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A quantum-nondemolition (QND) measurement is one which does not disturb the quantity it
measures. Any measurement can be regarded as a QND measurement followed by an additional
back-action which may disturb that quantity. By feeding back the measurement result to control the
system dynamics, this back-action can always be eliminated in principle. A practical device based
on homodyne measurement of the z quadrature of a cavity mode is investigated. First, a x(?) crystal
is inserted in the cavity so that it becomes a degenerate parametric oscillator at threshold. Then the
photocurrent is used to control coherent driving of the cavity, so as to give positive feedback with
unit gain. This feedback, combined with the nonlinearity, turns the homodyne measurement into a
QND measurement of z. The device can also be used to measure the z quadrature of a traveling
wave, and gives near-perfect QND correlations over a large bandwidth. However, the quality of the
measurement is badly degraded by even slightly inefficient photodetectors.

PACS number(s): 42.50.Lc, 42.50.Dv, 03.65.Bz

I. INTRODUCTION

There are two kinds of quantum measurements: those
that do not disturb the quantity they measure, and those
that do. This classification was made as early as 1933,
by Pauli [1], who called them measurements of the first
and second kind, respectively. There are various defini-
tions that make this distinction precise, appropriate for
different applications. First-kind measurements are obvi-
ously better measurements in some sense. They are also
known as quantum-nondemolition (QND) or back-action-
evading (BAE) measurements. The interest in such mea-
surements was revived in 1980 by the realization that
planned gravitational wave detectors would only work if
a QND measurement of position could be made [2]. Since
then, the application of QND measurements in quan-
tum optics communication systems has been of consider-
able interest. Several theoretical schemes have been pro-
posed [3-9], and some convincing experiments performed
[10-13].

All of the optical QND schemes utilize some form of op-
tical nonlinearity induced by the interaction of the light
with crystals or atoms. The scheme I propose in this pa-
per is no exception, but has the additional feature of feed-
ing back the measured result onto the system. The basic
idea is that a second-kind measurement can be regarded
as a first-kind measurement, followed by additional back-
action, which causes the measured quantity to be altered.
In principle, the measured result can be fed back, alter-
ing the system dynamics so as to undo that additional
back-action. It is thereby possible to turn a second-kind
into a first-kind measurement. In general, this would be
impractical, but the scheme I propose would enable a ho-
modyne measurement of the  quadrature of the cavity
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to be turned into a QND measurement. The homodyne
photocurrent is fed back to control coherent driving of the
cavity, undoing the fluctuations in x introduced by the
homodyne measurement. By itself, this feedback would
destabilize the =z quadrature. The nonlinearity (a x®
crystal), acting as a classically driven degenerate para-
metric oscillator (DPO), is necessary to stabilize the z
quadrature without introducing any extra noise. The
combination of classical feedback and a DPO can change
the measurement from QD to QND. Under ideal condi-
tions, the device approaches a perfect broadband QND
apparatus.

Rather than an immediate analysis of this proposal for
using feedback to produce a QND device, Sec. II is a
review of quantum measurement theory and the distinc-
tion between the two kinds of measurement. Section III
builds on this, showing how feedback can, in principle,
turn any measurement of the second kind into one of the
first kind. This is shown to be impractical in the simple
case of direct photodetection of the output of a cavity.
For this reason, feedback based on homodyne detection
is considered as an alternative. It is shown in Sec. IV
that ideal homodyne feedback control of the driving of
a cavity, combined with a DPO, can turn damping into
a first-kind measurement of one quadrature of the intra-
cavity field. In practice, it may be more useful to be
able to do a QND measurement on one quadrature of a
traveling wave. This can be achieved by reflecting the
traveling wave off one mirror of the cavity, and doing the
measurement at the other. The criteria for judging the
usefulness of such a measurement are defined in Sec. V,
and applied to the proposed scheme in Sec. VI.

II. QUANTUM MEASUREMENT THEORY

A. General theory

This section presents the formal structure of quantum
measurement theory, and distinguishes measurements of

2459 ©1995 The American Physical Society
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the first and second kinds. The discussion will be re-
stricted to efficient measurements. By this, I mean mea-
surements in which the state of the system conditioned on
the measurement result is pure, provided that the state
before the measurement was pure also. The reason for
this restriction is that the distinction between first- and
second-kind measurements is only well defined for the
case of efficient measurements.

The aim of quantum measurement theory is, given the
initial state of the system, to be able to specify the prob-
ability of a particular measurement result and the state
of the system immediately following this result. Say the
measurement result is , a random variable which will be
assumed discrete for convenience. Then both the prob-
ability and the conditioned state can be found from the
set of operators {2, one for each possible result. These
operators are arbitrary, with one condition,

Dol =1,

where the sum is over all possible results. This is known
as the completeness condition [14].

