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The interaction of a bichromatic quantized field with three-level A-type atoms is analyzed on the basis
of c-number Langevin equations. In the presence of ground-state coherence one particular combination
of field modes is selectively absorbed leading to a correlation of the output fields. This correlation mani-
fests itself in a matching of Fourier components of the field modes and in a strong reduction of the
diffusion of the difference phase. This correlation phenomenon is studied for the case of externally gen-
erated coherence as well as for coherence produced by population trapping in conjunction with a nona-
diabatic atomic response.

PACS numbert', s): 42.50.Lc, 42.65.Ky, 42.50.Hz

I. INTRQDUCTIQN

The optical properties of a three-level A- or V-type
atom interacting with a bichromatic field can be best un-
derstood in terms of so-called normal modes [1]. If per-
fect coherence is established between the pair of upper or
lower levels, one particular combination of field modes or
normal mode does not couple to the atom under condi-
tions of two-photon resonance, while the corresponding
orthogonal combination does. This separation into cou-
pled and decoupled normal modes due to the presence of
coherence leads to interesting correlation phenomena.

For example, in a two-mode laser with three-level V-
type atoms in which coherence is established between the
upper levels, the emission of photons is possible only into
the coupled normal mode and hence correlated fields are
generated. Since the same restriction applies to spon-
taneous transitions, there are no noise contributions due
to spontaneous emission to the beat signal which corre-
sponds to the uncoupled normal mode. This is the
essence of the so-called correlated spontaneous-emission
laser (CEL) [2], which has interesting potential applica-
tions for active gravity wave detectors and laser gyros [3].

Similar effects are to be expected for the case of ab-
sorption by a coherently prepared A system. Here only
field components corresponding to the coupled normal
mode are absorbed, whereas the medium is transparent
for the orthogonal superposition. Eventually correlated
fields are generated by the interaction process. This situ-
ation is investigated in the first part of the present paper
in a perturbative approach using e-number Langevin
equations and standard linearization techniques [4]. In
particular we study the propagation of a bichromatic field
through a beam of three-level atoms which are injected
into the interaction region in a coherent superposition of
the lower levels. In the case of two pulses, a nearly per-
fect matching of the Fourier components of the semiclas-
sical field amplitudes occurs. Furthermore, a correlation

of the phase Auctuations of two cw fields is found. The
latter is of particular interest since it could lead to an
essential noise reduction in measurements of phase
differences.

The selective absorption of the coupled normal mode
in a A system with ground-state coherence is also the
basis of the recently predicted pulse matching in elec-
tromagnetically induced transparency [5]. A pair of
strong fields in two-photon resonance dumps the atom
into a decoupled coherent superposition of the lower lev-
els [6). Since this trapping state involves the relative am-
plitude and phase of the fields, fast oscillations of these
quantities, which do couple to the trapping state, are ab-
sorbed. Only oscillations fast compared to the atomic
response time are affected by this process, since slowly
changing fields drive the atom quasi-instantaneously into
a new coherent superposition which therefore remains
decoupled at all times [7]. Associated with the nonadia-
batic correlation of Fourier components is a reduction of
quantum Auctuations of the relative amplitude [8] and
phase [7]. A detailed analysis of the correlation of
phases, which was recently reported by one of the au-
thors (M.F.) in Ref. [7] will be the subject of the second
part of the paper. In particular the propagation of two
quantized cw fields through a vapor cell with three-level
atoms is studied.

II. CQRRKLATIQN PHENOMENA
FAR INITIALLY PREPARED COHKRKNCK

A. Stochastic difFerential equations for 6elds propagating
through a beam of coherently prepared atoms

We here consider the one-dimensional situation shown
in Fig. 1(a). Two fields propagate along the z axis
through a beam of atoms with a level structure indicated
in Fig. 1(b). The atoms enter the interaction region at a
time t. and a position zI in a coherent superposition of
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FIG. 1. Two light fields propagate through a beam of
coherently prepared three-level atoms (a) with a level structure
shown in (b).

levels b, and b2. The interaction of the atoms with the
two fields can then be described by a set of Heisenberg-
Langevin equations [4].

For the case of a single atom characterized by the
atomic operators

oo=fb& &&bz/,

o, =[b, &&b, [, o,=[b, &(a/,
o.„=[bz &(bz/, oz= /bz &&a/,

and two field modes described by the annihilation and
creation operators a„,a„we find, in a rotating frame,

o.= —r'o. —ig, 6(t —t, )(a', o, —H. a. )

The generalization to many-atom variables and to propa-
gating, i.e., multimode, fields will be done later. The in-
jection into the cavity is modeled by a turn-on of the
atom-field coupling at time t and the finite interaction
time is taken into account by an eff'ective decay out of the
system with rate y [9]. The g's are the coupling strength
of the corresponding transitions, which are given by
the dipole moments p, z, the transition frequencies
co,&, the beam cross section A and interaction length I.,

1/2

g„=(/@co~/2eoAL p„/fi. The dipole moments are as-
sumed to be real, such that g„=g„*.We have assumed in

Eq. (2) two-photon resonance conditions, that is,
m, ~

—co,~ =vi —v2. A=~,~
—v, =co,~

—v2 is the de-

tuning of the fields from the one-photon resonance and
I =y i+ y2+2y, I"=y i+y2+ y, and I 0=y. The noise
operators in Eqs. (2) have zero mean value and are 5
correlated. The corresponding di6'usion coe%cients can
be obtained from the generalized Auctuation-dissipation
theorem [4,9].

