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The q-analog coherent states ~z )» are used to identify some of the canonical physical properties of the
single-mode q-analog quantized radiation field in the ~z)» "classical limit" where ~z~ is large. In this
quantum-optics-like limit, the fractional uncertainties of most physical quantities (momentum, position,
amplitude, phase) which characterize the quantum field are shown to be O(1), and only vanish as
O(1/~z~ ) when q = 1. In contrast to this more-quantum-like behavior for q%1, the fractional uncertain-
ties do still approach zero for the usual number operator, N, and the N-Hamiltonian Hz ——%co(N+ 2 )

which describes a free q-boson gas. An empirical signature for q-boson counting statistics is that
(bN) /(N) ~0 as ~z~ —+ ~. Properties of the q-analog generalizations of the phase operators of
Susskind and Glogower (SG) and of the phase operator P» of Pegg and Barnett are investigated. In con-
trast to the manifest q deformed properties of SG operators for moderate ~z~, the "Hermitian" phase
operator P» still exhibits almost normal classical behavior in the ~z )» basis. In particular, the conven-
tional (approximate) number-phase uncertainty relation b,Nb P ) 1/2 and approximate commutation re-q—
lation [N, P»] =i are found to follow for the single-mode q-analog quantized field. So N and P» are al
most canonically conjugate operators in the ~z)» classical limit. The ~z)» coherent states minimize this
uncertainty relation for moderate ~z~ . q-analog generalizations of the P, g, and II/phase-space represen-
tations are treated in the Appendix.

PACS number(s): 42.50.—p, 03.65.—w, 12.20.—m

I. INTRODUCTION AND MOTIVATION The q-analog CS's satisfy

We assume that if q oscillators [1,2] exist in nature
which realize the remarkable symmetries of the new
quantum algebras, then there will also exist a q-analog
quantum field which has such q oscillators as its normal
modes [3]. In the Heisenberg representation, we consider
[4,5] a specific mode of the generic q-analog radiation
field having a specific polarization e, where for q real,
0&q &1,

+1/2 $g + W/2

with [X,a ]=a, [N, a]= —a, and [a,a]=0. As q~l,
these reduce to the usual boson commutation relations.
We suppress both the subscript k and the polarization
vectors e for the q-analog electric and magnetic fields,
etc.

In order to recognize the presence of such an underly-
ing q-boson quantum field, we need to know its canonical
physical properties. In particular, what are its number
and phase signatures? Since the usual quasiclassical
coherent states (CS's) approximately characterize many
types of cooperative behavior in the q=1 case, it is
reasonable to use the q-analog coherent states ~z )» to in-
vestigate and identify the experimental signatures of a
generic q-analog quantized field for cooperative phenom-
ena.
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where z is a complex number. Up to a phase choice, they
are

(1.3)

e (z)=
o [n]! (1.4)

where [n]!=[n][n —1] . [1],[0]!=1. Note that the
"bracket no." is defined by (s =lnq )
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q

—
q

sinh(sx /2 )

sinh(s /2)

(1.5a)

(1.5b)

[x] is called the q deformation of x. It is invariant under
q+-+I/q, so we can often consider 0 (q ( 1 without loss of
generality.

In the
~
n )» occupation number basis, ( m

~
n ) =5

and

a n ) =i/[n+1]~n+ I), a ~n ) =&[n]!n—1), (1.6)

with q-boson vacuum ~0)» such that a ~0) =0. We will
often suppress the q subscript on the number basis states,
etc. Notice also that besides the orthodox number opera-
tor

where N(z)=e (~z~ )
' . Here e (z) is the q-

exponential function defined by the power series
oo n
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N~n), =n(n),
there are two q-deformed numberlike operators [N] and
[N+1] with

a~ a(n ) =[N](n ) =[n](n )

aa tn )» =[N+1][n ) =[n+1](!n) (1.8b)

(AN)lim
~ )

~O . (1.9)

The normalization [see Eq. (1.3)] and resolution of uni-

ty for the q-analog CS's involve the q-exponential func-
tion e (z ), Eq. (1.4). Since

~
e (z)

~

& e»( ~

z
~ ) & exp( ~z

~ ), the
series representation for e (z) converges uniformly and
absolutely for all finite z independent of the value of q.
For 0&q & 1, e»(z) is an order zero entire function [6].
For x)0, e»(x) is positive, but for x &0 and
q & (q i =0.14) there is a universal behavior independent
of the value of q, consisting of an infinite number of in-
creasing amplitude oscillations of decreasing frequency as
x~( —00). For q small and/or n large, the asymptotic
formula for the infinite number of real zeros of e (x) is
P, '„=—q' " "'/(1 —q), n =1,2, . . .. As q increases
above the first collision point at q& =0.14, these zeros
collide in pairs and then move off the negative real axis
into the complex z plane. They move off as (and remain)
a complex conjugate pair. Thus, e»(x) ~exp(x) as q ~1.

It is not yet known whether nature makes use of q bo-
sons as some type of nonlinear quasiparticle excitation of
the ordinary electromagnetic field (or other known field)
or as the quanta for a more novel type of cooperative
phenomena. Possibly the physical occurrence of q bosons
requires a background lattice, as in the case of phonons,
or requires some other type of material medium to break
the Lorentz invariance.

In this paper we use the q-analog CS's to investigate
the ~z )» classical limit, where the modulus of z is large,
for various quantities characterizing the single-mode q-
analog quantized radiation field.

In Sec. II, we show analytically that the fractional un-
certainties of most physical quantities (momentum, posi-
tion, amplitude, phase) are of order 1 and only vanish as
O(1/~z

~ ) when q = l. In this respect, for q&1 the ~z )»
classical limit exhibits a more-quantum-like behavior
than occurs in the q =1 case. The fractional uncertainty
still approaches zero, however, for both the usual X
operator and for the N-Hamiltonian Hz =%co(N+ —,

' )—
which describes a free q-boson gas. At the end of Sec. II,
it is emphasized that the X-Hamiltonian 0& does possess
conventional physical properties but that the quadratic I',
Q Hamiltonian H~ &

———,
' (P +Q ) probably does not

permit a consistent physical interpretation [3] based on a
smooth limit to a conventional free quantized Geld.

In Sec. III, we review the explicit reasoning [7] which
shows that the usual Bose-Einstein energy distribution
holds for a free q-boson gas. We analyze the q-boson
number distribution P„(z) for ~z) CS s, which differs
distinctively from a Poisson distribution. Specifically, for
q&1 there is the important signature for q-boson count-
ing statistics that

(g(x, t) ) =Qp (x, t)exp{i/(x, t)], (1.10)

with only a q deformation of the amplitude, Qp (x, t ),
and no q deformation of the phase P(x, t). So in spon-
taneous symmetry breaking, by Eq. (1.10) the q deforma-
tion would only directly affect the Higgs modes and not
the Goldstone modes.

Also studied are the cos(P), sin(P), and N uncertainty
relations. Unlike the usual q=1 classical behavior, for
q&1 we find for moderate ~z~ ( —10& ~z~ & few 100)
that the SG phase operators for describing the q-analog
radiation field remain correlated, and therefore nonclassi-
cal. This result prompts the following question: What
mechanism causes the SG phase operators to be q de-
formed and to behave nonclassically in the ~z )» classical
limit when q&1, but to behave classically when q =1?
While additional work is required to fully answer this im-
portant question, note that the q-deformed commutation
relations also give a finite b,N and a nonzero b,P for the
PB phase width.

For q% 1, the q generalization of the SG phase opera-
tors continues to assign a nonrandom phase behavior to
the q-analog vacuum state ~0) . This property of the
sin(P) and cos(P) operators in the q = 1 case has been cri-
ticized in the literature [9]. Note, however, that now
when 0 & q & 1, the vacuum component of the q-analog
CS's, ~z)», has a larger relative amplitude ao/a„ for
n ) 1 in the expansion ~z )» =pa„~!n )» than in the more
familiar q = 1 case. In Eq. (1.3) for 0 & q & 1, the bracket
factorial [n]! increases more rapidly [11] with n than
does the usual n! for q =1. In addition, from the statisti-
cal viewpoint, the q-boson number distribution P»(z) for
the

~

z )» coherent states is non-Poisson for q W 1. Thus
for q&1 the intrinsic coherence and interference in the
quantum field in the ~z ) basis are not that of statistically
independent sources; in particular the contribution of the
vacuum state is more significant.