The probability for obtaining a particular result o is
found from the measurement operator by

(2.1)

P, = Tr[5,)], (2.2)

where

ﬁ; = Qap QL (23)
is an unnormalized density operator, where p is the den-
sity operator immediately before the measurement. The
state of the system conditioned on the result « is simply
given by

oy = Bla/ Pa (2.4)
This economy of theory is a consequence of a more fun-
damental notion of probability relating to projectors in
Hilbert space [15]. If the initial state of the system is
pure (p = |¥){(¢|), then the unnormalized conditioned
state is obviously

[9L) = Qalt).

If the measurement is performed, but the result ignored,
then the new state of the system will be mixed in general
and cannot be represented by a state vector. This uncon-
ditioned state is denoted simply by p’. It is equal to the
sum of the conditioned density operators (2.4), weighted
by the probabilities (2.2)

P =Y Papl
=) " Q.p0l.

It is easy to verify from the completeness condition (2.1)
that Tr[p'] = 1, as required by conservation of probabil-
ity.

The probability for obtaining the result o (2.2) can

(2.5)

(2.6)

also be written

Py = Tr{pW,], (2.7)

where

Wa = Q1 Q. (2.8)
is a Hermitian operator. Note that many different sets of
operators €2, may have the same set of probability gen-
erating operators W,. That is to say, a measurement is
not completely specified by the probabilities of obtaining
the results. What would be missing would be a further
specification of the back-action of the apparatus on the
system. This can be seen specifically in the case where
all of the W, are bounded operators [15,16]. Then the
operators {2, can be written

Qa = UaVaa (29)

where

Vo=W2=vl ul=uU;' (2.10)
That is, 2, can be written as the product of a unitary
and a Hermitian operator. Assuming a pure initial state,
the unnormalized conditioned state vector is thus written

lll/::x> = UaVaW’)'

The action of V,, produces the minimum change in the
system, required by Heisenberg’s relation, to be consis-
tent with a measurement giving the information about
the state specified by the probabilities (2.7). The action
of U, represents additional back-action, an unnecessary
perturbation of the system.

A back-action-evading measurement is reasonably de-
fined by the requirement that, for all , U, equals unity
(up to a phase factor that can be ignored without loss
of generality). This is equivalent to the requirement that
all Q, be Hermitian. One criticism of this definition is
that it disallows any Hamiltonian evolution of the sys-
tem during the measurement. For an interaction time
T, such evolution would contribute a unitary exp[—iHT]
to all measurement operators §2,. This evolution can
thus be removed from all of the U, by making the uni-
tary transformation into the interaction picture. Thus,
a better requirement for back-action evasion is that all
U, be unity in the interaction picture. This is the defini-
tion that I will use to distinguish first-kind measurements
from all other (second-kind) measurements.

(2.11)

B. Continuous measurement theory

A special case of quantum measurement theory that
is of considerable importance is continuous measurement
theory. That is, a constant measurement interaction al-
lows successive measurements, the duration of each being
infinitesimal. If the state matrix at time ¢ is p(t), then
the unnormalized conditioned density operator after the
measurement in the interval (¢,¢ + dt) is denoted

Pa(t + dt) = Qa(dt)p(t) QL (dt), (2.12)
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where the operators ,(dt) are arbitrary as yet. The
unconditioned infinitesimally evolved state matrix is then

p(t+dt) = Qa(dt)p(t) QL (dt). (2.13)

This represents the evolution of the system, ignor-
ing the measurement results. If the Q,(dt) are time-
independent, this nonselective evolution is obviously
Markovian (depending only on the state of the system
at the start of the interval).

A Markovian equation of motion for the density opera-
tor of a system is known as a master equation. Consider
for simplicity the case where there is single loss channel
for the system. Then it can be shown [17] that the master
equation is of the form

p = —ilH, p] + Dlclp, (2.14)

where I have defined the superoperator Dla] taking an
arbitrary operator a as an argument by
Dla]p = apa' — L{a'a,p}, (2.15)
where curly brackets denote an anticommutator. This
representation is not unique; the master equation (2.14)
is invariant under the transformation
c—c+p, H— H+ L(—if*c+iBc), (2.16)
where 3 is an arbitrary complex number. This will be
important later.

Once a particular representation of the master equa-
tion (2.14) has been chosen, it can be put in one-to-one
correspondence with the continuous measurement theory
outlined above. By inspection, there are only two possi-
ble measurement results (say 0 and 1), with correspond-
ing operators

Q]_(dt) B \/EC,
Qo(dt) = 1 — [{H + 1cfc] dt.

