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Generation of sub-Poissonian and squeezed fields in the thermal superposition
Jaynes-Cummings model
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Approximate analytical expressions for the time evolution of the photon-number statistics and
squeezing in the thermal Jaynes-Cummings model with a two-level atom being initially in a coherent
superposition of its ground and excited states are presented.

PACS number(s): 42.50.Dv, 32.80.—t

I. INTRODUCTION

The Jaynes-Cummings model (JCM), describing the
essential physics of the interaction of a single-mode ra-
diation field with a two-level atom, with respect to its
relative simplicity, is one of the most intensively studied
models in quantum optics. Despite this simplicity its be-
havior is far from simple. Many nonclassical efFects such
as vacuum-Geld Rabi oscillations, sub-Poissonian photon-
number statistics, antibunching, and squeezing of the ra-
diation field have been predicted (for the latest reviews
see [1,2]). Recent experiments with Rydberg atoms in
high-Q microwave cavities have allowed experimental ob-
servations of the main dynamical features of the model
[3—7].

The thermal JCM with an initially excited [8—10] or
unexcited atom [11] can exhibit a sub-Poissonian field
(but not squeezing) for sufficiently small initial photon
numbers. Quite recently some approximate analytical
formulas for this effect have been presented [12,13]. The
bound on sub-Poissonian photon number statistics is
much more restricted for an initially unexcited atom.

If the atom is initially prepared in a coherent super-
position of its upper and lower levels, an interesting dy-
namics emerges; the mean values of the atomic-dipole
operators, and in consequence the mean values of the op-
erators of an initially thermal field, do not vanish, which
may lead to the possibility of the appearance of squeez-
ing. For an initially coherent field squeezing may be re-
vealed in the JCM even for an initially unexcited or ex-
cited atom [14]. The coherent JCM is also able to exhibit
higher-order [15] and higher-power squeezing [16] in the
sense of Hong and Mandel's [17] and Hillery's [18] defi-
nitions, respectively. The coherent JCM with multipho-
ton transitions between the atomic levels may produce
not only higher-order squeezing, but also higher-order in-
trinsic squeezing [17] for the photon multiplicities of the
atomic transition equal or greater than 4 [15]. Knight

[19] and Wodkiewicz et al. [20] have studied squeezing
produced by the interaction of a suitably prepared two-
or three-level atom with a cavity mode initially in the
vacuum state.

One of our aims here is to show that the standard JCM
with a two-level atom initially prepared in a coherent su-
perposition of its excited and ground levels and coupled
to an initially thermal field can manifest squeezing for
small numbers of thermal photons. We also show how the
photon-number statistics varies with the atomic excita-
tion angle 0 and the phenomenon of incoherent trapping
is discussed.

II. MODEL

The effective rotating-wave approximation Hamilto-
nian for the model under discussion for exact resonance
reads

~free + ~int y

Hfre~ = LOSz + RdQ G )

H;„i ——hg[atS + aS+] .

u denotes the frequency of the Geld mode and g is atom-
Geld coupling. S,S+, and S are atomic pseudospin
lowering, raising, and inversion operators, respectively,
and

[S+,S ] =2S, . (2)

p = ) P„~n)(n~,
n=O

The exact operator solution for the model was presented
by Ackerhalt and Rzq.zewski [21]. We shall work here in
the interaction picture.

The density operator p of a thermal Geld

where the photon-number distribution function P has
the form

'Permanent address: Departamento de Optica, Facultad de
Ciencias Fisicas, Universidad Complutense, 28040 Madrid,
Spain.

np
(n + 1)n+1 (4)

1050-2947/95/51(3)/2450(9)/$06. 00 51 2450 1995 The American Physical Society



51 GENERATION OF SUB-POISSONIAN AND SQUEEZED FIELDS. . . 2451

and n is the initial mean photon number, has only diago-
nal matrix elements in the photon-number representation
ln). Hence it is convenient to perform calculations in the
photon-number representation and then to make the fi-
nal summation over n with the geometric distribution
function Pn.