In order to describe the propagation of the two fields
we follow an approach used in Ref. [10] and introduce
space- and time-dependent, collective atomic variables.
For this the interaction volume is subdivided in 2M+1
cells of length L/(2M+ 1), L being the total interaction
length, with center points z&

= lL /(2M+ 1),
/= —M, . . . , M. We define

o„(z,t)= —lim (2M+1)+6(t —t )oj', (3)=1
J Z ~Z

1

where ¹isthe mean number of atoms in the sample. The
superscripts j and i in Eq. (3) characterize the injection
time and position of the particular atom. As shown in
Appendix A, the interaction of the atomic beam with two
propagating fields can be described by replacing the
single-mode operators a, (t) and az(t) in Eqs. (2) by
space- and time-dependent operators a &(z, t) and az(z, t),
which obey the Maxwell equations in slowly varying am-
plitude and phase approximation

ig z 6( t —tj )(a z o.
z
—H. a—. ) +F, , (2a)

c'r& = —yo& +y, o, i+g&6(t t )(a&cr, —H—.a. )+F&

(2b)

CTb = QC7b +fpCTg

+c a&(z, t)=ig, No &(z, t),
Bt Bz

8 8+c az(z, t ) =igzNcrz(z, t ) .
Bt Bz

(4a)

+igz6(t —t )(a zo z
—H. a. )+Ft,

oo= —I ocro —ig&6(t ti)a&oz—
+ig z6( t t )a z o,+F—

o, = —(ib, + —,'I )o, +ig, 6(t tj )a, (ot, —o,)—
(2c) Due to the presence of the step function in Eq. (3), the

equation of motion for the collective atomic variables ob-
tains an additional term which accounts for the injection
of the atoms

d 1
o (z, t)=—lim (2M+1)

d~ ~' XM
+igz6( t tj )a cr +zF0

o z= (id, + —,'I')o z+igz6—(t t/)az(o &
—o,)—

(2e)
X+5(t t, )o "(t,)—

Zf ~Z
+ ~ ~ ~

+ig )6(t tj )a,cro+F— (2f) Since the injection times are random, this term has a sto-
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chastic nature. We therefore add it to the effective noise
operator, after subtracting its average value

lim (2M+1)(+6tt tJ)—o&'(t)) =ycro.3f ~~ oo J Z ~Z
1

Here o„ is the expectation value of the single-atom
operator at the time of injection. As discussed in Appen-
dix 8, the collective noise operators

F„(z,t)=——li (2M+1) g B(t t—, )FJ'(t)J P

+—lim (2M+1)1

Zl ~Z

again have zero mean value and, if we assume that each
atom is coupled to an individual reservoir, are 5 correlat-
ed in time and space. If we furthermore assume a Pois-
sonian injection statistics we find

(F„(z,t)F„(z',t')) = lim (2M+1)5(z —z')5(t —t')L g B(t t )D„—
1

Z +Z

+ L5(z —z')5(t —t')(o„(t, )o.(t, ) ),
N

igz[a
—z~(z, t )o 2

—H. a. ]+F,(z, t ),
(Tb (z, t ) —1'ob garb +1')(T~

(9a)

+ig i [a ~i (z, t )o, —H. a. ]+Fb (z, t ), (9b)

o'b, (z t ) =1'(Tb, )'(Tb, +'Yz(T

+ig2 [a z (z, t )(T2 —H. a. ]+Fb (z, t ), (9c)

o0(z, t )=yo 0 I 0tr0 —ig(a, (—z, t)(T2p

+ig2az(z, t )o, +F (z, t ),
0

a, (z, t) = —(id+ —,'I )o.i+igia, (z, t)(ob cr, )—
+ig, a2(z, t)a0+F (z, t),

~,(z, t)= (it+ —,'r)~, +-ig, a, (z, t)(ab —~, )

+ig, a, (z, t kr0+F (z, t ) .

(9d)

(9e)

An exact analytic solution of the Heisenberg-Langevin
equations (4) and (9) that would give all information
about the system is not possible. The properties of the
system can, however, be derived to a very good approxi-
mation from c-number Langevin equations which origi-
nate from the Liouville equation for the system density
operator p. p can be expressed in terms of a generalized
quasidistribution which obeys a Fokker-Planck equation.
The Fokker-Planck equation, on the other hand, is
equivalent to a set of stochastic c-number equations
which are much easier to handle than the Heisenberg-
Langevin equations given above [4]. Correlation func-
tions of ordered operator products can then be obtained
from the correlation functions of the corresponding c-

where the D„are the single-atom diffusion coefficients.
Note that the last term contains an operator product
evaluated at the time of injection. The equations of
motion for the collective atomic operators are then

o, (z, t ) = . I"tr—, ig ( [a—, (z, t )o, —H. a. ]

I

number variables. The operator ordering is thereby
defined by the relation between the quasidistribution and
the density operator. Here we choose the ordering

B. Dynamics of mean amplitudes: Pulse matching

In this section we study the evolution of the mean-field
amplitudes in lowest-order perturbation theory, in which
case the equations of motion are linear. Under condi-
tions of a stationary atomic beam, the nonvanishing
zeroth-order solutions of the averaged equations (9) read

(o'.")=0,
( (0) ) 0

1 1

( ~(0) ) — 0
2 2'

(~(0))—~0—
~ ~

i 0ee

(1 la)

(1 lb)

(11c)

(1 ld)

The variables to be evaluated in first order are functionals
of the field amplitudes and hence are time dependent. A
Fourier transformation of Eqs. (9e) and (9f) yields, in first

02~ Opo& Oy Ob apo~ O2&~ &2-
2

The equations of motion of the c-number variables are
formally identical to the Heisenberg-Langevin equations
(4) and (9). We will use in the following the same symbols
for the c-number counterparts of the atomic operators.
The c-number field variables will be denoted by a& and
a2. The corresponding c-number Langevin noise terms
F„(z,t ) are 5 correlated as the operators, however, with
different diffusion coefficients 2)„(z,t )

(F„(z,t)F (z', t'))=5(z z')5(t t') 2),—„(z,t), —(10—)
I,

which can be obtained from the quantum diffusion
coefficients as shown in Appendix B.