(2.17)
(2.18)

The two unnormalized conditioned density operators are

p1(t + dt) = dt cpc!, (2.19)

Po(t + dt) = p + dt (—i[H, p] — 2{c'c, p}). (2.20)
It is easy to see that

p(t + dt) = pi(t + dt) + po(t + dt) = p+ dtp, (2.21)

where g is given by the master equation (2.14). Evidently,
almost all infinitesimal intervals yield the measurement
result 0. Upon such a result, the system state evolves in-
finitesimally (but not unitarily in general). Whenever the
result 1 is obtained, however, the system state changes
by a finite operation. This discontinuous change can be
justifiably called a quantum jump, and the measurement
event a detection. Such jumps have been observed in
electron shelving experiments [18]. As with all efficient
measurements, if the initial state of the system is pure,
then the conditioned state of the system will remain pure.
The stochastic evolution of such a conditioned state has

been called a quantum trajectory by Carmichael [19]. The
interpretation and use as calculation tools of such trajec-
tories have been of considerable interest recently [19-22].

The operator Qq(dt) defined in Eq. (2.18) is evidently
not Hermitian, because of the Hamiltonian term. How-
ever, this can be removed by working in the interaction
picture. This is consistent with the definition of first-
kind measurements given in Sec. II A. Providing the in-
teraction picture operator cfc is not explicitly time de-
pendent, this leaves the measurement term D[c| of the
master equation unchanged. An example satisfying this
condition is a free cavity with annihilation operator pro-
portional to ¢, and so D[c| represents damping. If H
can be ignored, then ¢(dt) is Hermitian, and hence the
classification of the measurement depends on whether ¢
is Hermitian. In the case of damping, ¢ is not Hermi-
tian, and so the measurements permitted by damping
are necessarily quantum-demolition measurements. The
non-Hermiticity of ¢ in this case can be seen explicitly
using the factorization (2.9)

c = e®Vcte,

where ® is a phase operator for the single-mode field.
The difficulty in defining this operator [23,24] is due to
the fact that ccis not a bounded operator, which violates
the assumptions made in writing Eq. (2.9).

(2.22)

III. BACK-ACTION ELIMINATION
BY FEEDBACK

Feedback is the use of a measurement result to con-
trol the dynamics of the system being measured. The
effectiveness of feedback is thus limited by two factors:
the quality of the measurement and the degree of control
over the system dynamics. Assuming that the dynam-
ics of the system can be arbitrarily well controlled, then
it is evident from the preceding section that feedback
can eliminate the back-action of any measurement. The
back-action of a particular measurement result « is pro-
duced by the unitary operator U, of Eq. (2.9). Hence,
if the result « is obtained, then the Hamiltonian of the
system should be changed by a large amount for a short
time in order to induce the evolution U;!. This turns the
QD measurement with measurement operators 2, into a
QND measurement with Hermitian measurement opera-
tors V,,. For the case of a Markovian system with a single
output and with trivial free evolution, the requirement is
for the feedback to act immediately following a detection.
The induced evolution undoes the unitary component of
the quantum jump caused by the operator c of Eq. (2.17).

The means by which such Markovian feedback could
be approximately accomplished in practice is more eas-
ily explained if the possible quantum trajectories of the
measured system are expressed as a stochastic evolution
equation for the conditioned density operator p.(t). Here
the subscript ¢ indicates that the density operator is con-
ditioned on the entire measurement record up to time ¢.
As done in Ref. [22], a stochastic increment dN,(t) of
the number of detections in the time interval (¢, ¢+ dt) is
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introduced. This obeys

dN.(t)* = dN.(t),
E[dN,(t)] = Tr[W1(dt)pe(t)] = (c'e)e(t)dt,

(3.1)
(3.2)
where E denotes expectation value. Equation (3.1) sim-
ply indicates that the number of detections is either zero
or 1, while Eq. (3.2) arises from Eq. (2.17). It is easy to

verify that p.(t) obeys the following nonlinear stochastic
evolution equation

dpe(t) = {dN(t)G[c] + dtH [—iH + Lc'e]} pe(t). (3.3)

Here, the nonlinear superoperators G and H are defined
by

apal
Glalp = Trjapat] P (3.4)
Hla]p = ap + pal — Tr[ap + pal]p. (3.5)

Because of the assumed perfect detection, there exists an
equivalent stochastic equation for the state vector [22],
but this will not be used. Taking the ensemble average
of Eq. (3.3) yields the original master equation (2.14) for
the ensemble average state matrix p(t) = E[pc(t)].

The measurement results that condition the state ma-
trix in Eq. (3.3) can be expressed as a rate of detections,
or current, defined by

I.(t) = dNc(t)/dt. (3.6)
Note that this mathematical quantity is zero almost all
of the time, and when it is not zero it is infinite. In re-
ality, the photocurrents generated in experimental quan-
tum optics are smooth functions of time. The current
can be used to control the evolution of the system via
the time-dependent Hamiltonian

Hg(t) = I.(t)Z, (3.7)
with Z Hermitian. Bearing in mind the smoothness of a
real current, and that the feedback must act later than
the measurement, the effect of this Hamiltonian can be
shown [25] to change Eq. (3.3) into

dpe(t) = {dN(t)Gle *Zc] + dtH [—iH + clc]} pe(t).
' (3.8)

Taking the ensemble average of this equation gives the
feedback master equation

p = —i[H, p] + Dle™*?clp. (3.9)
This equation is a good model for the effect of feedback,
providing the time delay in the feedback loop is small
compared to the characteristic evolution time of the sys-
tem [25].

