ation and annihilation operators for each cavity mode by

~a(q) = 1
uri (q)Qi + zPa (3.10)

u (q) = 1
~~(q) Q~ —»A,2~k q

(3.11)

u~(q)~~(q)l(ni) q) = n~l(ni) q)

ql (ni), q) = ql (ni) q).
(3.12)

(3.13)

Such a set of states is orthogonal and is assumed com-
plete, so any quantum state l4) of the whole system can
be expressed as superposition of these states, i.e.,

l~) = ):f ~~ &H~~i ~)l(~~i q), (3.14)

The dependence on the operator q indicates that for each
position of the mirror we have a set of Fock states asso-
ciated with that position. We label such a set of Fock
states by

l (ni), q) where (ni) = (ni, n2, ns, ....) denotes
the set of occupation numbers for different cavity modes.
The state vector

l (ni), q) is the simultaneous eigenvec-
tors of the number operator at&(q)aA, (q) and the position
operator q, i.e. ,

well problem in quantum mechanics.
The quantal Hamiltonian now reads

+r) t 1

2m
+ V(q) + h ) tu&(q) a&a& + —,(3.15)k

where

ihr—:—) gg,
2q

-k- 1/2

2
aka. —aka~+aka. —a.ak

(3.16)

We have used a short notation ai, = ai, (q) for conve-
nience. It is interesting to recognize the similarity be-
tween (3.15) and the minimal coupling Hamiltonian in
electrodynamics. The major difference here is that the
operator I' is quadratic, which contributes to two-photon
emission and absorption processes [19].

The vacuum field energy appearing in (3.15) is diver-
gent and is the origin of the Casimir force. We follow
the usual procedure [21] to obtain the Casimir energy
—her/24q for one-dimensional space,

K = + V(q) + h) (uA, (q)a„o,k — . (3.17)(p+ r)'
2m

k
24q

However, we must point out that in replacing the vac-
uum energy terms by the Casimir energy, we actually
"borrow" the Geld energy &om the outside in order to
compensate the infinite change of the vacuum energy in-
side the cavity as the mirror changes its position. The
fact that the Casimir force is finite is because of the can-
cellation of the divergent parts of the vacuum pressure
f'rom both sides of the mirror [22]. Therefore one cannot
single out the Casimir energy without taking the outside
Geld into account, that is, the field at 2; ) q. To main-
tain the consistency of the theory, one should include the
outside Geld as additional dynamical degrees of freedom.
Hamiltonian (3.17) therefore is an approximation, since
it only counts the static part (the Casimir effect) of the
interaction between the mirror and the outside field. The
dynamic part, which describes the changing of the field
outside the cavity, is ignored. Nevertheless, in most phys-
ical situations where the cavity field is dominant, Hamil-
tonian (3.17) is a good approximation. A simple case is
when the cavity initially contains an appreciable number
of photons, so the dynamic efFects of the field. outside
the cavity can be neglected. We, however, remark that
if the movable mirror is also perfectly rejective for the
field outside the cavity, we can generalize our method
to obtain a full Hamiltonian which includes the outside
Geld.

where C((ni), q) is the probability-amplitude density. It
should be noted that the creation and annihilation oper-
ators are not defined at the point, q = 0. This is the situ-
ation when the cavity has zero length. We eliminate this
problem by imposing a boundary condition of the system
wave function such that the wave function is identically
zero at q = 0. This is analogous to the infinite potential

IV. LINEAR APPROXIMATION

The Hamiltonian (3.17) exhibits the nonlinear nature
of the coupling between a field and a moving mirror. In
most situations the mirror is bounded by a potential V(q)
which keeps the mirror moving around a certain equilib-
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rium position lp, and the radiation pressure force acts as
a small perturbation. We now present a linearized form
of the Hamiltonian when the displacement x = q —lp

is small compared with lp. In this case, one can write

much smaller than the &equency spacing of neighboring
cavity modes. Our general Hamiltonians (3.17) and (4.5)
do not require such restriction.