If the field is initially in a number state ln) and the
atom is prepared in a coherent superposition of its ground

l

—) and excited l+) states, the initial state of the atom-
field system reads

l @(0)) = cos 0l —,n) + e'~ sin 0l+, n)

= c'"'(o)l —,n) + c'"'(o)l~, n) .

where

"G„„(t)= n —sin O„t,

"G~'„l(t) = n+ sin'n„+, t.
The superscript n denotes that the field is initially in
a Fock state. Since the system evolves with two incom-
mensurate Rabi frequencies, the phenomenon of quantum
beats will lead to aperiodic time behavior. In particular,
incomplete collapses of the oscillations, more evident for
greater photon numbers and 0 = vr/4, will occur.

For a thermal field, after summation over n one gets

The interaction-picture state vector of the system at any
time t & 0 has the form

I+(t)) = C'"'(t) I-, n) + C'"+(t) I+.n —1)

+ c'"'(t)l+, n) + c+'"'(t)l —,n+ i).

and

G~ l(t) = G~„l(t) cos 0+ G~„l(t) sin 0,

G~'„l(t) = n —) P„sin (gi/nt),
n=i

(12)

The state
l
—,n) is coupled with the state +, n —1)

and the state l+, n) is coupled with the state —,n + 1).
The time-dependent Schrodinger equation with the ini-
tial condition (5) gives the following solutions for the
probability amplitudes C& (t), (k = —,+, —+, +—):

(13)

G~'„l(t) = n+ ) P„sin (gi/n+ 1t).
n=o

Using the obvious property of the geometrical distribu-
tion P„+q ——qPn, where

C (t) = cos0cos0 t, n
q = (i4)

C +(t) = —ic so0si On„t, we find that

and

C+ (t) = e'~ sin0cos0 +it,
) P„isn'(g~nt) = q) Psin'(g iin+ it) .
n=l n=o

C+" (t) = ie'~ sin0sin —0„+it.
0 is the quantum Rabi frequency of the oscillations of
the model

0„=g~n.

Due to the special initial preparation of the atom, the
density matrix of the whole atom-field system has no6-
zero oK-diagonal elements carrying a phase information,
important &om the point of view of squeezing.

III. PHOTON-NUMBER STATISTICS

In consequence, the thermal 3CM with an initially ex-
cited and unexcited atom oscillates with the same spread
of the Rabi frequencies, but with diferent amplitudes. As
arises from Eqs. (13), the oscillations are shifted in phase
by vr.

Due to the relation (15), Eq. (12) transforms into

G~ l(t) = n+ (sin 0 —qcos 0) ) P„sin (gran+ lt) .
n=o

For an arbitrary n, if only the following equality is satis-
fied:

q=tan 0,

"G"(t) = Ic'"'(t)i'+ (n- 1)lc'"+(t)l'

+nlc+"'(t) I'+ (n+ i) Ic+"'(t)
I

G~„(t)cos 0+ G~„(t) sin 0, (10)

Owing to Eqs. (6)—(8), the time evolution of the mean
photon number (the first-order field correlation function)

G~ l (t) is given by the sum of the mean photon numbers
for an initially unexcited and excited atom multiplied by
cos 8 and sin 0, respectively,

the photon number in the thermal JCM becomes a con-
stant of motion and the phenomenon of radiation trap-
ping takes place [22,23]. Since 0 & q & 1, this effect
occurs for 0 & 0 & 7r/4. The excitation angle 0 asymp-
totically approaches m/4 for very strong thermal fields.
This particular case of trapping for strong fields has re-
cently been discussed [24]. In other words, for an ini-
tially unexcited or excited atom there is no trapping, as
it must be, since this phenomenon is reached for mixed
states, which are better studied in the dressed. -state ap-
proach. The term trapping is employed here to refer to a
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persistent probability for occupying a given state despite
the existence of both the field and atomic transitions. It
is simply a result of competition between the absorption
and the spontaneous and stimulated emission processes.
Trapping in this model does not depend on the phase and
the coherence between the atom and radiation. So, we
deal with incoherent trapping as distinct &om the coher-
ent JCM, where restricted trapping depending on both
the atomic and the field phase occurs [25]. For every
0 below and above Oq, p, the oscillations of the system
are in phase. However, the oscillations above et, „are
shifted by vr in comparison with those below ot, p. This
is because the signs of the expression sin 0 —q cos 0 are
different in both intervals of 0 (Fig. 1).