We will now discuss the semiclassical evolution of the
system assuming weak fields, so that perturbation with
respect to the atom-field coupling strength g, z is possi-
ble.
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order of the atom-field coupling,

lg1&b

I /2+i co+6,

lg 2 670

r/2+ i(~+a)
lg2CT b

I /2+ t co+ b,

0e

r/2+ i(~+a)

(12a)

(12b)

Z
Xexp —( 1+g )P(co )z i c—o

c
(16a)

(, )& —
& (, )&'

=[&a,(O, ~) &
—&a (0,~) &e'o]

tween the two lower levels. It is quite instructive to ex-
press the results in terms of the normal modes

, ( , ) ) + & ,( , ) &
'

= [&a, (O, co) ) + & a2(O, co) )e' ]

Fourier transforming the field equations of motion and
plugging expressions (12a) and (12b) into them yields

ZXexp —( 1 —g )P(co )z i to-
e

(16b)

ico+c & a, (z, co) ) =-d
dZ

g)Ão t,

I /2+i(co+6, )

giga&oo0

I /2+i(co+5)
(13a)

Equations (16) show that the "sum" mode (16a) is
damped out very rapidly, whereas the "difference" mode
(16b) can propagate essentially undamped if the coher-
ence degree g is close to unity. This means the interac-
tion leads to pulse matching after a sufficiently long prop-
agation distance and the field amplitudes at the output
obey the relation

ico+c &a,(z, co) ) = — '
&a,(z, ~) )

gig2&oo
r/2+ i(~+a)

(13b)

The solutions of these equations can be found very easily.
They read

&a, (z, ~0) & =-,'[&a,(0,~) &+e' &a,(0,~) &]

Z
X exp —(1+g)P(co)z ico-

c

,(L, )&= —&,(I-, )&
' (17)

As can be seen from Eqs. (15), the pulse matching is per-
fect for Fourier frequencies small compared to I /2, that
is, for not too fast varying pulse amplitudes. For
co ))I /4 we have P(co)~0 and there is no matching of
Fourier components.

If the relevant range of Fourier frequencies is such that
P(co) =P(0), i.e., in the adiabatic limit, Eqs. (14) can im-
mediately be transformed back into the time domain

&a, (z, t)) =
—,'[&a, (O, t r))+e' —&a (O, t —r))]
Xexp[ —(1+q)P(0)z j

+-,'[&a,(0, t —r ))—e' &a2(0, t —r ))]
+-,'[&a,(0,~) &

—e' &a,(O, co) ) ]
r

Z
X exp —(1—g)P(c0)z ito-

e
(14a)

X exp I
—( 1 —g )P(0)z }, (1

& a,(,t ) ) =
—,'[ & a,(O, t —) )+e '

& a, (O, t — ) ) ]

XexpI —(1+g)P(0)z J

+—'[&a (O, t —r') &
—e ' &a, (O, t —r')) ]

Z
X exp —(1+g)P(co)z ico—

C

X exp I
—(1 —g)P(0)z ],

where ~ and ~' are the retardation times

(18b)

Z
X exp . —(1—q)P(co)z ico—

C

where we have assumed for simplicity

(14b)

z 2(1+ re)Re[P(0) ]z
c r
z 2(1 —q)Re[P(0) ]z
C r

g ]NO'b

I /2+i (co+6, )

g~gz~lo01
I /2+i(co+6, )

gzNo t,

I /2+i(co+6, )
(15a)

(15b)

Here g=lo0l/+o& o& is the degree of coherence be-

One can see that the normal modes propagate with
different group velocities. The strongly damped mode is
considerably slowed down, whereas the weakly damped
mode propagates in the case of ideal coherence with
the speed of light c. Figure 2 shows the propagation
of two resonant pulses with envelopes
a, (O, t)=exp[ —(I t/10 —0.3) [ and a2(O, t)
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FICx. 2. Evolution of coherent amplitudes of two pulses with envelopes a, (O, t)=expI —(I t/10 —0.3) J (curve a) and
a2(O, t)=V'0. 5expI —0.005I ~t~) (curve b). The initial pulse envelopes are shown in (a). The pulse envelopes for diff'erent propaga-
tion length through the medium are shown in (1) for y&

=y2= y = I /4 and g =0.9, and for q =0.5 in {c).

=+0.5 exp( —0.0051 t I in the adiabatic limit for two
different degrees of coherence and 8=m. For smaller de-
grees of coherence the field amplitudes converge slower
and are much stronger absorbed.

Since the originally weak pulse (b) gets amplified for a
not too large interaction length at the expense of the
stronger pulse, one might think of using the present

scheme as an amplifier with one pulse replaced for in-
stance by a strong cw field. One should note, however,
that the signal modulation depth is not amplified by this
process, but rather a background is added depending on
the shape of the "pump" field. This can be seen from
Eqs. (18). Let a, be a strong pump field and az a weak
signal field. One finds after a sufficiently long propaga-
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tion distance for 8= iT:

(a,(t ) ),„,--,' (a,(t —~') );„e

+-'(a, (t —~')) e "' &)t'. and

a a+ P(, )= N o(6 —P), (
Bt Bz la&

Since g ~ 1 the input signal is diminished by at least a fac-
tor —, and amplification is due to the addition of the pump
field amplitude. One can see that the system can be used
for an energy transfer from one field to the other, which,
as shown by Agarwal, Scully, and Walther [11] can be
noiseless, but not as an amplifier.