In contrast, in Sec. VI it is shown that the q-analog PB
Hermitian phase operator P, does exhibit almost normal
classical behavior in the ~z ) basis. The P phase opera-
tor gives a random phase to the q-analog vacuum state
~0)». The q-boson PB phase distribution P»(8 ) for ~z )»

Section IV reviews the q-analog generalizations [3) of
the phase operators of Susskind and Glogower (SG) [g],
cos(p), sin(p), and of the phase operator of pegg and»««t (PB) [9,10], p». In Sec. V properties of the q-
analog SG phase operators are studied analytically [6,11]
in the z )» classical limit (with ~z

~
large). In general, the

q deformation of the polar decomposition of the creation
and annihilation operators, a =([N+1])' e@(iP),
affects both the angular and radial parts of functions of
the SG phase operators. We find, however, that some
operators (class II) which are functions of the SG phase
operators possess the property that only their radial parts
are q deformed in the ~z ) basis in the large-~z

~
limit. So

if the relevant physical observables for a q-boson
superQuid, or superconductor, are class II, then, in analo-
gy with the q=1 description [12], for such observables
the true state would be expected to have expectation
values of the order parameter of the form
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CS's is introduced. It is used to show that
(Pz ) =8=arg(z), to investigate the variance (bP )2, and
to show that lim!,

! „Pq(8 )lq&i~2n5~(8 8—), q%1.
The fiducial quantity 5~(8—8 ) is a bell-shaped function
which is centered on 8=arg(z) with finite width and
finite height. For q = 1, it is a Dirac 5 distribution [9). A
q-dependent constant gq characterizes the q deformation
with AN~rI and bP ~(2g~) ' for moderate Iz

In Sec. VII it is shown that the q-boson CS's Iz ) ~ give
the approximate number-phase commutation relation
[12] [N, P ]=i So. in contrast to the more-quantum
behavior for q&1 of the standard Q and P operators, the
number and phase operators N and P do turn out to be
almost canonically conjugate in the Iz)~ classical limit.
Thus the conventional (approximate) number-phase un-
certainty relation of Dirac [12] still does follow for the
generic single-mode q-analog quantum Geld:

b,NEP

The z ) CS s are also found to minimize this uncertainty
relation for moderate Iz I

.
Further applications of PB formalism to q&1 are dis-

cussed in Appendix A. In Appendix B, we use Iz ) CS's
to generalize to q%1 the phase operator treatment of
Paul. Appendix C contains a brief discussion of q-analog
generalizations [3] of the standard P, Q, and 8' phase-
space representations.

II. FRACTIONAL UNCERTAINTIES
IN

I
z )~ CLASSICAL LIMIT

quantities characterizing the q-analog quantized radia-
tion Geld. Some of these are tabulated in Table I.

A. q-boson resolution function A,(z)

This analysis exploits the relationship between the q-
boson resolution function A,(z) and the q-exponential
function e~(z):

X(z)=(z Ajz),
—:(z [N+1]jz)—(z [N]jz) (2. la)

Ia, a ]+=[N+1]+[N]
is proportional to the quadratic P, Q Hamiltonian

(2.3)

=(q'"—1)lzj'+ [e,(q '"Izl')/e, (lzj')]
'"—1)lzl'+Ie, (q+'"Izj')/e, (lz ')J . (2.1c)

Note that A, (0)= 1 for the usual vacuum state, and that as
q~ 1, A(z)~1. The last line follows by the q~l/q sym-
metry. Equivalently [3],

A(z) =N(z) ~ Iz I
"coshIs(2n+1)/4]

(2 ld)
[n ]!coshIs/4]

where q =exp(s), and N(z) is the CS normalization fac-
tor; see Eq. (1.3).

Notice that the associated resolution operator A is sim-

ply the basic commutator
A—:[a,at] . (2.2)

On the other hand, the anticommutator,

Using q-analog CS's, we can obtain analytically the
fractional uncertainties in the classical limit for various

HI, &
———,'iiico(a a+aa )

1 (P 2+Q 2) (2.4)

TABLE I. Fractional uncertainties for the single-mode q-analog quantized radiation field. Except for N and Hz, quantum effects
are pervasive in the Iz ) ~ classical limit for q+1.

Quantity 0 50
I&o)j

as jzj~m Case

Position

Momentum

E,B fields'

amplitudes

Deformed

number operator

Deformed

(X+1) operator

[N+ 1]

1 V'(q '" 1)+e,/—Izl'
2 cos8

Q(q '"—1)+e&/IzI'
2 sin0
—Q(q -'"—1)+e, /Iz I'

Q(q '" I)+ei/Iz—l'

Q(q '~ —1)+(—1+2q)e&/Izj +

1

2 cos8lz
I

1

2 sin8jz
I

1

2jzj

1

Izj

1Izj+
I I

Quadratic P, Q

Hamiltonian

Number operator

and N Hamiltonian

'For Izj ) few 100.

Hpg

HN, N

Q(q ' —1)+(—1+2q' )e, /Izj +

approaches zero'

1Izj+

1

Izl
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This resolution function characterizes the Q and P uncer-
tainty relation

&zl[g, P]lz & =iiti&zlAlz & =t'irtk(z)) iA

in the Iz) basis. For

z=lzle"

just as for q = 1, the mean values [13],

(z IPlz & =(&co)' 'Iz I»»,

&zlg lz & =(2e/~)'"Iz Icosa,

where

P =i(fuo/—2)' (a a), —

Q =—(iri/2co)' (a t+a )

(2.5)

(2.7a)

(2.7b)

(2.8a)

(2.8b)

B. Fractional uncertainties

Equation (2.8) assumes the canonical relation between

Q and P, and a and a . While in principle N-dependent
functions which became unity in the limit q —+1 could be
introduced and investigated, Eq. (2.8) is both simpler and
preserves free-quanta additivity in the field-theoretic
momentum for significantly dispersed quanta.

Iz ) 's are minimum uncertainty states, for they still do
minimize the fundamental commutation relation [Q,P].
For example, if we define the correlation parameter

2~Q» —l&[g,P]&l )0
I& [Q,P] &I

we find for the
I
n ) states that

3[n ]+[n+1]
In)+10) [n+ 1] [n ]

But, for the Iz) coherent states, and the usual vacuum
state IO)», U& p =0. It is interesting that this minimiza-
tion occurs for both the q-coherent states and the q-
vacuum state because, for q =1, several of the important
properties of the usual CS's can be understood simply by
considering them as being either displaced, or projected
[14],vacuum states.

&z la fz & =z = Iz lexp(t'0) .

Expression (2.13) has the formal structure of a classical
field, and the amplitude could provide an operational
definition [15] for the modulus Iz I, see Eq. (2.6). Howev-
er, the physical situation is unclear since it follows from
Eq. (2.12) that the fractional uncertainty in the P ampli-
tude is of order 1 for Iz I large.

By q~l/q symmetry, that is from Eq. (2.1c),

A(z)=(q ' —1)lzl +[e»(q' Izl )/e»(lzl )I . (2.14)

So, because e ( Iz I ) increases monotonically in Iz I, A, (z)
diverges linearly in Iz I,

lim A, (z)~(q ' —1)Iz I
+ei,

}zi~ oo
(2.15)

= lim

1+q'~
+n = +(q' )=0, q&1,

n=1

(2.16)

by the product representation of e (z) [see Eq. (37) of
Ref. [6]]. Note z„ is the value of the nth zero of e (z).

e2 = lim [e (q I
z

I ) /e ( f
z

I ) $

lim e2(lz f
)=0, q &1 .