The excitation number operator

"G"(t) = (+(t) la'a'«l~(t))
= "G~„l(t)cos 0+ "G,„(t)sin 0, (22)

where

"G~„(t) = n —n —2(n —1) sin (gt~n),

(S (t)) against (S (t)) is almost regular for small initial
photon numbers, while for stronger fields (n = 10) it
exhibits quasistochastic 8uctuations. From the present
considerations it additionally arises that in the case of
trapping ((S,) = const) this trajectory reduces for any n
to the segment of the straight line parallel to the x axis
and distant &om it by the absolute value of (20).

The second-order normally ordered field correlation
function for an initially Fock field reads

1N=a~a+S +—
2

(18)
"G~'„l(t) = n' —n+ 2nsin'(gtQn+ 1).

commutes with the Hamiltonian (1), i.e. , is an integral of
motion. Therefore, the time evolution of the expectation
value of the atomic inversion is simply given as

For a thermal field one gets

Gl l(t) = Gl„~(t) cos 0+ Gl„~(t) sin 0, (24)

(S,(t)) = ——cos 20+ n —G (t)
l
2

= ——cos 20 —(sin 0 —q cos 0)
1 2 2

2

x ) Psi 'n(g v n+ 1t),

where

G„„~(t)= 2n —2) P (n —1) sin (g~nt),
n=2

(25)
n=O

where —cos 20/2 is the initial inversion. It is evident
that for 0t, ~ & 0 & vr/4 the expectation value of the
atomic inversion remains negative for any time, while for
0 ( 0& p it may also take only negative values during
the whole time evolution of the system for small initial
photon numbers.

For trapping, due to Eq. (17) the initial inversion may
be rewritten in the form

1
(S.(o))1-P = —

2(1+ 2„)
. (20)

1 .(S ) = —sln20coslp) P cosQ tcosQ +it
2 n=o

Depending on n it takes the values &om the interval
—1/2 & (S,(0))q, ~ & 0 and, obviously, remains constant
in the course of the atom-Geld interaction.

Gea-Banacloche [26] has pointed out the usefulness of
the Bloch vector in the description of the fully quantized
JCM. Arancibia-Bulnes et at. [24] have studied for the
thermal superposition JCM the Bloch vector trajectory
for 0 = vr/4. In our notation, the expectation values of
the components S = (S +S+)/2 and S„=i(S —S+)/2
of the atomic dipole operator read

G~„l(t) = 2n +2) P„nsin (go+ 1t).
n=1

Since

) (n —1)P„sin'(g~nt) = q ) nP„sin2(gran+ 1t),
n=2 n=1

(26)

we have

G~ l(t) = 2n + 2(sin 0 —qcos 0)

x ) nP„in's(gg +n1t) .
n=1

(27)

V(t) = Gl'l(t) — G~'l(t) (28)

All the conclusions regarding the phase relations of the
oscillations of the correlation function G& l(t) [but not
V(t); see Fig. 2] remain the same as for the function
G(i) (t)

Obviously, in the case of trapping the photon number
statistics remains thermal.

In what follows, we shall use the normally ordered vari-
ance defined as

(S„)= —(S ) tan &p.

Both dipole components vanish for an initially unexcited
or inverted atom. For y = 0 the Bloch vector moves
in the z-z plane. It was shown [24] that the trajectory

IV. FIELD QUADRATURES AND SQUEEZING

In order to study the squeezing of the field we introduce
the two Hermitian slowly varying in-phase and out-of-
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phase quadrature components Q and P:

Q = a, + at, P = (a, —at)/i, (29)

2Re" (a, (t)) = sin 28 sin rp gn + 1 cos O„t sin 0„+it
~nslil O~t cos A~+i t'

where a, and at are slowly varying parts of the photon
annihilation and creation operators

(3o)

In general, the variances of the quadrature components
are

((AQ) ) = 1+2G + 2Re(a, ) —4(Re(a, ))

((AP) ) = 1+ 2G( ) —2Re(a, ) —4 (Im(a, ))

The field is squeezed to the second order if one of the
above variances satisfies the condition

2Im (a, (t)) = —2Re (a, (t)) cot &p

and for an initially thermal field arrive at

2Re(a, (t)) = sin28sinp

x ) P~gn + 1 cos A~t sli10~ +it

) P ~nsli10 leos 0

21m(a, (t)) = —2Re(a, (t)) cot &p.