It is interesting to note, furthermore, that in contrast
to the case of electromagnetically induced transparency
(EIT), no front-end losses [1,12] of the pulses occur in the
present scheme and in principle very weak fields can be
used. This is because the atoms are prepared here in a
trapping state, whereas in EIT the fields have to dump
the atoms into a decoupled coherent superposition. The
necessary energy for this has to be provided by the pulses,
which leads to absorption at the front edges.

e, =g, N (o —o, )cos(e, —
i)Ii, )

(0) (0)

AT)

+g N la 0lcos(8, —
$2

—80)+Im
CT i

e,=g,N (a, —a. )cos(e, —y, )
2 (0) (0)

+g, N
l
o 0l cos(ez —/ )+80)+Im

(T2

F

F

(22a)

(22b)

C. Phase correlation of quasimonochromatic fields

60= —y sin(60 —8)+ Im
0'p

(22c)

We now study the evolution of the phase fluctuations
of two quasimonochromatic, resonant (b, =0) laser beams
propagating through the medium. In particular we cal-
culate the spectrum of the phase-difference fluctuations
as a function of the propagation distance. We again con-
centrate on a lowest-order perturbation analysis and as-
sume small fluctuations of the dynamical variables
around their semiclassical steady-state values.

We introduce an intensity-phase representation accord-
ing to

a),2= la), zle' "
o0= lcr0le' ' .

(20a)

(20b)

(20c)

With these definitions we find, from Eqs. (4) and (9), the
phase equations

r

a+c $,(z, t)=g)N,
l

cos(6, —it, i), (21a)

We now consider small fluctuations of the dynamical
variables around their semiclassical steady-state values.
The semiclassical steady-state values are obtained by
neglecting the noise terms in Eqs. (22) and by setting all
time derivatives equal to zero. We assume the following
relation between the semiclassical steady-state field am-
plitudes:

a, (z) = —a,(z)e' (23)

Note that the interaction process generates fields which
will anyway obey this relation after a sufficiently large in-
teraction distance. Under this condition we find the
semiclassical stationary phase values

e,=e, e,—y, = ——+e, e,—y, = ———e,
(24)

7T 7T

1 j. 2~ 2 2

We now linearize Eqs. (21) and (22) around these
steady-state values, Fourier transform the results, and
plug the expressions for the atomic phases back into the
field equations. We arrive at

ico+c 5P, =—
dz

b l(T) l gig2Nl(T0l a2

I /2+iso ' ' la, l

' I /2+iso a, l

g) g~N lir01+ Irn
(I /2+iso)(y+ico) lail

F
Op

1
Im

I /2+i~
F

(25a)

d
i co+ c 5$2=-

dz

lail g ig2N I a01

I/2+' ~' g'
l l l l

@' I/2+
g(giNlaol

Im
(I /2+tto)(y+ioi) la, l

Fop
Op

ImI'/2+i~
Fo.2

(25b)
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2—c 5$(z, co)
I /4+co

s6s —=5~ —5/2 obeys the equationse difFerence between the two modesTh fluctuation of the phase difference e we

I /4+.„P 1+,c 5$(z, co) = — ice 1 —(1+g)cP
dz

cqpr
(I /2+ice)(y+ico) Op

cP(1—g)
I /2+iso CT2

(26)

(co=0). Equation (26) can eas' ysil be solved
an the s ectrum of phase-difFerenceand we can calculate the spectrum o
fluctuations, which we define as

i ioTS z, co) —=co dr(5$(z, t) 5$( z, t r—e

I den'(5$(z, ei}5$(z,m') ) .
27T

(27)

(28)

where

co (g —1)+pl /2
r'/4+~' (29)

e substituted the coupling strength g&In Eq. (28) we have su sti u e
and the wave-in terms of the radiative decay rate y& an e

or co is introduced in this definition of the spec-
ld ith f 1 d'ff '

hirum, soso that for a single fie wi
'd h Since as mentioned in Sec.

~ ~

ual to the linewiutli. ince,S is equa
f tions correspond to nor-II A, c-num ber correlation unc ion

f operators, vacuumorrelation functions o o
S Th f S=0contributions are not included in

corresponds to the vacuum limit. We find

—2a(co)zS (z, co) =S&(O,co)e

3~1 yl pci)

A r " (y'+ ')(I'+4 ')

[2(y + )+3I ]
(co (g —I)+i)I /2]

X[1—e ' '],

l

length A, , [9]:

3 k2Pi i
CP)

2AE'p A L 4' e (3O)

rom E . (29) that for large coherence de-One can see from q.
fluctuations above=1}, initial phase-difference uc ua i

"-o - '
b b d due to the locking to the

'ected coherence. It is interesting to note
ot-noise limit are absor e ue

i h-fre uency phase fluctuations. isp o o g-
ood in the following way: e

'
can be understoo

di ole, whose phase is
h fild D toth fi 't

s an oscillating atomic ipo e, w
with the phase of t e e

t e atom, there is, oweve,""'
h hFor Fourier frequencies larger t antardation. or

I th phase fluctuationse of the atom, e p

that phase fluctuations s are quenc e
ide this fre-/ 1 — )]I /2, but are amplified outside t is re-

3 h the exponential damping
ac or

' I and Pz for 80% coher-
ion. Figure 3 s ows e

factor x(co) as function of co an z
ence.