[z/~ ~
(2.17)

Note that e;+i(lzl ) &e;(Izl ) &1 for q%1, but
e, (lzl )~1 as q~1. For arbitrary Izl values, A(z) is
bounded:

[(q '"—1)I.I'+ l I, (2.18)

where the more restrictive lower bound depends on q and
Izl. The e s characterize the "q-exponential falloff" of
various mean values and uncertainties for the q-analog
quantized radiation field in the classical limit (x = Iz I ):

for 0(q ~1. It is useful to define two non-negative, q-
dependent functions e, (lzl ):

e, = lim Ie (q'/ lzl )/e (lzl )I

This resolution function also determines [3] the vari-
ances of the generic E and B fields (and of their associat-
ed potentials)

(&&)'I),) =(&)'I(, )

where

Pleo
g ( )

Aco

2@0V 2eoV
(2.11)

E=i (fico/2eoV)' [a exp(ik r i cot).—
—a "exp( ik r+icot)I—(2.12)

has the expectation value

(zlzz lz) = —2(A'co/2eoV)' lzlsin(k. r —cot+8), (2.13)

since

(HI, g ) =(1+q '/ )x+e,(x ),
( PI )

2
( q

I / 2 + 1 )
2

( q
1 / 2 1 )x 2

+(q '+1+2q'/ )xe, (x)
+e2(x )

—(ei(x ) )

in units of (itico/2), and

([X])=x,
(b, [&])2=(q '/2 —1)x +xei(x ),
([++1])=q '/x+e, (x),
(6[%+1])=(q —

q ')x

+(q ' —2q ' +2)xe, (x)

+e2(x ) —(e,(x ) )

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)



2414 CHARLES A. NELSON AND MITCHELL H. FiELDS 51

It is straightforward to work out upper and lower bounds
for these variances analogous to those for A,(z) in Eq.
(2.18).

Unlike for the other quantities, the last row of Table I
shows that the fractional uncertainty is still zero for both
the usual N operator and for the elementary
Hamiltonian operator

H~ =Ace(—N+ ,' ) . — (2.25)

This is a numerical result, see Sec. III. In contrast with
the situation for the Hz & Hamiltonian operator, the N-
Hamiltonian operator H& does possess the conventional
properties of (i) free-quanta additivity in energy for wide-
ly separated quanta, (ii) an orthodox free-field limit in-
cluding operator diagonalization in the Fock

I
n ) basis

and zero fractional uncertainty, and (iii) mathematical in-
dependence from the basic commutation relation
[a,a ]=A when q%1. All of these properties are absent
for H~ &. In particular, due to the hyperbolic nature of
the definition of [x) [see Eq. (1.5b)], there is the operator
identity [3] for q%1 which relates Hp & and
[Q,P]=iiii[a, at] =i AA:

2

Hamiltonian operator Hz & permits a consistent physical
interpretation [3] based on a smooth limit to a conven-
tional free quantized field. In Sec. VI we also find that
while the commutator [Hz, P~] has canonical q =1-type
behavior in the Iz ) basis in the Iz )~ classical limit, this
is not the case for the [Hz &, P ] commutator. Here f is
the Hermitian Pegg-Barnett phase operator, see Secs. IV,
VI, and VII below.

III. q-BOSON COUNTING STATISTICS

For the sake of completeness, we begin this section by
reviewing some known material on properties of the free
q-boson gas. Knowledgeable readers should skip to about
Eq. (3.9).

The physically important but mathematically trivial
[a,a ]=0 implies that the usual Bose-Einstein energy dis-
tribution still follows for a free q-boson gas (with a non-
degenerate equally spaced spectrum). Several authors [7]
have explicitly confirmed this for the X-Hamiltonian
H&=%co(N+ ,'). The —nontrivial thermal averages for
these free excitations give an equilibrium distribution of
cavity excitations

[A cosh( —,'s) J' — Hp gsinh( —,'s) =1 . (2.26) ([N]) =([N+1]) (3.1)

Because Hz& lacks (i)—(iii), it is doubtful that the
I

By Eq. (1.6), this means that, for q bosons in a blackbody
cavity,

(absorption rate)=(spontaneous and induced emission rate)

X(Boltzmann ratio of emitting to absorbing wall inolecules)

Note that Eq. (3.1) follows quite siinply since (p=—i'/kT)

( [N+ 1]) z
——ge "~"[n + 1]

ePcuye (n+1)Pco[1

z
=e~ &[N]&, . (3.2)

The q-boson absorption and emission rates themselves are

q dependent, with

& [N]&,= (3.3)

(N ) + 1
( [N+1])r = (3.4)

(N&, = 1
%co/kT

(3.5)

An important corollary is that ratios of thermal averages
[16] for a free q-boson gas satisfy the equalities

where

2)= [1+(1—q' 2)(N)r ) [1+(1—
q

' )(N) r ) (N) r

However, in (3.4) there is the usual, q-independent Bose-
Einstein energy distribution

& [N]),
([N+1])z. (N), +1 (3.6)

&z
I [N]Iz &

= IzI (3.8)

Of course, in the limit q ~1, the Poisson distribution (for
statistically independent sources) occurs.

Since for q%1, it is the expectation value of the de-
formed number operator [N) which is both q indepen-
dent and analytically simple, we have chosen to show the
figures in this paper versus IzI instead of versus the
mean value (zINIz ) which is q dependent.

For fixed IzI =100, the peak of Pg(z) narrows and
shifts to smaller n as q decreases; see Fig. 1. However,
the behavior of the fractional uncertainty, ( AN ) /( N ), of

independent of the q value.
On the other hand, the q-analog CS's Iz ) ~

do not give
a Poisson number distribution for q&1 since [1,17] the
q-boson number distribution

~~(z) = I, &n Iz &, I'

(3.7)
[n ]!e ( Iz I )

with g„" OP)(z)=1. Note that, for q&1, IzI is the ei-
genvalue of the deformed number operator in the Iz)~
basis
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0. 35

q=0.0625

TABLE II. Comparison of q-boson counting statistics with
known photon statistics.

0. 30- '

Bose-Einstein statistics (hN) = ( N+ 1 ) Thermal source

0. 25-

~ 0.20-

g C

0. 15-

q =0.?

Poisson statistics

q-boson statistics
(AN)

Laser light

(q = 1 CS's)

q&1 CS's

0. 10-

q =0.95

0. 05-

o. oo-

0 10 20 30 40 50 60 70 80 90 100 110 120 130

n

the number operator N versus Iz I
is not very q dependent;

see Fig. 2. Nevertheless, as shown by Table II, there is a
simple, though unusual, property of q-boson statistics
that, for q% 1,

(bN )
hm

( )
~0. (3.9)

FIG. 1. The q-boson number distribution in the q-analog
coherent state for fixed Iz I

= 100. Note that P»(z) =
I» (n Iz ),I'—

and that IzI =»(zIa zIz)»=»(zI[N]Iz)». Thus IzI' is the ex-
pectation value of the deformed number operator in the q-

analog CS basis. In the limit q —+1 (i.e., normal boson statis-
tics), P„(z) is the Poisson distribution and

IzI =»(zI[N]Iz)»~(N), the expectation value of the conven-
tional number operator in the conventional CS basis. In this pa-
per, all expectation values denote q-analog coherent states.

That is, the ratio of the variance to the mean value for q-
boson counting statistics is radically different from that
of ordinary photon counting statistics. This simple signa-
ture Eq. (3.9) should prove to be an important test for
identifying q bosons versus other field quanta.

Table III summarizes the number operator and phase
operator uncertainties in the Iz )» classical limit. We will
discuss the Hermitian Pegg-Barnett phase operator P in
Secs. IV, VI, and VII. Figure 3 shows that the mean
value (N)=(zINIz) still increases, although with a
smaller effective slope, as q decreases (s = lnq ):

(N) =—sinh [N]sinh
2 . i . s
s 2

L

—+2a»lnIzI+p», for —1( IzI ~ few 100 . (3.10)

The second line is a crude numerical estimate with a
and p some q-dependent constants. For large IzI, the
second line with u» =( —2/s) follows from the first line
upon replacing [N]~IzI, which is a diagonal CS ap-
proximation. We find numerically that the number un-
certainty

lim hN —+g (3.11)
Iz~~~

where g is another q-dependent constant. This is shown
in Fig. 4, with g07 2.4 and pp p6 0.9.