(35)

(36)

((&Q)') & 1 or ((+P) )

Fluctuations in one field quadrature are then reduced
below vacuum Huctuations. For minimum uncertainty
states the reduction of Quctuations in one quadrature can
only take place at the expense of enhanced Huctuations
in the other quadrature. For states that are not mini-
mum uncertainty states, the above condition has not to
be fulfilled.

For the thermal JCM the expectation values of the
square of the photon annihilation (a2) and creation (at2)
operators are equal to zero and the variances (31) reduce
to

((b,Q) 2) = 1 + 2G(') —4 (Re(a, ) )

((b,P) ) = 1+ 2G( ) —4 (Im(a, ))

(33)

2Re ["(a.(~))] = gn+1 C("'(t)C+(")(t)

+c( ) (t)c( )*(t)

+~n C " '(t)c "
(t)

+c( ) (t)c( )*(t)

I ["[ .()[] = —'(Q + C" '[)C" ()
—c "

(t)c " '(t)

+~n c"'(t)c" (t)

—c-'"' (t)c'"'(t)

(34)

Hence, using (7) and (8), we get

It is obvious that the thermal JCM cannot exhibit
amplitude-squared squeezing [18]; however, it may pro-
duce higher-order squeezing as defined by Hong and Man-
del [17].

For the time evolution of the annihilation operator we
have

The optimal choice of the atomic phase y for squeezing in
the quadrature Q is p = a/2, while for squeezing in the
quadrature P is y = 0. Then, if additionally the trapping
condition (17) is satisfied, fluctuations in one quadrature
remain constant and equal to their initial value 1 + 2n.
The other quadrature may then reveal squeezing since the
squeezed states produced in the model are not minimum
uncertainty states. For an initially unexcited (8 = 0) and
purely excited (8 = n/2) atom the quantities (36) vanish
and there is no atomic phase present in (33). In such
a case, quantum fluctuations in the quadratures become
equal. At equal Quctuations the appearance of squeezing
is impossible (the variances are then at least equal to one
for minimum uncertainty states and greater than one for
other states).

Field squeezing is connected here with squeezing in
the atoinic dipole operators [20,27—29]. The expectation
value of the Q quadrature has the same p dependence as
(S„),while the out-of-phase field quadrature P is related
to S (21). The origin of such a relationship is concerned
with the form of the interaction Hamiltoiiian (1) [20]. It
was shown [20] that in order to observe field squeezing,
the initial atomic superposition state has to satisfy two
conditions: the atomic-dipole operator S~ or S& should
be squeezed and the expectation value of the commutator
[S+,S ] should be negative. This commutator is simply
related to the atomic inversion (2) and its initial value
—cos28/2 may be negative for 0 & 8 & m/4. For an
initially unexcited atom the phase information is lost.
Therefore, in principle, field squeezing in the model in
question is possible in the interval 0 & 8 & x/4, even in
the case of trapping. The other bound is connected with
the initial mean number of thermal photons.

V. ANALYTICAL SOLUTION FOR WEAK
THERMAL FIELDS

The JCM dynamics is exactly solvable in the rotating-
wave approximation when the field is in a number state,
showing the quantum Rabi oscillations. When the field
mode is prepared in another state, the dynamics is not
so simple and usually one of the main problems is the
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appearance of infinite sums over n. Some attempts have
been made to overcome these summations. For the co-
herent JCM, the analytical solution has been found with
the help of saddle-point techniques [30,31]. By definition,
this approximation should hold rather for large mean
photon numbers. However, agreement with the numer-
ical results is fairly good already for n 4. In turn, if
the atom interacts with a classical thermal field, the G-

nal analytical result for the time evolution of the mean
photon number may be presented in terms of the Dawson
integral [32]. Then the collapsed system does not revive.