(4.1)

where I o
—— I'~~ ~, is the operator evaluated at the

equilibrium position. Furthermore, the small parameter
x /lo allows us to make the following expansions:

xm
ak(q) = a~o-

2lp
(4.2)

~a(q) = ~A, o
lp

(4.3)

where aI,0 and wp, p denote the annihilation operator and
the &equency associated with the equilibrium position,
respectively.

We substitute Eqs. (4.1)—(4.3) into the Hamiltonian
(3.17), and make a unitary transformation H' = TIGHT
with the transformation operator

T = exp (ix I'o/h) . (4 4)

It then follows that
2

H' = + u(x ) + h) (uAoaqoaAo —~ Fo (4 5)

Here u(x ) = V(q) —h7r/24q is the potential which in-
cludes the Casimir energy. The symbol Ep denotes the
normally ordered radiation pressure force,

Fo = ).( 1) g~—xo~jo
0" k,2

x (ayoa&o + aI oa o + a&oa&'o + a oayo).t t t (4.6)

The correction terms to Eq. (4.5) involve higher power
of x which can be shown to have negligible contribu-
tions when x is much smaller than the wavelengths of
the Beld A. The physical meaning of H' is quite appar-
ent. Because of the unitary transformation, the canonical
momentum p now becomes the same as the kinetic mo-
mentum. In this picture, we can see that the mirror-Beld
interaction is linearized to a familiar form x Ep, which
is analogous to xE in dipole interaction.

It is worth mentioning that in the special case where
the cavity field is contributed dominantly from a single
cavity mode ko, the interaction term x Ep can be re-
duced to the one given in Refs. [4,13], i.e. ,

V. CONCLUSION

Finally, we address a fundamental limitation of our
model. Hamiltonian (3.17) is valid only in the nonrela-
tivistic domain. As in the nonrelativistic quantum elec-
trodynamics, Hamiltonian (3.17) fails to describe physi-
cal phenomena which involve fields of arbitrarily high fre-
quencies. The mirror self-energy problem, for example,
cannot be properly handled without a relativistic consid-
eration. For the sake of consistency we introduce a cutoff
frequency ~, to distinguish the nonrelativistic domain.
We require that ~ is much smaller than the rest energy
of the mirror, but u, has to be su%ciently large so that
the Hamiltonian can cover a wide spectral interval. For
those physical processes which happen at the &equencies
well below ur„we should expect the Hamiltonian (3.17)
to be a correct description of the system. From a real-
istic point of view, since real mirrors do have a plasma
cutoff &equency above which they become transparent,
the introduction of a cutoff would make our model closer
to practical situations. However, we emphasize that a
study of a real mirror system should require a more so-
phisticated investigation which includes the dephasing of
the field produced by imperfect reflections [16,23].

In conclusion, we have presented a nonrelativistic
Hamiltonian of a one-dimensional mirror-Beld coupled
system in a cavity conBguration. Both the cavity field
and the position of the mirror are treated as dynami-
cal variables. The Harniltonian itself is the energy of
the system and the Hamilton equations obtained &om it
agree with the presumed equations of motion. We have
also discussed the canonical quantization of the system.
Although we have considered only the closed cavity sit-
uation, our method of Bnding the Hamiltonian can be
generalized to a partially open cavity system. This can
possibly be achieved by replacing the stationary mirror
with a thin slab of dielectric at x = 0, and putting an
additional stationary mirror at x = L(-+ —oo). Such-
a cavity model is the same as the one studied by Lang,
Scully, and Lamb [24] in laser physics, except that one
of the cavity mirrors 2: = q (which is perfectly reflective)
is movable. A detailed analysis of this model should be
useful when cavity loss becomes important and input-
output problems are involved. We hope to discuss this
more dificult system in the future.

x Ep=x aI oakp
lo
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