In summary, the number of q bosons appears to be a
meaningful quantity in the Iz) classical limit since the
fractional uncertainty bN/(N )~zero. Thus the addi-

t
A

V
1-

X

Uncertainty Behavior when q&1 Case q =1

1

2 gg

q dependent

const Iz I

TABLE III. N and P» uncertainties in the Iz )» classical lim-

it. Note how g~ characterizes the q deformation for both N and

b,NAQ

0. 01 0. 10

)

1, 00

IZI ~ 10.00 100. 00

hN
(N)

YJg

2a»lnIz I +P»
1

Iz I

FIG. 2. Behavior of the fractional uncertainty in N, that is of
(hN)/(N), as IzI varies for fixed q%1. For q= 1,
(hN)/(N) =1/IzI. 'For —1 & Iz I

~ few 100.
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1 d E . (3.9) and the various abnormalSuch ratios inc u e q.
(normal) fractional uncertainty ratios shown in a e

5- IV. q-ANAI. GG PHASE QPERATORS

3
A

V

um field haveDi6'erent phase de6nitions for the quantum
b

'
investigated in the theoretical and

'mental literature in quantum optics 8 —10,
Mathematica y a11 ~8g a Hermitian phase operator conjug
to Nor to %=a a oesjX~= ~ does not exist. Nevertheless, in
physical analyses in a varie y p y

'
p

' ' ' t of h sical systems it has
dbeen fruitful to investigate and app y pa 1 hase operators an

number-phase commutation relations.

A Susskiad-Glogower phase operators cosP and sin(II

0-

0. 10 1.00

IZI'~
10, 00 100.00

FIG. 3. Behavior of the mean value (X)=&—= (z,~xfz& as IzI'
varies for fixed q%1. For q = 1, (N ) = fz f

.

(4.1a)

a t —=e@( i t—i)(i[A+ I ] )
'

=
[ xi'( +~)It . So, there are the Hermi-with e@( i p)—:—I e i

tian operators

(4.1b)

An e+(iP)q generalization [8,3] of the Susskmd-

Glogower phase operator can be defined by

a = ( [N+ I ] )' efp(iP),

tive energy of the free q-boson gas is also meaningful in
this limit,

lim ~ for —I ( ~z~
( few 100. (a„) 2u, inizI+P,

cos(P) =
—,
' [e@(i(t)+HP( —iP) I,

si"n((t)=( —
—,'i)[e+(iP) —e+( iP [ . —

In the ~n ) ~
basis these definitions correspond to

(4.2a)

(4.2b)

—+ zero,

(3.12a)

(3.12b)
e+(iP)—:g In)~ (q+nil . (4.3)

in contrast to the significant quantum correc
'

rrections for oth-
er uantities w ic we ouh' h found in Sec. II. The various q-q

lvin the number operatorboson uncertainty ratios invo ving
are both simple and distinctive when q & I, so in princip e

'ble b -boson counting experiments to empiri-
1 'd t'f q-boson gas in this limit in spi e o

dinary Bose-Einstein frequency distribution q.

This form of the definition e+(iP is mamfestly q m-

dependent, nonunitary, and obviously a simple q analog
of the SG operator.

B. Pegg-Barnett phase operator Pr

S' '1 1 a q generalization [9,3] of the Pegg-Barnettimial y, a
phase operator "q is obtained by introducing a comp

5-

2-

FIG. 4. .Behavior of the variance (AX) as

IzI varies for fixed q&1. While for q= 1,
(hX) =(X)= IzI, for q&1 the figure indi-

cates that (AX) ~(q~ ) where g~ is a q-

dependent constant.

0-

0. 01 0, 10 100.00
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orthonormal basis of (s+ 1) phase states: Note that acting on Iz & the cos(P) and sin(P) opera-
tors give

I8 & =(s+1) g exp(in8 )In &q,
n=0

with

(4.4a)
00 n+1

cos(P)Iz&= —,'N(z) g, In &

p ([n+1]!)'~

8 =8o+ [2m'/(s+1)], m =0, 1, . . . ,s, (4.4b)

where 6o is a reference, or indicial phase. Note that these
states are introduced in an (st 1)-dimensional finite sub-
space %~pQ and that in calculations the s ~ ao limit is only
to be taken after matrix elements, &aIO(P~, . . . )Ib &, of
the phase-dependent operators are calculated. These
I
8 &'s are eigenstates of the Hermitian phase operator

y, = y 8.I8. &&8. I

m=0
(4.5)

and of the unitary

exp(iP )—= IO&, & 11+Ii &, ,&21+ ' ' ' +Is —1&, , &sI

+exp[ i(s+ 1)8o] Is & &OI . (4.6)

Equation (4.6) only differs in the last term versus the SG
expression, Eq. (4.3). These operators are also manifestly

q independent in the
I
n &~ basis.

A polar decomposition operator h has been used in the
analysis of the SU(2)~ algebra by Chaichian and Ellinas
[3]. h is the same as exp(i/~ ) if the reference phase of h
is taken to be s dependent, P~ =(s+1)8o. Note that the
term "classical limit" in their work means the q —+1 lim-
it, and not the large IzI limit of matrix elements in the
Iz & basis.

Since Eqs. (4.3), (4.4), and (4.6) are all manifestly q in-
dependent, the nontrivial q-analog phase effects we obtain
in this paper in the Iz & classical limit for both the SG
and PB phase operators arise due to the q dependence of
themapping In &~~Iz&q.

V. PROPERTIES OF q-ANALOG SG PHASE
OPERATORS

A. Properties of «n(p) and cos(p) in Iz &~ basis

The sin(P) and cos(P) operators in the Iz & basis do
exhibit some correspondence-principle-like behavior for
arbitrary q. For example, with z = Iz Ie',

&zIsin(P)Iz & sin8

& z Icos(y) Iz &

& z
I cos(P ) +sin( P ) I

z &
= 1 —

—,
' e ( I

z
I )

~1 for IzI'~ ~,
& z

I [cos(@),sin(p) ] I
z &

=
—,
' ie ( I

z
I )

~0 for Iz I'~ ao,

(5.1b)

(5.1c)

and so, for q%1, the SG phase operators cos(P) and
sin(P) ultimately do cominute for IzI sufficiently large.
However, for moderate IzI we do find a significant q
dependence for other expectation values and find that the
uncertainty product [icos(P)hsing] is nonvanishing.

+ ' „,In+1&
([n ]!)' '

n+1
sin(P)Iz & =( ,'—i)—N(z) g ~, In &([n+1]!)'

(5.2a)

So, besides Eqs. (5.1), we find

In+1& . . (5.2b)
( [ ]!)1/2

&z Icos(P) Iz & =cos8I, ( Iz I ),
&zIsin(P)Iz & =sin8Ii(IzI),

&z Icos(P) —sin(P) Iz & =cos28Iz( Iz I ),
&zI [cos(P),sin(P)]+ Iz & =sin28I2(IzI ), (5.3)

where the functions I;(IzI) are defined by the power
series

oo Zn

+1])'"
CO

I 12

„=o [n ]!([n+2][n+1])'i

(5.4a)

(5.4b)

For IzI «1, the asymptotic limits of these functions
are

1+ + +
[2]! [3]

z2+
[3][2]

Iz I'
[2]t' [4][3]

so

&zl«'&(4)lz & Izl»n8 &z Icos(4')Iz &
—Izlcos8,

&zIsin(p)'Iz &
—&zIcos(y)'Iz &

——„',
&zI[cos(p), sin(p)]Iz &

——,'i, —

& z
I [cos(P),sin(p)]+ Iz &

—zero,

Note that there is no (leading order) q dependence in
these expectation values for IzI «1. In the q= 1 case,
Ref. [19] calls this Iz I « 1 limit the quantum limit since
the CS states are the prototype quantum-mechanical
states for the radiation emitted by a classical current
source.

For moderate Iz I, the behavior of the functions I; ( Iz I )

is shown in Figs. 5 and 6. Note that for IzI )(—10)
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O. S-

0. 6-

.7

.0625

from Eqs. (5.4). As we discuss in Sec. V B, there is a
similar plateau behavior for the associated number-phase
uncertainty relations which involve the SG phase opera-
tors.