term in Eq. acc. (28) ounts for atomic noiseThe secon
n s ontaneous reemis-

'
ution due to absorption an spon a

h 'f the degree of coherence g
t noise also vanishes as

f hotons. It vanis es i e e
approaches unity. . Since t e atomic no'

th long-timeoes to zero, ethe Fourier frequency g
ot affectedof the difference phase is no adiffusion coefficient o e i

F' 4 in unitsby it. The atomic noise term
'

pis 1otted in ig.
of ( 1 ri)( 3i fy iy—/nAI ). .

exp (—2r. (u~) z} atolnic noise

0.6
0.

i~ 2-2

factor of initial phase-di6'erenceFICx. 3. Exponential decay factor o
2=I /4.fluctuations for q =0.8 and y =y l

=y2 =

/p 2-1

ofnoise contribution in units
(1—q)(3A, lyy l/m A 7') for the same parameters as in ig.
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III. CORRELATIONS
DUE TO ELECTROMAGNETICALLY INDUCED

TRANSPARENCY

A. Stochastic differential equations
and semiclassical dynamics in the adiabatic limit

2 '&z2i y0y 2Q201e
O2-

D

2(yiQ~+y~Qi)e ' ' QiQ2
O0=

D

(31e)

(31f)

We here analyze the propagation of two strong fields
through a vapor cell with three-level A-type atoms such
as those shown in Fig. 1, however, in a closed system, i.e.,
without the injection and decay channels. Since col-
lisions cannot be neglected in a cell as opposed to the sit-
uation in. a beam, we take into account a collisional de-
phasing of the lower level coherence with a rate y0. We
assume that this contribution to the decay rate of the
lower-level coherence is the dominant one and laser
linewidth contributions [13]are small compared to it. In
this scheme there is no externally generated coherence.
However, the two strong fields will dump the atomic pop-
ulation into a coherent superposition of the two lower
levels, which is essentially hidden from the fields. This
phenomenon is well known as coherent population trap-
ping [6]. Since the trapping state involves the relative
phase and amplitudes of the two fields, small perturba-
tions with different relative phases and amplitudes do
couple to the trapped state and are absorbed if they hap-
pen on a time scale short compared to the atomic
response time. Slow fluctuations on this time scale will
drive the atom adiabatically into a new coherent superpo-
sition and the atom will remain in a dark state.

The interaction of the two fields with the atomic sys-
tern is again described with c-number Langevin equations
for space- and time-dependent variables, similar to those
of Sec. II A. The equations of motion for the atomic and
field variables are formally identical to Eqs. (9) and (4)
with R =y =0 and I 0=y0. The collective atomic opera-
tors are defined as in Eq. (3) without the e functions.
The noise operators are 5 correlated according to Eq.
(10), with di6'usion coefBcients listed in Appendix C.
Since coherent population trapping is a nonperturbative
effect, we cannot apply perturbation theory as in the first
part of the paper. For simplicity we assume, however,
resonance of the carrier frequencies of the bichromatic
field with the corresponding atomic transitions.

In a first step we discuss the semiclassical properties of
the system in the adiabatic limit. For this we neglect the
time derivatives on the left-hand side of Eq. (9) and disre-
gard all noise operators. Solving the set of algebraic
equations yields

D =12yoQiQz+(y2Qi+yiQ2)[yol'+2(Q, +Qz)] . (32)

Plugging the adiabatic values for the coherence cr12 in
the field equations (4), we find

a a+c ai 2(z, t)=-
at a

2g1 2NQ2, 13 0/1, 2
2 2

a, ~(z, t) .

(33)

One can immediately recognize from Eq. (33) that there
is no mutual coupling of the phases of the two fields.
Furthermore, the normalized differences of the intensities
~ai(z)~ /yi —~a2(z)~ /y2 is a constant of motion. This
implies that any initial difference of the phases or normal-
ized amplitudes is unaffected by the interaction process in
the adiabatic limit, which means that there is no match-
ing of Fourier components. One can also see from Eqs.
(33) that, due to the collisional dephasing of the lower-
level coherence, which corresponds to a decay of the pop-
ulation trapped state, the absorption of the two fields is
nonzero. The corresponding intensity absorption rates
are

2 24g 1,2&2, 1XOX 1,Z

D
(34)

Figure 5 shows the dependence of ~=~1=~2 for the sym-
metric situation of equal Rabi frequencies (Q, =Qz ——Q),
decay rates (yi=yz—=y), and coupling strength as a
function of the Rabi frequency Q. One recognizes elec-
tromagnetically induced transparency for Q + yoy [12].

0.8-

0.6-

In Eqs. (31) we have introduced the Rabi frequencies of
the fields according to g„a„(z,t ) =Q„(z, t ) exp ti P„(z,t ) ]
and

CTb
2

4y001Q2
D

4yoQ, Q~+2Q2(Y, Q2+y2Qi)+yoy iI Q2

D

4yoQiQ2+2Qi(y iQ2+ y2Q1)+ yoy2I'Q

D

(31a)

(31b)

(31c)
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2 6 10

0 jppp

2i XOX1&12e
CT1-

D
(31d)

FIG. 5. Absorption rate sc in arbitrary units as a function of
Q /goy. For Q ~yoy one recognizes electromagnetically in-
duced transparency.
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B. Nonadiabatic correlation of phase Nuctuations

In this section we investigate the phase Auctuations of
two quasimonochromatic fields interacting with the
atomic sample. As discussed in the Introduction and
shown in the preceding subsection no correlation effects
arise in the adiabatic limit. We therefore have to take
into account the full dynamics of the atomic evolution.
In order to simplify the analysis, however, we eliminate
the fast decaying variables, which are the upper level
population o.„the sum of the population of the lower
levels o.