In what follows we are interested in weak thermal
Gelds. Only for such Gelds is it possible to observe sub-
Poissonian photon-number statistics and squeezing in the
JCM. Obviously, in this case one can always perform di-
rect numerical evaluations that are not so time consum-
ing, but it is always interesting to find analytical results.
Only recently an analytical solution, based on a linear ap-
proximation for the Rabi &equency, has been presented
for an initially excited. and unexcited atom. Namely, for
small n the sums over n may be analytically calculated if
we make the following substitution for the square roots
of n and n + 1 [12,13,24]:

cos(T + 24(c)]

)D(7)-)
s

((
)cos]T+ 4(c)]

D(~)
x (1 —q) (sin 8 —q cos 8)

2
1 cos[T + 4(w)]

V D(~)
x (sin 8 —q cos 8) (42)

T
2Re(a, (t) ) = sin 28 sin y(l —q) sin —+ n(~2 —1)

2

f 3
x

~

n+ -+ ~~
I
sin-

2 )

+
gD(~)

—sin T ——

sin T ——+4 r

(43)

In order to calculate (a, (t)), one has to approximate ad-
ditionally oscillation amplitudes, also using (37). Prom
(36) we have

~n = 1+ (n —1)(~2 —1),

v'n+ 1 = 1+ n(y 2 —1),

n = 1, 2, 3, . . .

A 0) 1 s) 2) ~ ~ ~ ~

(37)

VI. DISCUSSION

) P„sin (gran+ lt) = — 1 —(1 —q)
=1 cos[T + C (7-)]

2 V'D( )

(38)

where

D(7 ) = 1 + q —2q cos r,

cos C (~) = 1 —g cos 'T

QD(7.)

q sine
slI1 4 (r)

D(~)
(39)

T = 2gt) ~ = 2g(v 2 —l)t.

Inserting the second relation (37) into Eq. (16), after
some algebra one finds [13]

Figure 1 shows the time evolution of the mean photon
number obtained from the exact formula (16). In fact,
the di8'erences between the plots of the exact and the
approximate G~ ~ would not be noticeable on this scale
of the graph. For 0 = 0 the system oscillates with the
amplitudes determined by n. The amplitudes diminish
with growing 0 and the oscillations are completely sup-
pressed for ot, p. I"mther on, the system starts to oscil-
late again and the oscillations amplitudes progressively
increase, reaching their maximal values for the purely
excited atom.

Let us study now very roughly the signs of V and, in
this manner, the field statistics. Obviously, in the case of
trapping the photon-number statistics remains thermal.
Figure 2 presents a general view of the time evolution of

Hence, from Eq. (16) we finally get

(I) 1 cos[T + 4(7-)]

v'D(~)
x (sin 8 —q cos 8) . (40)

The second-order Geld correlation function is found to be

(s)(), (
)Icos]T+2C(s)]

cos[T + C (~)]
slI1 8 —q cos 8

D(7.)

Therefore, the normally ordered variance (28) reads

(41)

FIG. 1. Time and 8 dependence of the mean photon num-
ber for n = 0.15 (exact solution).
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cosa &
1 —n, 2

1+ 2n
(46)

To conclude, the bound on sub-Poissonian photon statis-
tics grows with 8 and reaches its maximum for a purely
excited atom [13]. This limit on n is readily seen, namely,
n & 1. It remains in good agreement with the numeri-
cally found limit n & 1.16 [11].

For 0 & ot p the normally ordered variance V takes its
Grst and deepest negative minimum for gt —~. Its graph
for an initially unexcited atom is presented in Fig. 4.
Then, cosT = 1 and ~ = 2n(~2 —l)gt and, in general,
for 0 & Oq, p, we find approximately

FIG. 2. Time and 8 dependence of the normally ordered
photon-number variance for n = 0.15 (exact solution). V n + q(sin 0 —qcos 0)(1 —cos2~2m). (47)

V. From Figs. 1 and 2 it is seen that for 0 ) Hq, p the
variance V(t) reaches its minima almost at the points
at which the mean photon number reaches its maxima
[gt = (2k —l)2r/2, k = 1, 2, 3, . . .]. This relation is better
for 8 ) vr/4 and becomes more and more accurate as 0
increases. As an example, the graphs of these functions
are presented for 0 = 7r/2 in Fig. 3. The exact results
(solid lines) are compared with the approximate ones (40)
and (42) (dashed lines). The maximum of G(~), most
interesting for us, is the third one (k=3) when the value of
this function is very close to its higher possible value 1+n
( 1.2 in this case): cosT = —l, cosw = 1,D = (1 —q)
and cos4 = cos24 = 1. Then, in general, for 8 & Ot p
we get