For lz I
~ ac, the function

) ~pI1 eq(lzl )

p [1—
—,'(1 —q)e, ( lzl')

—
—,'(I —q)(1+3q)eg(lzl')+ 1

0. 2-

0. 10 10.00 100.00

(5.6)
where p =q'~ (positive fourth root). Therefore, the pla-
teau shown in Fig. 6 does not rise for larger lzl values.
In fact, its asymptotic value has almost been reached by
lzl -20 for q ((-0.7) since p =0.915 for q =0.7 and
p =0.5 for q =0.0625.

Equation (5.6) follows from (5.4b) by using

[n+2][n+1]=[n+ —,
' ] —[—,']

FIG. 5. As fz I
increases, the behavior of the function

I&{fz I). It characterizes expectation values of the cos(P) and
sin(P) operators, see Eq. (5.3).

1 —(glzl')-'+
(zI ~~

(s.sa)

these functions appear to level o8; but not at the value of
one which occurs in the q —+1 limit:

4

(c'—x')-'"=c- 1+—— +—— +1 X 3 X

2 c 8 c
so

[.+1]
+1]l [ +-,']

q
I/0e ( Iz I2)

f f

—2+

since for q small or n large,
I2(lzl)l, =i= lzf'e "+z(lzl')

— I-(2lz I')-'-(glz I')-'+
Izl

(5.sb)

n

[n ] (i —n)/2,
1 q

where the power-series definitions [19] for %', are evident
2(1—n)

10- In I2 the subasymptotic terms, which occur due to the
power-series expansion and the approximation to [n ], fall
off q exponentially, i.e., as eq(q lz I )/eq( lz I )=e ( lz I ) where m & 0; compare Eq. (2.16).

As a consequence of Eq. (5.6), the fz ) CS expectation
values of the SG phase operators are class I,

Q. 6-

Q 4-

0. 2-

(z Icos(P) lz )~(1+p cos28)/2,

(zlsin(P) lz ) (1—p cos20)/2,

and class II,

(z I [cos(P) —sin(P) ] lz ) —+p cos28,
(z

I I cos(P), sin(P) ] + lz ) ~p sin20 .

(5.7a)

(5.7b)

(5.7c)

(5.7d)

0 0-

0. 01 Q. 10 1.00

IZI ~
10.00 100. 00

Flax. 6. As fz I increases, the behavior of the function
Iz( fz I). It characterizes expectation values involving some
squares of cos(P) and sin(P), see Eq. (5.3). By Eq. (5.6), there is
the analytic result that I2~(p =q' ) as Iz f~~.

Hence the q deformation of the polar decomposition of
the creation and annihilation operators,

a =([%+1])'~e@(iP),
a6'ects, in general, both the angular and radial parts of
the functions of the SG phase operators. So in describing
a physical q-boson system undergoing a coherent
cooperative behavior (e.g., spontaneous symmetry break-
ing as would occur in a q-boson superfluid or supercon-
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ductor), the usefulness of a field-theoretic ansatz for the
order parameter (cf. Anderson [12] and Carruthers and
Nieto [19])

0. 25

(g(x, t)) =Qp (x, t)expIig(x, t)j, (5.8)
0. 20-

e= ~/6

where only Qp~(x, t) undergoes a q deformation, de-
pends crucially on whether the relevant physical observ-
ables are class II or not. Notice that the operator com-
binations in Eqs. (5.1b) and (5.1c) are class II and that
from Fig. 5, I& —+( -p '~ } as ~z

~
~( ) 100), so

0. 15

t
8{8)

0. 10

e= vr/4

(z cos(P)iz) ~-p' cos8,

(z sin(P)~z)~-p' sin8.

(5.9a)

(5.9b)
0. 05-

So an ansatz of the form of Eq. (5.8) for the condensate
wave function has the additional constraint of yielding
the multiplicative p-scaling variation of Eqs. (5.1b), (5.1c),
(5.7c), (5.7d), (5.9a), and (5.9b).

Being an analytic result, Eq. (5.6) shows that at least
for I2 the generic plateau behavior shown in the figures in
this paper is not due to a very gradual approach to 1 as
~z

~

~~. Instead, the nonclassical plateau value for q&1
for moderate Iz I is indeed due to the q deformation of the
limiting value.

0. 00-

0. 10

I

1.00

IZ l~
10.00 100.00

FIG. 7. For q =0.7, the behavior of the uncertainty product
$(8}=(bN} (b, sin(—P}) as a function of ~z~ for various values
of the phase 8 of the complex number z = Iz ~e' . ssn(P) is the q
analog of the Susskind-Glogower Hermitian sine operator.

B. q-analog sin(P },cos(P },and N uncertainty relations

b N4 stn(p) ~
—,
'

~
( cos(p ) ) I,

KNb, cos(p) ~
—,
' (sin(p) ) I

.

(5.10a)

(5.10b)

For sin(P) and cos(P) the usual number-phase uncer-
tainty relations hold for arbitrary q:

[cos(P),sin(P) ]=—[at( [N+ 1]} 'a —1],
2L

(5.12)

and Nieto [19] minimization function U(~z~) [see Eq.
(5.10c)] for q=0. 7 and 0.0625, respectively. Note that
I/2+ U~ 1/4.

From the q-independent commutator

Therefore, the 0-independent associated Carruthers-
Nieto uncertainty relation [19,20] follows:

U(I. ~)=(~X) ' ',+ ', ', , (5.10.}

where S =sin(P) and C=cos($).
However, for moderate values of ~z ~, we find numeri-

cally that the ~z ) ~
CS no longer minimize these relations

when q%1. [In the q~0 limit, for ~zI ~De this lack of
minimization for Eqs. (5.10a) and (5.10b) was shown
analytically in Ref. [3].] We begin with the left-hand side
of Eq. (5.10a). For q =0.7 and 0.0625, respectively, Figs.
7 and 8 display

it follows that, in the ~z ) basis,

b, sin(p)b, cos((t) ~ ,'eq(~zI )—

0. 20

0. 15-

(5.13)

= 7r/6.

S(8)=(b,N) (b, sin(P)) (5.10d) 0. 10-

( b N ) (b. stn(P) )

(cos(P) )
(5.11)

as a function of ~z
~

for various values of the phase 8 of
z= ~zIexp(i8} Note tha. t Fig. 8 shows that for 8=sr/2
the function S(8=m./2) is not zero for ~z ~

& 10, but in-
stead S plateaus at a nonzero value.

Indeed, as shown in Figs. 9 and 10, for q%1 the CS's
do not minimize the simplest uncertainty relations [21] of
Eqs. (5.10) for moderate ~zI values (unless 8=0 or 7r/2)
Note that

0. 05-

0. 00-

0. 10

I

1.00

IZ I

10.00 100.00

Figures 11 and 12 show the behavior of the Carruthers
FIG. 8. Same as for Fig. 7, except now q =0.0625. Unlike

here, for q=1 the function S(8=m/2}= zero for ~z~ ~10.
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1.00 0.50

0. 85- 0. 45-

0. 70- 0. 40-

Q(e)
0.55- 0.35-

0. 40- 0.30-

0.25

0. 01 0. 10

l

1.00

IZ I~
10.00 100.00

0.25-

0. 01 0. 10

1

1.00

IZ I ~
10.00 100.00

FIG. 9. For q=0.7, behavior of the minimization function
Q(~z~, 8)—= (4N) (csin(P)) /(cos(P)) as a function of ~zI for
various values of the phase 8. By Eq. (5.10a), Q( ~z ~, 8) &

~ just
as for q=1. However, here unlike for q=1 the q-analog CS's
do not minimize the function Q for ~z

~

& 80; see Fig. 10.

FIG. 11. For q=0. 7, behavior of the Carruthers-Nieto
minimization function U( ~z

~ ), defined in Eq. (5.10c), as ~z ~

in-
creases. It is independent of 8 and greater than 4. Here again,
unlike for q=1 the q-analog CS's do not minimize U for
~z~ &80; see Fig. 12.

So for IzI «1 (the quantum limit), the equality is
satisfied for any q value. However, for moderate IzI
values, the left-hand side of Eq. (5.12) is very q depen-
dent, as shown in Fig. 13. Therefore, the product

b, sin(P)icos(P) M zero, —10& Iz~ &few 100 (5.14)

for q% 1, which is unlike the usual q = 1 classical
behavior.