&
+o.

b
=1—o.„and the two optical polariza-

tions o.
1 and 0.2. Plugging the solutions of the corre-

sponding algebraic equations into the equations of
motion for the phases $1 2 of the fields and the phase 6p

I

a a = 2 1, 2+c $12——g 2NRe
' e

Bt Bz 1,2

=+ ' '
~op~sin(p, —

p2
—6p)

2g1 2' 02 1

1,2

Fo, ,
+2g21 2' Re

1,2

(35)

of the lower-level coherence o.p, we find, after some alge-
bra,

sin(P, —
P2

—6p)
2Q1Q2 (yi+y2) 24Q, Q2 (Q, —Q2)X

sin(y] —$2
—6p)+

Oo~ 0'p

4SQ', Q,'6Q, Q, F+, cos(p, —p —6 )sin(P, —P —6 )+,sin(P, —P —6 )
op I D'

Op

—2Re e ' —2Rer~,
Q2F

2

I o.
o

Here D'=(yi+y2)l" +6(Q, +Q2), F=(2iQ, e 'F
1

+2iQ2e 'F* +c.c. )+I F„and we have introduced the
2

difFerence of the lower-level populations
X=(ob —ob )/2. In order to make the above given

1 2

equations tractable we apply standard linearization tech-
niques and assume small fluctuations of the variables of
interest around the semiclassical steady-state values
x(z, t)=x(z)+5x(z, t). Higher-order terms in the Auc-
tuations are disregarded and all dynamical variables ap-
pearing in the diffusion coefficients are replaced by their
semiclassical steady-state values. Since we have, in the
steady state,

01 —
42

—6P=~ (37)

we can disregard the fourth term on the right-hand side
of the (linearized) equation (36). A Fourier transforma-
tion turns the linearized Eq. (36) into an algebraic equa-
tion. Extracting 56p(z, co) from this equation and substi-
tuting the result into Eq. (35) yields an ordinary linear

I

2

X
I +co

Sg,g2N(Q, /g, +Q2/g2)
I I c

CO

I +co
(39)

where in the second line we have assumed that yp is small
compared to the radiative decay rates. The effective
noise term F& has the form

stochastic differential equation for the phase-difference
Iluctuation 5$(z, co) =5/, (z, co) —5/2(z, co):

5$(z, co) = ,' [a&(z,—co)—i.K&(z, co—) ]5/(z, co)
d

dZ

+F~(z,co),

with ~& and R& being real and positive. The damping rate
of the phase-difference fluctuations reads

g lg 2N( Q 1 lg 1 +Q2/g 2 )( Y1Q2+ Y2Q1 )
~~(z, co) =

FO(z, co) = Sg,g2(Q, /gi +Qz/gz)(y, Qz+y2Q, ) I +iso
2 Re e ' —2 Re e ' +Im

I ac Ig+6) I~p I~p Op

F(7)
+2N g1 Re e

1

CT2 gP
g2

. "2
(40)

I =y +2(Q, +Q )/I (41)

The damping rate of the phase-difference fluctuations
displays a Lorentzian dip at co=0, which means —in
agreement with the adiabatic result —that the damping
vanishes as co —+0. The width of the Lorentzian dip

I

decreases when the Rabi frequencies of the fields become
smaller. That is, in order to correlate low-frequency
phase Inuctuations, one has to either increase the propa-
gation length or reduce the rabi frequencies of the fields.
On the other hand, as can be seen from Eq. (34) and Fig.
5, the transmittivity of the vapor cell decreases as well.
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The extent to which phase-difference fluctuations can be
suppressed by the interaction process therefore depends
on the ratio of the phase damping length A&

=—1/x& to the
absorption length A= 1/~ (where symmetric conditions
are assumed for simplicity, such that Ic&=ic2=ic). This
ratio is plotted in Fig. 6 as a function of the Fourier fre-
quency co for different values of the Rabi frequency
Q=Q, =Q2. An optimum quenching of phase-difference
fluctuations is achieved if Q is of the order of a few yyp.

We now consider the spectrum of phase-difference fiuc-
tuations S&(z,co), as defined in Eq. (27). From the equa-
tion of motion (38) of the phase-difference fiuctuations 5'

I

we obtain

d
S~(z, co) = ~~(z, co)S~(z, co)

GZ

+ f des'(F~(z, co)5$(z, co') )
2&c

+ f den'( 5$(z, ~)F~(z, ~') ) .
2&c

(42)

Formally integrating Eq. (38) and substituting the result
into the second line of Eq. (42) yields

CO Z
p p ( 1 /2 )( x

&
+i k

&
)( z —z '

)
S&(z,co) = —ic&(z, co)S&(z,cu)+ de' dz'(F&(z, co)F&(z', co') &e

dz 27TC 0

2 +-)( —'

27TC 0
(43)

where we made use of the fact that phase fluctuations at
the input of the cell z=0 are statistically independent
from the noise operators corresponding to some location
inside the medium. Making use of the correlation prop-
erty (10) of the noise operators

(F&(z,co)F&(z', co') ) =2nD&&(z. ,—co)5(z —z') 5(co +co')
I.

we find

G
S&(z,co) = —ic&(z, co)S&(z, co)+ic&(z,co)N&(z, co), (44)

dz &

with

co I
ic&(z, co)N&(z, co) = D&&(z, co) .

c X
Equation (44) can be solved analytically if the propaga-

tion distance is small compared to the absorption length.
In this case the z dependence of ~& and X& can be
neglected and we find the solution

I

S&(z,co)=S&(O,co)e " '
+N&(O, co)[1—e ~ '

] .