As seen kom Fig. 2 and analytically obvious &om the
above formula, for a given n, the possibility of emergence
of the sub-Poissonian Geld decreases as 0 increases to
Ot, p. In particular, for 0 = 0 our previous result for
the bound for an initially unexcited atom is recovered:
n & 0.36 [12]. In the times considered gt & 12, the
numerically found limit amounts to n & 0.31 [11].

In the discussion of squeezing we restrict our attention
to the quadrature Q. Putting n = 0 in Eqs. (16) and
(27) or in Eqs. (40) and (43), from Eq. (33) we recover
the result for spontaneous squeezing [19,20]:

(48)

G 6+ sin 0 —qcos 0,

V n —(sin 0 —q cos 0)

(44)

(45)

This variance reaches periodically its minima at gt =
(2k —1)vr/2, k = 1, 2, 3, . . .. For &p = vr/2 we have

(49)
From the above equation it is evident that for a given n
the possibility of emergence of sub-Poissonian Geld statis-
tics (V & 0) enhances with 8. In turn, for a given 0 this
possibility grows as n diminishes. Sub-Poissonian statis-
tics may be revealed for 0 ) Ot, p if

For 0 = vr/6, maximal squeezing, amounting to 25%%uo,

occurs [19,20]. A three-dimensional view of spontaneous
squeezing is presented in Fig. 5. In fact, for the clarity of
the graph, the function 1 —((AQ) 2) is plotted versus gt
and 0. Hence the positive values along the Z axis point to
squeezing. As evident from (49) and seen &om the graph,

1.2
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Q 0.6
0.4
0.2
0.0
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-0.4

& -0.6
-0.8
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gC
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0.14

0.11

0.08
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0 1 2 3 4 5 6 7 8 9 10 11 12
gt

FIG. 3. Comparison of the exact solutions (solid lines)
and the approximate ones (dahed lines) for the mean pho-
ton number and the normally ordered variance for n = 0.2
and 8 = gr/2 (excited atom).

FIG. 4. Time evolution of the exact mean photon number
and the normally ordered variance for n = 0.2 and 8 = 0
(unexcited atom).
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FIG. 5. Time and 8 dependence of squeezing in the quadra-
ture Q for y = tt/2 in the spontaneous case. For the clarity
of the graph the quantity 1 —((AQ) ) is plotted.

L

I ~ ~ ~

r
L
~ r

I

~ ~ ~

~ L ~

~ I ~
~ ~LLLA

~ ~ II ~ ~ ~
I
~ I I ~
~ ~ ~

~ ~ L ~

,
' g/)

~ r
~ J
~ ~

~ ~
I ~
I ~

I ~
~ ~

~ I
~ I

~ ~ ~
I ~ I I
~ ~ I ~

~ ~ I I
~ ~ I ~

I
~ I

I I ~ ~

~ ~ ~ ~
I I I ~
~ ~ ~

I I I

~ ~

~ ~ ~ ~

0.8

L
L

\ I

~ L I
L

~ I I

~ ~ ~ L ~ I I
~ I ~ ~ ~ I ~

—
~

~ L I
I ~ ~ ~ I ~ ~
I ~ ~ L ~ ~WI~I ~ ~ ~ ~ ~ I

\ ~ ~ ~

~ I ~ ~ ~ ~ I
~ L I ~ ~ I I I
~ ~ ~ I ~ I ~
~ ~ K ~ ~ I ~
~ I ~ ~ ~ I I I
~ ~ ~ ~ ~ I I
~ ~ ~ ~ ~ I ~ ~

I I I ~ ~ ~
I ~ ~ ~ I ~ ~ ~

I I ~ ~ ~ ~ ~ ~ I ~ I

0

spontaneous squeezing may occur for 0 & 8 & m/4.
I igure 6 shows how spontaneous squeezing changes in