The leveling off for moderate ~z I2 values of the various
uncertainty-relation minimization functions [Eqs. (10d),

(5.11), and (5.14)] means, of course, that the associated
SG phase operators for describing the q-analog radiation
field remain correlated, in this region of ~z ~

. Hence for
the SG operators the Iz) classical limit is a q-deformed
analog of the q =1 case, and it is not a limit for moderate
~z~, which physically exhibits classically uncorrelated
sin(P), cos(P), and N operators. For much larger Iz~,
~z~ &&100, Eq. (5.6) shows that such plateaus do not al-
ways approach their q = 1 classical values.

In Sec. VI, we show that the q-analog generalization of

1.00 0. 50

0. 85- 0. 45-

0. 70- 0. 40-

0, 55- 0.35-

0. 40- 0. 30

0. 25

Q. 01

I

1.QQ

IZ l~
10, 00 100. 00

0. 25-

0. 01 0. 10 1.DD

Iz I~
10.00 100. 00

FIG. 10. Same as Fig. 9, except q =0.0625. FICx. 12. Same as Fig. 9, except q =0.0625.
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0. 25 i (n lsin y In &
= &it Icos P I& &

—1
2 (6.2c)

0. 20-

0. 15-

CO

O
O

~ 0. 10-

S~
CO

0. 05

5

for n=0, 1,2, . . . . In particular, for arbitrary q, the q-
boson vacuum state IO) remains a state with random
phase. In contrast, for arbitrary q the SG phase opera-
tors satisfy [3,19,9] Eq. (6.2c) for nAO, but for n =0 the
—,'~ —' in Eq. (6.2c).

B. The q-boson phase distribution P~ (8~ )

We consider a phase distribution analog to the q-boson
number distribution P„(z) in the CS basis. That is, as op-
posed to P»(z ) of Sec. III, we study its conjugate-variable
analog using the PB operator P». We consider the q-
boson phase distribution

0. 00-

0. 01 0. 10

I

1.00

IZI ~
10. 00

l

100. 00

P~(8 )—:lim (s+1)I(8 Iz)
g~ oo

with the normalization

(6.3)

FIG. 13. For various fixed values of q, the behavior of the
product of the uncertainties of the q-analog Susskind-Glogower
sine and cosine operators b, sin(P)icos(P). Again, only for
q =1 does this product vanish for Iz I

~ 80.

the PB phase operator P» for q&1 does not exhibit such
manifest non-(q= 1), nonclassical behavior in the Iz)
basis in the large-IzI limit. However, the associated
phase width for a Iz ) coherent state is q deformed since
hP ~(2»i )

' for moderate IzI .

VI. PROPKRTIKS OF q-ANALOG
PB PHASE OPERATORS

f P (8 )d8 =1.
2K 0

(6.4)

P, (8 ) = 1+2(&(z))

co
I

In+I
X g cos[(n —l)(8—8 )] .

The mean value of P» in the Iz ) basis is

(6.5)

The bar denotes our insertion of the (s+1) factor in the
definition in Eq. (6.3).

The qualitative behavior of P (8~ ) for q%1 can be ob-
tained analytically, as was done previously in the litera-
ture [22] for the case q = 1. For z = Iz I exp( i8), we find

A. Properties of P»

Unlike for the SG phase operators, the classical
behavior for the phase operator (as expected from the
correspondence principle) does indeed still hold for q&1
for the PB phase operator. In particular, since

cosP» = g ( —1)" (((») ",
(2n )!

sing = g ( —1)",(P )
"+'

(2n + 1)!

t

(6.1)

for arbitrary q value, it still follows that

[cosP, sin(I)» ]=0,
cos P +sin P =1,

and using

(6.2a)

(6.2b)
0-

0, 01 0. 10 10.00

2

(2P&

100. 00

that

In&, = g e
'"

I8s+I o

Op+ 2'7T

de

FIG. 14. Behavior of the variance (b, (I) ) of the q-analog
pegg-Barnett phase operator as Iz I varies for fixed q+1. While
for q= 1, (hp )~~1/(4IzI ) for IzI2~ 10, for q+1 this figure
shows the q deformation (hP ) ~(1/271» ) . Recall that this q-

dependent constant also appeared in Fig. 4; see its caption.
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&y )=8 (6.7a)

(6.7b)
20

15

p(8„)
10

5

e ~ '
I

~ IC ~ lI ~ II

=arg(z)

f E (6 6b) is odd,m in the»«g' ",of the
bec~u~~ the y te m

fi d that the v~ri~~ce ofrom q. {65). Sinularly

p ashas erator iscop
n+I

( —1)"
+4{N( )) X(3 n»

In+1

]1[i ]!

(6.S)

(6.9)

)2 foi modera«vain ,s of lzl' »Th, behavior of (~4'q
shown in Fig. 14~

how the phase distri
its caption.

ibutlonnd 16 show
&=50. In

Figures 15
& 17

'
increased to zp (g ) changes as lz = '
=3~/4 for display p«h se figures, we set g

f l to recons
'b

8)-I =-' "' '-' 'im P(8
Pe -Barnett nor-z 2=17, the q-boson Pegg-

,(8 ); E . (6.3).
set arg(z) = 3m. /4 in this an
poses.

l
(z)~~

since theHowever, ««Dirac 5 distribution.
d te Iz I

values, the(2 ) for modera
. (6.4) i li h Dre uirement Eq.normalization r q

'

Instead6 distribution no longn er occurs.

f e p(e de
2m o

f (8+y)P (8+y)dy .
2%

(6.6a)

(6.6b)
lim P(B )I ~1~2mg ( 8—8 ), q%1,

]z/~a
(6.10)

hosen the reference phase8—:8— /( +1),
. {6.6b), we have chosen e ase

[see q.
8 =8+y, with

(64) the meanqr — s+1). Then by Eq.y= n.=2m(m —s/2)/(s
value

8—8 )isa e-sbell-shaped functionw er
q

/2 ) dfi h h.
h hn basis, eq

n
n th state is, in) CS tobe inthe nZ

amplitude

30-

25-

P(8

15-

5-

2
zt =50

(6.11)

g~oo

with

z = (cosnB+i sinne) .&nlz = cosn

er e
'

inar parts of &nlz) are not
y redont em

at te
+[1Pq(z)=l&nlz)l'=[Re( n z

b l t di.stribution leve .
n c . 6.11), in th case o

t ofth &8 I)Ie ) the real and imaginary
is la centering a

'd the amplitu e odf ~ I)If we consi ery v.
the PB phase eigenket

e,z, 6.12)] —=A(e, z )+i8(e,z, 6.lim [(s+1)' 8 z =, ' e,z, 6.

I I ~ I I II 1 I I II I I I I ~~ I I I I I I I

'
creased lzl2=50. Asi . 15, except for increase — . sFICz. 16. Same as Fig.

lot note t ath the vertical scale asoppose o p o p
l for the q= casechan ed, and so ony or = se

isp
'

limiting behavior.display a 5-function hami in

A(e, z)=N(z) g
n=0

cf(e~,z)=N(z) g
For q=1, one has

[(g g
&[n ]!

[(g g
~ [n]'-

(6.13a)

(6.13b)
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5

2-

-2-

-3-

-4-

-5-
I I I I I II I I I I I I I I I I I I I II I I

(
I

I I I I I I I I II I I I I I I I I

FIG. 17. For lz I

= 19, behavior of the real part
%(8m)-Re[q(8~lz&q j for q=1, 0.7, and 0.0625; see Eq.
(6.12).