(45)
—a.~(z, co)z

Figure '7 shows e
'

for y =y, =@2&)yp and
Q, =Q2=5yyp. Outside a certain frequency region ini-
tial fluctuations above the shot-noise level are damped
out very rapidly.

For the symmetric situation of equal oscillator
strength, decay rates, and Rabi frequencies, the atomic
noise term N&(O, co) takes on the simple form

I fp 2'
N (z, co)= 1+

yC Q2r

g2 2co fp
yp 1+

4m A ' Q2I

where we have substituted in the second equation the
coupling strength in terms of the radiative decay rate y,
the wavelength A, , and the beam cross section A. Since A.

is small compared to the beam diameter and yp cari be of

0.8-

0.6-

0.

0.2-

-20

FICr. 6. Ratio of fluctuation damping length A& to absorption
length A for a symmetric situation. The parameters are
0 /yy0=0. 5 (curve a ), 1 (curve b ), 2 (curve c ), 5 (curve d ), and
10 (curve e ).

0.5-

FIG. 7. Damping of initial above-shot-noise fluctuations for
symmetric situation and Q =5yyo as a function of propagation
distance z and Fourier frequency co.
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the order of kilohertz, the atomic noise contribution can
be neglected for Fourier frequencies co «y. For exam-
ple, taking 3 -0.1 cm, yo-1 kHz, and A, -0.5 pm, it is
of order 10 Hz.

In summary, we have seen that in the absence of any
externally generated coherence, bichromatic fields in-
teracting with three-level A-type atoms can become
correlated. At first glance this may be counterintuitive,
since there is no phase to which the beat note of the two
fields could lock. In fact, we have shown that in the adia-
batic regime, where the atom follows any change of the
fields instantaneously, no correlation occurs. Only when
the finite memory of the atomic response is taken into ac-
count may correlation phenomena be observed.
Dressed-state optical pumping established a ground-state
coherence with a phase equal to that of the beat note of
the fields. Due to the finite response time of the atom,
the fields always experience an atom being in a trapped
state, which involves the difference phase and difference
amplitude of the fields at a slightly earlier time. There-
fore fast fluctuations of the difference phase and
difference amplitude couple to the trapped state and are
absorbed.

IV. SUMMARY

In the present paper we have studied the interaction of
two fields with three-level A-type atoms, in which lower-
level coherence is generated either by external means or
by coherent population trapping. Under conditions of
two-photon resonance with the A system, a certain super-
position of the fields, called an antisymmetric normal
mode, does not couple to the coherent superposition
state. Since the orthogonal superposition does couple,
any components in this symmetric normal mode will be
absorbed by the atoms. The interaction thus generates
fields with a certain correlation between the coherent am-
plitudes.

In the case of externally generated coherence, such as,
for example, in a beam where the atoms are injected in a
coherent superposition, the antisymmetric normal mode
is determined by the phase of the initial coherence. The
beat note of the bichromatic field is locked to this phase,
giving rise to nearly perfect pulse matching without
front-end losses. Associated with the matching of
Fourier components is a reduction of noise contributions
above the shot-noise level in the beat signal of the two
fields. We have shown that, due to this locking mecha-
nism, the diffusion of the phase difference of two indepen-
dent input lasers can be completely suppressed for fre-
quencies smaller than the natural linewidth of the transi-
tion. Atomic noise contributions that result from a resid-
ual absorption and reemission of photons are small and
do not affect the long-time diffusion coeKcient. This
scheme represents therefore a powerful tool for strong
noise reduction of the difference phase of two input lasers
and, as the CEL may have interesting applications in
high-precision measurements, of phase differences. As
opposed to the CEI., it is passive, i.e., it does not amplify
the input fields. It is, however, interesting to note that
the locking mechanism persists even if a few percent of

the atoms are injected in the upper level leading to nonin-
version amplification of the fields [14]. The precision of
the locking of course depends on the ability to prepare
the atoms in a coherent superposition with a well-defined
phase, since any Quctutions of the latter will be imposed
on the fields.

Also, in the absence of any externally generated coher-
ence, bichromatic fields interacting with three-level A-
type atoms can become correlated due to the finite
response time of the atom. The most interesting conse-
quence of this correlation phenomenon is the reduction of
the short-time diffusion of the difference phase between
the fields. We have shown that the characteristic time
over which diffusion is suppressed is given by the width
of exp [

—a &(0, co )z ] . Since the medium has a finite
transmittivity, the propagation distance z has to be small-
er than the damping length A. In this case the width of
the exponential is of the order of I s =yo+2Q /y. If yo
is of the order of a few kilohertz, a suppression of phase
diffusion is possible for fractions of a millisecond. Noise
contributions from the absorption and reemission of pho-
tons are small and may be disregarded.
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APPENDIX A: PRQPAGATING FIELDS

To describe the noise properties of a field propagating
through a sample of atoms we apply a technique de-
scribed in Ref. [10]. To illustrate the method we consider
here the case of a single, quasimonochromatic field with
mean frequency v and a corresponding wave number k.
Since a description of a propagating field requires a mul-
timode approach, we include a finite number of modes
with creation and annihilation operators c„and c„. The
corresponding wave numbers are

k„=k+, n= —M, . . . , M .

The interaction operator of the probe field with the atoms
reads

H'"'= fig g B(t —t )(c„e " '—o J'e '+H. c.), (A2)

where we have separated the fast oscillating spatial phase
from the atomic polarization. Note that
g, =Xi(2M+ 1) is the number of atoms in one cell.

It is convenient to introduce the field variables

1 2minl

(2M+ 1)1/2 ~ 2M+ 1

(A3)

which fulfill Bose-commutation relations. In terms of
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these field variables the deterministic part of the total
Hamiltonian can be written as

With the definition for the collective atomic variables
given in Eq. (3), this expression goes over into Eqs. (4).