In order to use this feedback to turn a QD into a QND
measurement, one simply chooses Z so that e!Z = U;. In
practice, this may not be so easy. For the case of direct
detection of the photons emitted by a cavity, Eq. (2.22)
shows that it would be necessary to have

Z=9. (3.10)
Obtaining a nonlinear crystal that produces an effective
Hamiltonian proportional to the phase of the field, and
which in addition can be turned on and off by a cur-
rent, is exceedingly unlikely. Turning cavity damping
into a strict QND measurement therefore seems imprac-
tical. However, this is not the case. So far, I have
considered only direct detection, with Q;(dt) = Vdtc,
where ¢ is proportional to the annihilation operator of
the cavity. As noted in Sec. II B, the measurement op-
erator can be altered by an additive constant without
changing the master equation. That is, one can con-
sider Q;(dt) = Vdt(c + 3). In quantum optics, this can
be achieved by combining the output field of the cavity
with a coherent local oscillator field at a beam splitter.
This is known as homodyne detection, and is the subject
of the following section.

IV. HOMODYNE-BACK-ACTION ELIMINATION
BY FEEDBACK

Consider an optical cavity supporting a single mode
with annihilation operator c¢. Let the output of the cav-
ity pass through a low reflectivity beam splitter, where
it is combined with a very intense coherent local oscil-
lator. Measuring time in units of the decay rate of the
output mirror, the amplitude of the transmitted field is
effectively ¢ + 3, where 3 is a complex number. For sim-
plicity, B will be assumed real, appropriate for measuring
the z = %(c + c!) quadrature. To apply the theory of
the preceding section, one must first write the measure-
ment operator Q;(dt) = v/dt(c+ ) in a form whereby its
factorization (2.9) can be easily accomplished. Keeping
terms up to second order in 1/,

c c?
Q, (dt) = Vdt Bexp (E - ﬁ) .

Using the Baker-Hausdorff theorem [28] for the first-order
terms, this can be factorized (to second order in 1/3) as

(4.1)

where
_ct 2 _ o2
Uy = exp (CT;— - %) = exp(iZ)  (4.3)

is unitary, and

1 2 4 12 t
Vl(dt)_:\/aﬁexp(c'f‘c _¢ +c +[cvc])

28 452

= /dt[5? + B(c + cf) + cie] (4.4)
is Hermitian. This V;(dt) correctly gives the probabil-
ity operator Wi(dt) (3.2), which generates the expected
count rate for homodyne detection.

From the expression for U; (4.3), it is evident that the
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Hermitian operator Z is

7= —ic + ict + ic? — gct? _ Yy zYytyx
28 a3 B 262
where ¢ = z + iy. Thus, according to Sec. III, the feed-
back Hamiltonian needed to turn the homodyne mea-
surement into a QND measurement of z is

(4.5)

Y + Yy
Ha(t) = [dN.(t)/dt] (% - Tm) . (4.6)
Now, keeping terms of two orders in 1/3 gives
_ 32
Hp(t) = By — 3(zy + yz) + dNe(t) — p7dt (4.7)

Bdt

The first term in this expression is yielded automatically
by the transformation (2.16). Thus the Hamiltonian that
must be added to produce a QND measurement is

H(t) = —3(zy +yz) + IZ(t)y, (4.8)
where the signal IZ(¢) in the homodyne photocurrent is
[22]

I:(t): lim w

With this Hamiltonian, the evolution of the system is
exactly that required of a Markovian QND measurement
of the z quadrature. In the nonselective case,

p = Diz]p = Lp. (4.10)
This equation is also obtainable directly from the the-
ory of homodyne-mediated feedback [26,27] with Hamil-
tonian (4.8). The expression for the current (4.9) is un-
changed by the feedback; it still measures the z quadra-
ture. However, the two-time correlation function is

E[IZ(t+7)IZ(t)]=Tr {Zme‘:"'[zp(t) + p(t)m]} +6(7).
(4.11)

This will always give a super-shot-noise spectrum be-
cause it measures symmetrically ordered moments for x,
rather than normally ordered moments as from homo-
dyne detection without feedback:

BIIE (¢ + 7)IZ ()] = Tr {22 [ep(t) + p(t)ct]} + 3(7),
(4.12)

where here £ would be Djc], not D[z].