the presence of thermal photons (n = 0.15). As before,
the quantity 1 —((AQ) ) is plotted. Some details are
more evident from Fig. 7. Here only non-negative values
of the quantity 1 —((b.q) ) are presented. This func-
tion has its maxima approximately at gt = (2k —1)vr/2
and the positions of the peaks change only slightly with
n. However, their heights strongly depend on n. Al-
ready for n = 0.15 not all of them have positive values;
therefore only three hummocks are seen on the graph in
comparison with four in the spontaneous case (the one
corresponding to k=2 has already vanished). The width
of the 0 interval in which squeezing appears varies in
time. In the times gt assumed, the maximal magnitude
of squeezing, amounting to 18.5% for the above value of
n, is reached at gt = 77r/2 and 8 = vr/6. A slightly greater
amount of squeezing occurs at later times (gt 20.5z),
less practical &om the experimental point of view.

In Fig. 8 the exact formula (28) (solid line) and the ap-
proximate one obtained from (40) and (43) (dashed line)
have been compared for n = 0.1 and 8 = vr/6. Agree-
ment between these two curves is satisfactory, although
now not only the Rabi kequencies have been linearly ap-
proximated in n as in the case of photon statistics [12,13],

FIG. 7. Non-negative values of 1 —((b.Q) ) versus gt and
8 for n = 0.15 and y = tt/2.
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FIG. 8. Comparison of the exact ((AQ) ) (solid line) and
the approximate one (dashed line) for n = 0.1, 8 = tr/6,
y = tr/2.
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FIG. 6. Same as in Fig. 5, but for the thermal model with
n = 0.15.

FIG. 9. Non-negative values of 1 —((AQ) ) versus gt and
n for 8 = tt/6 and rp = tr/2.
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but the oscillation amplitudes as well. Only subtle dif-
ferences start to appear at gt —7.5.

In the time interval assumed in this paper, squeezing
is maximal in the vicinity of gt = 7m/2. This value of gt
is taken in further discussion on the bounds of squeezing
in the thermal JCM. From Eqs. (33), (40), and (43), for
the value of gt mentioned above, we get approximately

AQ
~

gt = —
~

1+4 sin 0 —2 sin 0+ 4n~ ~

~

( 7~1 ' . 4

2)
(50)

Quantum fluctuations in this quadrature are reduced be-
low vacuum Quctuations if

2 sin 0 —sin 0+ 2n ( 0.

1.25

$1.00
«I
U 075

0.50-

0.25—

0.00

& -0.25—

-0.50
0 1 2 3 4 5 6 7 S 9 10 11 12

gt

FIG. 10. Time dependence of V and ((b,Q) ) for n = 0.1
and e = ~/6 (p = ~/2).

For a given n, squeezing is possible in the following in-
terval of 0:

( Ql —Ql —16nz ~
ar csin

/ Ql + Ql —16n~ ~( 0 ( arcsin (52)
)

Since we deal here with the trigonometric function, the
expression under the square root has to be real and we
immediately get the bound on n for which squeezing
can still be present, namely, n & 0.25. This value of
n remains in good agreement with the numerically found
limit n ( 0.29. From Eq. (52) it is evident that the inter-
val of 0 with squeezing becomes narrower as n increases
and for n = 0.25 it turns to the point 0 = vr/6, which
is the point of minimum of the left-hand side of the in-

equality (51). The quantity 1 —((AQ) ) in function of
gt and n for 8 = vr/6 is plotted in Fig. 9.

In Fig. 10 the time evolution of ((AQ) ) and V is
compared for n = 0.1 and 0 = vr/6. In this case
squeezing in its maximal points is always a"companied
by sub-Poissonian photon-number statistics (although at
gt = 10.2 squeezing starts to appear a little earlier
than sub-Poissonian statistics). However, the opposite
statement is not true, e.g. , in the time interval around
gt = 3z /2. In turn, in the vicinity of the trapping condi-
tion (17), the model discussed can manifest squeezing
solely. For n ) 0.29, sub-Poissonian photon number
statistics may be still present, while the appearance of
squeezing is already impossible, even for the optimal ex-
citation angles for this effect 0 m/6. To conclude, there
is no general relation between the emergence of squeezing
and the sub-Poissonian 6eld for 0 ( 9 ( z./4; they may
be encountered together or may appear alone.
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