FIG. 18. Same as Fig. 17, except for the imaginary part
ty(e )-Im[ (9 lz) ].

a(8.,z ) I,=,=(S~ z I')'"exp [
—lz I'(8 —8.)'j

Xcos[lzl (8—8 )j, (6.14a}

+(8,z}l,=(=(g~lzl')'"exp[ —lzl'(8 —8 }'j

Xsin[lzl (8—8 )j . (6.14b)

However, even for q%1 there is damping in I8—8 I, as
Fi s. 17 and 18. Note that as q decreases from

1 there is a decrease in the frequency of the osc'illations

(6.15a)

w 1c 1s 1n crms 0h' h
' t of the usual binomial coefFicient, and

in I8—8 I. This frequency, per Eqs. (6.14), also in-m

eases for q%1 as lz I as increased.crease
N t lso the lz & expectation value o

q
f )" forraOC aSO

q
i h 8" thepositive in cger,

'' t is given by a finite series in 0 wit
largest power:

& (p, )"&—:, & z
I (p, )"lz &,

[r/2]
(zi }8' 'c

1=0

co m +II [(2l —1)/2}
( 1)k+m+n&2(l —k —1)(2i)(21

2 Z

2{k+1)21+ I ~ v'[ ].[ ].m&n
(6.15b)

vqh«e [r/2]=[greatest integer ~(r/2)] in the summa-
tions' upper limits.

VII. APPROXIMATE NUMBER-PHASE
CQMMUTATION RELATION [NI pq ]

IN Iz & q CLASSICAL LIMIT

,&zl[N, P ]Iz& =i iP (8o) .

This result simply follows, cf. eggPe and Barnett by in-

serting the ln & basis completeness Pegg and Barnett re-

(

= 1 in the left-hand side to obtain

&zl N, gq]lz &q= & &zlm &&ml[N, &q]ln &&nlz

(7.1)

(7.2a)

In the ~z g asis,b
'

the q-boson phase distribution
P (8 ) function considered in Sec. VI also appears in

roximate number-phase commut tation relationirac s app

But in the n
q asis, er/ q

b
'

th re is the q-independent relation

&m I[N, (tpq]In &= i(1—5 „)ex—p[i(m n)8oj—, (7.2b)

so

&zl[N, y, ]lz&, =i —i y, &nlz&, exp( —in8,
q

n=0

(7.2c)=i
iPq

(8o)—
by Eq. (6.3) since

q & n lz &q=N(z)z "/ [n ]!.
So for large lzl, for q%1,

&zl[N, y, ]lz&, =i —i2~& (8—8o) (q&1)
Izl~~
lim z

f
q

1genvalues from the indicial to (8 +2qr). Re-01
q ClgC

7.3 1s acall [see Sec. aVI& that this extra 5 term in Eq. 7.3
bell-shaped fiducial function as displayed in igs. an
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QggrA

A15) for extension to P - yp
f boo '

hntl, for free q oca sa M
1classical limit, there is

p ahase uncertainty relation

(7.4)

phys al role analogous to
a netic monopo e
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tao

l f th
'

al limit to unique ype
b=1, t esm

hen distribution
8—8)i dof hf th smeared 5 (
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0,
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1 t' n follows from Eq.tainty re ation

quantized field
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in Fi . 19, thisst to the behavior shown in 'g.
plot shows the e
(b, «)(h[N]) as (z~ varies.

hH~ b P & t)t'ai/2 . (7.5)

dP» [Q~,Hx]
(7.6a)

where

1
' al- uantum canonica

correspondence for a single mo e

(7.6b)[ —co+2mo5 (8—80 jiR

it. Numerically (see 'g.Fi . 19) we
erent states do in ee

'
d d iM i liifin ad that the ~z ) coheren s

er- hase uncertain y
' t relation for theproximate num er-p aapp

ber
not unique, as emphasizeoperator is n
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uncertainty pro
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o t e
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is minimized forh h' od
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iNote t ah t the figure shows t a
of the q value [at eas~z ~

~ 10 independent o t e q

rast to Fig. 19, this plot showss theFIG. 2 .
of the unce ta y p

%1, k(z) diverges linear yA,(z)=1. But for q%1, zfunction z-
~z ~

~~; see Eq.z —+ ', . (2.1S).
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4. 5 dimensional+~pg—=
[ IO&«, I

1 &«, . . . , Is &«] subspace,

S

Ippn &—:g c„ln &, ,
n=0

(Al)

3.5-
where the c„coefficients are such that the expectation
value

3.0- 0.0625
(A2)

converges as s ~ 00 for I any non-negative integer. This
implies that

2. 5-

0.7
lim (lc, l [[s]] ) 0

g~ 00
(A3)

2. 0-

0. 01 0. 10 1.00 10.00 100.00

FIG. 22. Also for contrast to Fig. 19, this plot shows the
behavior of the function M(lzl): 24$&KH—pal([Hp, g P&]) as
Izl increases. Unlike for Fig. 19, there is no apparent minimi-
zation for q& l.

for M=0, 1,2, . . ..
In 4'pz we define creation and annihilation operators

a =exp—(i P«)&[N]
= I0&, , ( II+&[2]ll &, , (2I+

+&[s]ls—1&, , (sl . (A4)

The second line follows from Eq. (4.6). Note that
al0& =0. We use a bar to distinguish these operators
from the ones considered in the text, which are for the
infinite-dimensional Hilbert space. Then

II. So we have also investigated numerically the proper-
ties of the uncertainty products

hP A[N], (7.7a)

(hP hHpg)/A, (z),

a t=v'[N)exp( iP«)—
=

I
1 &, ,(0I+&[2112&, , & 1 I+
+v'[s] Is &, , (s —1 I

(A5)

~(lzl)=26/«b, HI, &i([HJ &,p«]& (7.7c)

as lzl varies from 0.1 to —100.0. Figures 20—22 show
that unlike for N and P, these products do not exhibit
canonical (q=l)-type behavior in the lz& basis in the
lz &«classical limit. a a =[N+1]—[s+1]ls & (sl, (A6a)

but a ls &«=0. Notice that the indicial phase factor
i(s+ 1)00

e ' is absent in Eqs. (A4) and (A5) unlike in Eq.
(4.6), because the V'[N] operator in Eq. (A4) removes the
ls & ««(Ol projector in Eq. (4.6).

We obtain the q-deformed number operators in gpB.
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and the q-analog commutation relations

a a —q' a a=q —[s+1]ls& (sl, (A7a)

aa —
q

' a a=q —[s+1]ls& (sl . (A7b)

Thus, in comparison with the expressions in Sec. II, we
find

APPENDIX A: FURTHER APPLICATIONS
OF THK PB FORMALISM

(i) Since the additional term in the [P,N ] commutator
has direct physical consequences, it is important also to
check in the q%1 case whether there are possibly other
physically observable consequences.

Following the work of Pegg and Barnett [9], we define
a physically accessible, or preparable state in the (s+1)-

[a,a t] =[N+1]—[N]—[s+1]ls &««(sl,

[a,a "] +[N+I]+[N]—[s+1]ls&««(sl .

(ASa)

(ASb)

Notice that the extra [s+1] term in Eq. (ASa) again
serves to render the trace zero for the commutator in
P~pg. From Eq. (A6b) the extra term does not change the
[N] and N operators. In both the commutator and an-
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ticommutatoi it affects only the Is & level. Its effect on
the quadratic operator identity Eq. (2.26) is obtained by
moving the [s+1] terms to the left-hand side of Eqs.
(A8) and substituting for [N+ 1]+[N] in Eq. (2.26).

To study the consequences of the extra terms in Eqs.
(A6) —(Ag) for a physical state (Al), we consider the
operator

O=g([N]) —[s+1]ls& &sl .

Then for a physical state, where I is a non-negative in-
teger,

&p„l(o )'Ip„&

I {g([N])j'Ip„&
I

+ Ic, I g ( —1)" „{g([s])j "[s+1]". (A 10)

Therefore, for g ( [N ] ), which has nonsingular expansions
in an [N] power series, such as for Eqs. (A6) —(AS), the
extra [s + 1]Is & q «& s

I
term has no effect when finite

powers of these operators act on any physical state. So
for such operators these extra [s+ 1] terms have no phys-
ically observable consequences; this is the same situation
as in the q = 1 limit [9]. For Iz & CS's, we find

2s I
{Oj Iz&q=q&zl{g([N])j Iz&q+eq(lzl ) g ( 1)" {g([s])j "[s+1]"'

r=l
(Al 1)

(ii) Similar to in the q= 1 case [9], the phase-number
commutator for the physical state reduces to

[p +] „= i{1 (s+ 1)leo& &eol } . (A12)

Consequently, for physical states the uncertainty relation
1s

b,NE(f ~
—,
' {1 Pq~'(80) j—,

with

P,"'(8.) —=(.+1)&p„le.&„&e, lp,.&

(s, + 1)(sz+ 1) phase-difference eigenstates.
(iv) The N and P operators can be used to generate [9]

unitary transformations: The ordinary N operator is a
generator of increments in the phase

e'+ale & =(s+1) '~ g e In &q
n=0

=le. +) &, .