Unlike the direct detection case analyzed in Sec. III,
the scheme proposed here is quite practical. The feed-
back Hamiltonian y simply corresponds to controlling
the driving onto the cavity. This could be achieved by
controlling the intensity of a strong coherent beam (the
same source as the local oscillator could be used) inci-
dent on another mirror of the cavity. If the transmittiv-
ity of this mirror is sufficiently low, the extra damping it
causes can be ignored. Alternatively, the driving could

take place at the same mirror as the damping, but the
modulated amplitude is removed from the output beam
before it is detected. This will be explained in detail in
Sec. VI. The intensity modulator could be effected by
using an electro-optic polarization modulator combined
with a polarization-dependent beam splitter. The auxil-
iary Hamiltonian H = —(zy+yx)/2 is well approximated
by the action of a degenerate parametric oscillator below
threshold [29]. In fact, the magnitude of this DPO non-
linearity puts it at threshold in the cavity. However, this
difficulty can be avoided by assuming that there are other
linear losses apart from that allowing the measurement
to be made. This will be the case in practice, and is nec-
essary if the device is to be used to monitor a traveling
wave, as will be investigated in the following sections.

V. QND EVALUATION CRITERIA

It was shown in the preceding section that feedback of
the homodyne photocurrent, combined with a x(?) non-
linearity, can turn damping into a perfect measurement
of the first kind of the  quadrature of the intracavity
field. In reality, imperfections would arise due to inef-
ficient photodetectors, time delay in the feedback loop,
and other losses. Also, it is usually more desirable to
be able to measure the quadrature of a traveling wave,
rather than that of a single-mode cavity. The device I
have proposed can be used to this effect. The traveling
wave to be measured (called the signal) would reflect off a
second mirror to the cavity, which is controlled as before.
However, in order to evaluate the effectiveness of such a
measurement, it is necessary to introduce a means of dis-
crimination other than simply inspecting master equa-
tions for ideal cases. The criteria I will use are those
defined in Ref. [7]. This section summarizes that work.

The type of measurements to which the criteria apply
can be modeled as a “black box” with two inputs and
two outputs. One input is the signal or system to be
measured, labeled Sj,, and the other is the probe, labeled
B;,. After interacting with the probe, the system leaves
as the output S,ut, while the probe output that contains
the information of the measurement is Boyt. For a good
measurement, B, will be highly correlated with Si,.
This can be quantified by the accuracy A, which varies
between 0 and 1, defined by

A= |<SinaBout)12 .
V(Sin)V(Bout)

Here, angle brackets denote quantum expectation values,
and

(5.1)

{(a,b) = %(ab + ba) — (a)(b)

for arbitrary operators a and b, and V (a) = (a, a). A good
QND measurement must have the additional property
that S,y is little changed from Sj,. This is quantified by
the conservativity C defined by

C = ‘(Sin’ Sout)l2 .
V(Sin)V(Sout)

In order to compare different quadrature QND

(5.2)

(5.3)
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schemes, it is useful to define the standard inputs for
the probe and signal beams to be coherent states (possi-
bly the vacuum). It is also useful to define an obviously
non-QND standard device: a beam splitter. For such
a classical device, it is easy to show that the following
inequality holds:

A+C<1. (5.4)

The extent to which A+ C > 1 and approaches its maxi-
mum value of 2 thus measures how non-classical the QND
device is. If A + C = 2, it is a perfect QND device, and
knowing the probe output implies complete knowledge of
the signal output. In general, however, there is no sim-
ple relation between A, C' and the predictive ability of the
device. This predictive ability is best quantified by the
conditional variance of the signal output. For Gaussian
statistics (which is all that is of interest here), it is given

by [7]

BOU I Sou 2
Y (S Bo) = V (S) — [ Fots S

V(Bout)

An output conditional variance less than unity (the in-
put value) is a sure measure of the nonclassicality of the
device. For the beam splitter, the output variance equals
unity. The generalization of these formulas for the fre-
quency components of traveling waves (used in Sec. VI)
are found in Ref. [7].

(5.5)

VI. EVALUATING THE FEEDBACK QND
SCHEME

A. Inputs and outputs for the device

As explained in the preceding section, the scheme for
eliminating back-action by feedback described in Sec. V
can be used as a QND scheme with input and output
beams. The QND variable is the  quadrature of the
signal, reflected off one end of the cavity. The probe
output is the beam that is detected by the homodyne
apparatus, whose current controls the feedback driving.
This modulated driving can act at the probe mirror. An
experimental configuration that removes the modulated
reflections from the probe beam before detection is shown
in Fig. 1. The modulated beam (call it m) is added to
the input probe beam (usually a vacuum) by a low re-
flectance (7 < 1) beam splitter (LRBS). Call the trans-
mitted part (almost all) of the modulated beam t ~ m,
and the reflected part r ~ ,/pm. The beam ¢ is reflected
by a transverse mirror, and put through the LRBS again,
where almost all of it is again transmitted, but a small
part (call it 7' ~ ,/pm) is reflected outwards. Mean-
while the original reflected beam r from the LRBS, plus
the probe input Bj, that entered from the other port of
the LRBS, drives the cavity. The modulation r is re-
flected off the cavity mirror along with the probe output
Boui- This will be almost entirely transmitted at the
LRBS, and will travel outwards along with r’. If the
optical path lengths are set correctly, destructive inter-
ference will cause the cancellation of the two modulated
components in the output beam r and r’. Thus the light
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FIG. 1. Schematic diagram of traveling wave QND device
using feedback. The current-carrying wire is indicated by a
thick curve; narrow lines represent light beams. Sou¢ and
Bout are the signal and probe output beams, as explained in
the text. LO denotes the local oscillator source, IM a cur-
rent controlled intensity modulator, M a mirror, LRBS a low
reflectivity beam splitter, and FFBS a 50-50 beam splitter
(although any finite ratio will do).