H =H,„+g A'v„c„c„+H'"'
n

H,„—+tv g bt bI +A' g v«bI b,
1 1+1'

—eg y 6(t —t, ) [(2M+1)'"b,'ai'+H. c.],
j,k

(A4)

APPENDIX B: DIFFUSION COEFFICIENTS
FOR INJECTKD COHERENCE

The noise operators for the single-atom variables are 5
correlated in time

where v is the carrier frequency of the field and
r

(FJ'(t)F,''(t')&=D„,5,, 5«5(t t') .— (Bl)

2mnc 2m.in (l —i')

I (2M+1)L 2M+1

From Eq. (A4) we find the equation of motion

(A5)
Since the atoms are coupled to individual reservoirs, only
correlations between noise operators corresponding to
the same atom are nonzero. The Heisenberg-Langevin
equations (2) have the structure

b, = —ig „b, +ig g (2M+1)' 6(t t )
—', (A6)

where we have introduced slowly varying amplitudes.
We proceed by applying a continuous approximation in
the limit M —+Oo. In this limit we have the following
correspondences:

x(t)=A (t)+F„(t), (B2)

where A is the deterministic part of the equation and I'
is the quantum noise operator. The associated diffusion
coe%cients can be calculated using the generalized
dissipation-fiuctuation theorem [4,9]

lI.
2m + I

(2M+ 1)'~ bi ~a (z, t ),
ig —v«b&. (2M+1)' ~—c a(z, t) .

I'

(A7)

D„,= —(xA, &
—&A„y&+ &xy& .

We find the following nonvanishing terms:

D t =y(ob, &+y2(o, &, D t =y(o, &,
0 0 1 1

(83)

Thus the equation of motion for the space- and time-
dependent dimensionless field amplitude reads D t =y&o. &, D t =y&o, &, D =y(o', & .

2 2 0 1

(B4)

+c a(z, t )
Bt Bz

=ig lim (2M+1) g 6(t t~)o~'—
M~ oo

J zl z

We now derive the correlation function of the collec-
tive noise operator F„(z,t) defined in Eq. (7). Since the
correlation between an atomic noise operator at any time
t ) t and an atomic operator at the injection time t van-
ishes we have

(F„(z,t)F (z', t') &
= lim (2M+1) g 6(t —tj )6(t' tq')(FJ (t )Fz —(t') &

'I SJ2J

+ lim (2M+1) +5(t —tj )5(t' tj')(o J„'(t)o~~'(t') &
— yo o—

~ .
M~ oo 6 SJ2J

(B5)

Here ( &, denotes an average with respect to the injection statistics. Since operators corresponding to different atoms
are uncorrelated at the time of injection, we can rewrite Eq. (B5) in the form

(F„(z,t)F (z', t )) = )(m (2M+'1) 6„6(t—t )z(Q B(t —t )).2)'.= I

N M~~
J+, lim (2M+1)' g 5(t —t, )5(t' —t, , ) —y' o', o,'&~M

J J S

+, lim (2M+1)'5„. g 5(t t, )5(t' t, ) (o„(—t, )o, (t, )
—
& .

J
(B6)

For a Poissonian injection statistics the second term vanishes and we have [15]

+ 5(t t )5(t' t ) = —y5(t t'—) . —
j 2m+ I
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Noting furthermore
=5(z z—')L, we find

(F.(z, t )E,(z', t') )
L=5(z —z')5(t —t')—
N

that limM „(2M+1)5(t (trb )+y2&tr. &+(tgi&aitri &+c c )+ytrb,

n = —2ig, &a o, &,

=y(o. ),
= —2ig, (a,o.,),

X —lim (2M+1) pe(t t —)D
1

J +Z

=y(a. ),
F2 cT2

igl (alamo)

(812)

+y(cr„(t )o»(tj)) (88)

&xy &
= &xy & .

dt dt
(89)

Using again the generalized dissipation-fluctuation
theorem, Eq. (83) and its classical counterpart, we find,
from Eq. (89),

D +(xA )=(A y)=2) +(xA )+(A y), (810)

where A„and 2)„» are the drift terms and the difFusion
coefficients of the c-number Langevin equations. Thus
we obtain

Z„,=D.,+(x~, )+& ~„y &
—&x~, &

—
& ~„y & . (811)

The right-hand side of Eq. (811) can be expressed in
terms of e-number variables by normal ordering of the
operator products. Hence we finally And

The c-number diffusion coefficients can be obtained
from the quantum difFusion coefFtcients (84) by trans-
forming the expressions in the Quctuation-dissipation
theorem (83) into normally ordered operator products. If
the operator product xy is normally ordered, its expecta-
tion value is equal to the expectation value of the corre-
sponding c-number product. Hence we have

=y&a2&,
0

= y( tr, ) +ig z( a2tr o) +ig i(( aio b ) —(a,o, ) ),
g, (a,o i&

—ig, (aioz) .+o'io'i

APPENDIX C: DIFFUSION COEFFICIENTS FOR EIT

&...=yo&o. & (Cl)

ig, &a—,o, &,

&.,.=yo&a2&

2) =yo& $o&+lg & 2oao2&+ig$(& oat, ) —(aicrb ) ),
g2(a2ol ) igi (alo2)

The c-number diffusion coefficients of the closed system
including the phase decay of the lower-level coherence
can be obtained in a similar way as outlined in Appendix
B. %'e find

=2yo(ob )+y2(o, )+(igi(aitri )+c c ). .

2)~ ~
— 2lg i ( a ter i )

2)...=yo&
1 1

2igz(—aztr2),
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