Similarly, P is a generator of increments in the number
of q bosons. When A,l is a positive integer,

=2m. Prob(0&) (A14) e' ' ' n &,
= {e' 'j 'In &,

where Prob(P)dg is the classical probability to find the
phase of a particular oscillator in the range P to (P+dP).
So, for a q-analog CS

hNhp =
—,'{1—2ir5 (8—80)j . (A15)

(iii) The phase-difFerence operator is the same as in the
q= 1 case [9,22]:

(y„—y„) I e., &, Ie.,&,

l(n —Al ) &, n ~ Ai

e I(s+1—Al) &q, n (Ai .

More generally,
S

exp(iA, Q )=exp iA, g 8 Ie &&8
n=0

(A19a)

=(e., —8.,)le. , &, 8.,&, , (A16a) so, for A, not an integer,

where the subscripts 1 and 2 label the modes. The vari-
ance of this phase-difference operator PpD=P«, —

P«2 is

(&PPD)'=(~Pqi)'+(&P«2)' (A16b)

for uncorrelated states, and if both modes are in q-
coherent states Izq, & Iz«2 &, where Izq, I

= Iz«2I, then
(bgpD) =2(b,gq), where (hPq) is given by Eq. (6.8).
Similarly, the two-mode vacuum state is unchanged:

exp( imp, )In &—,= In+A, &, , (A19b)

where
I
n +A, & q

is not an eigenstate of N, but it is one of a
complete set of (s+1) states that can be used to span

With p the density matrix for the q-boson quantum
field, the phase-moment generating function is

Xe(A. ) —=Tr{pe (A20)

IO, O&q=(s, +1) ' (s2+1)
sl s2

x y y Ie , &, Ie ,&,
rn1=0 m2=0

(A17)

so the system is equally likely to be any of the

and the ensemble average of the kth power is

{(4,)'j —=Tr{p(4', )"j
k

. 5i X—e(A, )li 0 . (A21)
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The Fourier transform is the physical states' phase proba-
bility density distribution

where

Xe(A, )P'~'(8 )=f dk, e

=2mTr[p5($ —0 ) j . (A22)

with k=0, 1, . . . ; Mk=e~(q' xk) 'i. Here —g; is a
zero of e (z). The associated discrete measure is

X„(a) =Tr I p exp(isa') j .

For example, for the Iz &z CS's

(A23)

C (&, lz I )= y e'""I
& n lz &

n=0

Similarly, the number-moment generating function is dpk 2 eq( lzk I')d6
2m'

(C3)

For simplicity, in this appendix we omit the explicit con-
tribution from these auxiliary q bosons. Then [3] for the
density operator

p= dpzP& z z* z z (C4)

with

=e, (lzl') 'e, (e'"lzl'),

c,(~, lzl) .

(A24a)

(A24b) (C5)

there is a P representation for normally ordered operators
(subscript-N):

((a )"a'& =Tr[p(a )"a'j

= fdp(z)(z')"z'P~(z, z') .

APPENDIX B:PHASE GPKRATQRS
VIA Iz & CS EXPANSIONS

k

„ Iz & &zldp(z),z" (Bl)

Following the approach of Paul [18] in the q =1 case,
the resolution of unity can be used to construct operators
analogous to the classical e*'"~: We define (neglecting
the contribution, see Appendix C, from auxiliary q bo-
sons)

There is also a Q representation for antinormally ordered
operators (subscript-A):

(a "(a )'&=Tr[pa "(a )'j

= f dp(z)z "(z*)'Q~ (z,z'), (C6)

where the phase-space distributions Pz and Q~ are relat-
ed by

Q (»z*)—= &zlplz&

= f dp(y )P&(y,y')N(y)'N(z)'

where the measure Xe (yz*)e (zy*) . (C7)

dp(z) = e, (lzl')e, ( —lzl')d, lz 'd~ (B2)
As opposed to the usual q = 1 norm, we have absorbed a
factor of n. into Q„ in the q ~ 1 limit. Note that

Thus, with @ k
—=(Bk), the analogs to coskp and sink/

are Ck ———,'(6k+8 k) and Sk =——i—,'(8k —6 k). In the

q =1 case, the recent work of Freyberger and Schleich
[18] suggests that the approach of Paul may be able to de-
scribe the pioneering Noh-Fougeres-Mandel experiments
[1o].

0( Iq(ylz&~l =N(y) N(z) e (yz')e (zy')

is the q analog of the usual Gaussian exp( —
Iy

—zl )

which occurs for q= 1. That is, by (C7) the expectation
value (z Iplz & is the q convolution of P~(y, y*) with the q
Gaussian I (y Iz & I

. The norm Tr Ip j = 1 gives

APPENDIX C: q-ANALOG P, Q, AND $VPHASE-SPACE
REPRESENTATIONS [23]

d/l z P~ z~z —1

fdp(z)Q„(z, z*)=1 .

(C8a)

(C8b)

(q' z )'
IJ+k &,

1=0 [J lt
(C2)

The q-analog Iz & CS's satisfy a resolution of unity
[24,25]

f Iz&«&zldp(z)+ f Iz&«&zldp=l, (Cl)

where dp(z) is given by Eq. (B2). The second term con-
sists of a set of q-discrete auxiliary states Iz &~ which are
eigenstates of an auxiliary q boson aI, annihilation opera-
tor (see Refs. [3] and [6])

aklzk &=(q" zk)lzk &,

From p =p, PN and Q„are real functions of the com-
plex variable z. The Wigner phase distribution can also
be de6ned by

([a"(a )'j,„&=—Tr[p[a "(a )'j,
= f dp(z)z "(z )'Wz(z, z*) . (C9)

It is important to note that reordering of a's and a 's in
a general 5eld-theoretic matrix element will introduce q-
and q -dependent factors as a consequence of Eq. (1.1).
This is an additional source of q dependence besides that
exhibited by the Q, P, and IV phase-space representations
in this appendix, and that induced by the mapping
In &, ~Iz&, .
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So, for example, for a q-analog CS ~zo ),

p~cs= ~zo &(zo~

Q~(z, z') ~cs=N (z)N (zo)eq(z'zo)eq(zzo ), (C 10)

P (z, z ) = 5(e—8 )5(~z~ —
~z ~),

1

z

where 5( ~z ~

—
~zo ~

) is a q-integration delta functional.
For a number state

~ no ),

Fock analog p(n, rn ) for the ~n ) basis by
oo oo en m

(z~p~y) = g g p(n, m) N(z)N(y),
[n ]![m]!

(C15)

where, as usual, in the
~
n ) basis

p=y p(n, m)~n), , (m~,
n, m

p/„,
—= fn o)(n o/,

Q~(z, z )i„o =
[no]!e ( z )

For a thermal state,

pT —=-(1/Z) g ~n )(n ~e

(Cl 1) p(n, m }=,& n ~p~m &, ,

gp(n, n)=1 .

Note that for p —+1, there is the useful identity

NzNye z'y z y pz py =1. (C16)

Q„(z,z')
~ T =(1/Z )( ~z ~')e, ( ~z ~')e

Since for an arbitrary operator 0,
0=f f lz&«&zlo"Iy &«&yldp(z)dp(y),

the density-matrix operator can be written

p= f f lz&, ,&zlply&, ,&yldp«)dp(y) .

(C12)

(C13)

(C14)

The weight function ~(z~p~y)~ is simply related to its

n *m
p(n, m )=f dp(z)Pii, (z,z ) N(z)

[n ]![m ]!
(C17b)

Alternatively, these two weight functions can be obtained
from Pz(z, z ):

(zlply) =N(z)N(y)

X f dp(w)P&(w, w*)N(w) es(z'w)e~(yw'),

(C17a)
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