coming from the cavity through the beam splitter will be
B,ut, as if it it had a vacuum input (although the input
modulation r will of course change the cavity dynamics;
this is the point of the feedback). This light is then de-
tected by homodyne detection (using the same local os-
cillator, which was modulated to give the feedback, and
a second low reflectance beam splitter) and the resultant
photocurrent used in the feedback loop.

The QND correlation functions defined in the preced-
ing section were defined using quantum averages for the
probe and signal beams. For QND schemes based around
an intracavity interaction, these functions are usually
evaluated using the input-output theory of Gardiner and
Collett [30]. The system evolution is expressed as a quan-
tum Langevin equation for the cavity mode operator, in
which the noise term arises from the input field opera-
tor. The output field operator is simply related to the
input field and the intracavity mode. The treatment of
the feedback QND scheme in Sec. III was based on a
measurement theory approach, which necessarily uses the
density operator. It is thus not obvious that there is any
corresponding quantum Langevin treatment of feedback.
The early treatments of continuous feedback did in fact
use the Heisenberg picture [31-33] rather than a mea-
surement theory approach, but were not developed rig-
orously. Recently, it has been shown that the Langevin
equation approach to feedback can be formulated rigor-
ously for all cases, and is equivalent to the measurement
theory approach [25]. The proof is essentially related to
the recently published theories of cascaded open quan-
tum systems [34,35]. Thus, in this section, the Langevin
approach to feedback will be used for convenience.

Let the damping rates at the signal and probe ends of
the cavity be y; and «;, respectively. Assume that the
field inputs at both ends are in vacuum states, and so
represented by the vacuum annihilation operators vy (t)
and v;(t), respectively. These bath operators have zero
mean, but obey the commutation relations

[vi(t), v ()] = 6:;6(t — t'), (6.1)
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with all other commutators vanishing. The Langevin
equation for an arbitrary cavity operator a is

. . +
a = i[H,a] — [a,c] (7——1 5 2.4 Vs + \/'721/2)

+
+ (2_2__'_7301 + \/'711/{ + ,/'mVZI) [a,c]. (6.2)

Here, ¢ = z+1y is the annihilation operator for the cavity
as before, and H is the Hamiltonian (4.8)

H) =~ Pyt um) +y [ I20-9h(s)ds, (63

where I have generalized the feedback by including a
response function h(s). The instantaneous feedback of
Sec. IV corresponds to h(s) = §(s). The output fields,
denoted by b;(t) and ba(t) for the signal and probe, re-
spectively, are given by [30]
b,(t) = ’)’iVi(t) + v C(t). (64)
In order to treat Eq. (6.2) consistently, the current
IZ(t) must be an operator. The correct operator is that
which is measured by homodyne detection, namely, the
= quadrature of the output probe field. Define new bath
operators &;(t) = v;(t) + V;‘(t). These commute, and act
as real, normalized, Gaussian white-noise terms satisfy-
ing

(&(8)€;(t)) = di;0(t — ). (6.5)
Then the homodyne current can be defined as
IZ(8) = ba(t) + BY(0) = 2vaa(t) + yaa(t).  (6.6)

#(t) = =202 - L - YT

2
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In order to consider detectors of efficiency 7; for the two
output beams, it is necessary to modify this expression.
The effect of nonunit efficiency can be modeled as placing
a beam splitter of transmittance 7; in front of a perfectly
efficient detector. Normalizing the transmitted field so
that the deterministic part (proportional to z) remains
the same, the result is

IZ(t) = 272z (t) + /72 £2(t) + /7262 &4 (t),

where

(6.7)

& = (1 —mn:)/mi, (6.8)

and &4(¢) is an independent Gaussian white-noise term.

Since the probe output beam has to be measured in
order to carry out the feedback, it is only sensible to de-
fine the probe output to be that measured photocurrent.
Normalized to unit shot noise,

Bout(t) = m[Z\/ﬁm(t) + 62(t) + \/564(1:)]

Since this expression includes the possibility of inefficient
detectors, it would seem consistent to define the signal
output in the same way:

Sout(t) = \/ﬁ;[2ﬁ$(t) + fl(t) + \/a£S(t)]a

where {3(t) is another noise term. It was assumed above
that both probe and signal inputs were in the vacuum
state. This is a convenient choice, as explained in the
preceding section. Thus, with the same normalization,

Bin(t) = &2(t), Sin(t) = &1(2).

This completes the definitions.

The probe and signal outputs depend only on the noise
operators and the intracavity quadrature operator z(t).
From Eq. (6.2), this obeys

(6.9)

(6.10)

(6.11)

&) — Y 26(1)

2

(6.12)

+ /Om [m(t — o+ @gz(t — 8+ @@(t - s)] h(s)ds,

where the definition (6.7) has been used. For the ideal case [e; = 0, h(s) = &(s)], it is simple to see from this
equation how the device works. The feedback plus nonlinearity completely removes the effect of the damping at
the first (probe) mirror, for the z quadrature. The z quadrature evolves as if the probe mirror were perfect, and is
damped only through the signal mirror. Thus the signal is reflected unchanged (apart from a phase shift), but there
is nevertheless a probe output that is measured, and which directly gives information about the signal input. This is
the essence of a good QND apparatus.

Transforming Eq. (6.12) to the frequency domain yields

) = TYVTE) = Tl = Bl @) + T hw)s(w)

= - (6.13)
2{71/2 + 72[1 — h(w)] — iw}
where the noise terms in the frequency domain are complex and obey
&i(w)" = &i(~w), (6.14a)
(€i(w)&; (")) = 2766 (w + w'). (6.14b)

The Fourier transformed probe and signal outputs are
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Bout —\/717251 + (11/2 — iw)éa + \/_(71/2 + 72 — zw)£4 (6.15)
Viz v1/2 + v2(1 = h) —iw '
Sout g z —v1é1 — VI2(1 — R + 2717z h§4
\/7—7;—(§1+\/a€3)+ Y72+ ya(l — ) — iw (6.16)

where the argument w has been suppressed.

B. QND correlation coefficients

Using these results and the noise statistics (6.14), the correlation coeflicients A, C, and V(Sout|Bout) may be found.
First, however, it is useful to define the dimensionless quantities

Q= w/’)’]_, G = 72/")’1.

(6.17)

The symbol G is used for the ratio of the damping rates of the end mirrors, because it is effectively the gain of the

QND measurement. In terms of these parameters,

~ ~ - 2
Gl — h|? + Ges B2 + € |§ +GA-h) —m‘

-1

c@)=|1+ ) - RE , (6.18)
]—5 FG(1—h) —iQ
1 2 1\2 2\ 7!
1 +8 G+3) +Q
A(Q) = (1 +i s te ( Zc): ) ) (6.19)
1+e€
V (Sout|Bout) () =1 — o 2A( Q). (6.20)
[
It is interesting to note that the feedback gain h only G
enters into the expression for the conservativity C. c@)=1- G211z (6.24)
1

To understand these formulas, first consider the ideal
case €; = €2 = 0, h = 1. Then it is easy to see that

cQ) =1, (6.21)
G
AQ) = ——— 6.22
@ =gt (6.22)
V(Sout|Bout) (@) =1 — — (6.23)
out out - G+%+Qz .

That is to say, the system is unaffected by the inter-
action, as required for a true QND measurement. The
accuracy and predictive ability of the measurement de-
pend on the gain G. For large gain, A approaches 1 and
the conditioned variance approaches zero, indicating that
the device is a perfect QND detector in this limit. The
bandwidth for these correlations is (for large G) approx-
imately equal to v/G, which is the geometric mean of the
two decay rates in original units. This behavior is shown
in Fig. 2, which plots A + C and V (Sout|Bout) versus
for G = 4. Evidently this value of gain can be considered
quite large.

This apparently excellent role for back-action elimi-
nation by feedback is somewhat diminished when one
considers the same case, but with the feedback turned
off (h = 0). As noted above, the values for A and
V (Sout|Bout) are identical to those with feedback. The
conservativity is no longer unity, but rather

Evidently this is still a QND measurement in the sense

-
T
!

4
®
T

QND evaluation criteria

o o
H (]
9
R

o
¥}
T
!

G0 0.5 1 15 2 2.5 3 3.5 4

Dimensionless frequency

FIG. 2. Plot of the QND evaluation criteria A + C (solid
and dashed lines) and V(Sout|Bout) (dotted line) versus di-
mensionless frequency 2. The solid line is with the feedback
on, and a response function 2 = 1. The dashed line is with
the feedback off. For both cases, the efficiency of the pho-
todetectors is 100%, and the QND gain G = 4.
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that A + C > 1, as shown in Fig. 2. Furthermore, in the
limit G — oo, C as given in Eq. (6.24) also approaches
unity. It thus appears that the central role in the QND
device is being played by the x(? medium, rather than
by the feedback. This is particularly emphasized by the
fact that the conditional output variance, which is the
only directly measurable correlation, is unchanged by the
feedback. Nevertheless, the QND property itself, the con-
servativity, is unquestionably enhanced by the feedback.
It has been brought to my attention that the scheme to
which I am referring here, with the nonlinearity but no
feedback, has been analyzed recently in Ref. [9]. (In that
work, the nonlinearity was not assumed to equal the loss
rate at the probe mirror, but this turns out to be the op-
timal condition in the limit G — o0.) The effectiveness
of such a simple QND apparatus also raises doubts about
the usefulness of the more involved schemes proposed in
the past [3-8].

To assess the usefulness of the feedback in practice, it
is necessary to consider nonideal conditions, in partic-
ular, imperfect photodetectors. Even with better than
95% efficient detectors (e; = €2 = 0.05), the effect on
the quality of the measurement is dramatic, as shown in
Fig. 3. The feedback still gives an improvement, but it
is less than in the ideal case of Fig. 2. In Fig. 3, the
feedback loop response function h(w) is no longer unity.
By analysis of the formulas for C, one finds that the
result is better at @ = 0 if A(0) > 1. However, the feed-
back loop gain is limited by the stability requirement
that k1 + k2[1 — h(0)] > O [see Eq. (6.12)]. Working at
the limit of stability suggests h(0) = 1 4 k1/(2k2). In
Fig. 3, I have also included a time delay and some ex-
ponential smoothing in the feedback loop by taking the
total response function to be

o (o 22) - 1o 2) 2
(6.25)

QND evaluation criteria

0 0.5 1 15 2 25 3 3.5 4

Dimensionless frequency Q

FIG. 3. As in Fig. 2, but with 95% efficient detectors, and
with h given by Eq. (6.25)

The nonflat response has little effect at low frequencies,
where the QND correlations are best.

A complete analysis of this QND apparatus would re-
quire one to relax the assumption that the strength of
the nonlinearity x equals the damping rate x5 of the sec-
ond mirror. Then, for a fixed x, k1, and ¢;, one would
have to maximize some suitable combination of A + C
and V(Sout|Bout), as a function of w, k2, and h. This
would be necessary to find the optimal operating region,
and to find out how much improvement the feedback can
offer over the nonlinearity alone. In any case, for mak-
ing a QND measurement of the intracavity  quadrature,
as explored in Sec. IV, the feedback is essential. With-
out it, a homodyne detection would simply be measuring
the squeezing produced by the DPO. If a detector of ef-
ficiency n is included in that model, the QND master
equation (4.10) becomes

. 1-—7

p = Dlz]p+ TD[y]P = Lp. (6.26)
The extra term causes the variance in « to increase lin-
early with time, which obviously violates the QND defini-
tion. However, for 7 close to 1, an approximate first-kind
measurement could be carried out for a short time. As
well as modifying £, the loss increases the noise to signal
ration in the two-time correlation function (4.11)

E[IZ(t + 1) I5(t)] = Tr {22 [p(t) + p(t)z]} + %5(7).

(6.27)

VII. CONCLUSION

Any quantum-demolition measurement can in princi-
ple be turned into a quantum-nondemolition measure-
ment simply by using the measurement result to alter
the dynamics of the system. In particular, the back-
action of continuous observations can be eliminated by a
feedback Hamiltonian proportional to the measured cur-
rent. This was shown to be impractical for the case of
direct detection of the light from a single-mode cavity,
as the required Hamiltonian is equal to the phase oper-
ator for the field (but see [36]). However, it is possible
to turn a homodyne measurement of the z quadrature
into a QND measurement, because the only nonlinear-
ity required is that of a degenerate parametric oscillator.
The homodyne photocurrent is used to control the am-
plitude of driving on the cavity, while the DPO remains
constantly operational. For perfect detectors, and the
correct strength of nonlinearity and driving, the device
effects a perfect QND measurement of the intracavity x
quadrature.

The analysis of the proposed device was extended to
allow for measurements on traveling waves. The signal
to be measured is reflected off a second mirror of the
cavity. Using the appropriate QND evaluation criteria
for such measurements, the device was shown to act as a
perfect broadband QND measurement apparatus in the
limit of large gain and perfect detectors. Here, the gain
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is equal to the ratio of the x(?) value of the DPO (which
must be equal to the damping rate of the first mirror)
to the damping rate of the second mirror. However,
even slightly imperfect detectors degrade the measure-
ment correlations markedly. Also, the perfect results in
the limit of infinite gain are reproduced with the feedback
turned off. The crucial element in the device appears to
be the nonlinearity, rather than the feedback. Neverthe-
less, there may be a role for feedback, because it produces

H. M. WISEMAN 51

significantly better results for the case of good detectors
but finite gain. The possibilities for back-action elimina-
tion by feedback in other contexts are still to be explored.
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