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Pump-coupled high-Q micromasers with conditional measurements of atoms:
Transient and steady-state entanglement of nonlocal fields
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Two lossless micromasers are coupled in a series by the common pumping beam of two-level atoms the
states of which are measured conditionally after the second cavity. Pure evolutions of the two fields are
studied starting from uncorrelated coherent states for the four measurement schemes denoted by
a M'M"-a, b M-'M"-b, a M-'M"-b, and -b M'M" a-indicat-ing the state of each atom, ~a ) or ~b ), before
and after the two maser cavities, M' and M". It is shown that energy-preserving schemes (first two
above) produce a two-dimensional set of distinct Fock states at a steady state under the envelope of the
initial amplitude distribution of the fields. Since the initial fields were uncorrelated the generated ones
will be uncorrelated, too. In the case of energy-transferring schemes (second two) the system makes
transitions between correlated and uncorrelated regimes. Nonlocal superpositions reminiscent of the
form of

~
N, N +M ) +

~
N+ M, N ) can be generated at an optimum number of atoms as a result of two

coexisting trapping mechanisms. This is a transient entanglement since it is destroyed by the atoms to
follow due to the trapping effects themselves. However, we also show that by switching from any of the
two energy-transferring schemes to any of the two preserving ones the transient correlation produced by
the former scheme can be frozen into a steady state by the latter one. In the absence of dissipations this
combination of schemes can generate steady-state coherent superpositions of arbitrary number states of
two nonlocal fields (nonlocal Schrodinger cats) at reasonably high detection probabilities of the condi-
tioned atomic states.

PACS number(s): 42.50.Dv, 42.52.+x

I. INTRODUCTION

It has been shown that the one-atom maser [1],or mi-
cromaser is a genuine quantum device. The interaction
of its single-mode microwave field in a high-Q cavity with
the driving two-level Rydberg atoms illustrates the ir-
reconcilable difference between classical and quantum
physics particularly clearly [2,3]. Nonclassical states of
the radiation field were shown to be created in this sys-
tem theoretically [4—17] and successfully generated ex-
perimentally [18—22]. There has always been a satisfac-
tory agreement between experimental data and theoreti-
cal predictions.

One way to prepare such nonclassical fields is to per-
form measurements [23—25] on the atoms emerging from
the interaction cavity making the field part of the entan-
gled atom-field system reduce into the desired quantum
state. The outcome of the measurements is not totally
predictable, since according to quantum mechanics there
is an element of chance attached to it. Nevertheless, a
certain sequence of measurements determines the state of
the field completely. In other words, we do not know pri-
or to the experiment which state of the field will be pro-
duced, but we can redo the experiment until the required
sequence of measurements, consequently the desired tra-
jectory for the evolution of the state of the field, is
achieved. This is called conditional measurement.

In this paper we couple two micromasers in series via
the common pumping atomic beam [26] and perform
conditional measurements on the state of the atoms em-

field
ionization
detectors

beam of

two-level
atoms

M'

cavity I

M"

cavity 2

a b

conditional
measurem ants

FIG. 1. Schematic arrangement of two micromasers coupled
by a beam of two-level atoms the state of which is measured
after the interaction.

erging from the second micromaser (see Fig. 1). We con-
sider four different measurement schemes: when the first
micromaser is pumped by atoms in the upper (or lower)
state of the maser transition and each of them emerging
from the second micromaser is required to be detected in
the upper (or lower) state in a row. Let us denote these
schemes by a-M'M"-a, b-M'M"-b, a-M'M"-b, and
b M'M" ashow-ing th-e state of each atom, ~a ) or ~b ),
before and after the interaction with the two maser cavi-
ties, M' and M". The following assumptions are applied.

First, there is at most one atom present in the cavities
at a time in order to avoid cooperative effects. This is the
usual regime in which the one-atom maser experiments
operate. As a second condition, we consider extremely
high-Q cavities, where the loss of photons during the time
of the experiment can be ignored. The quality factor Q of
the cavities can reach values of up to 10",and with a mi-
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crowave frequency of 20 GHz this results in photon life-
times of several seconds. Third, thermal photons also
have to be suppressed in order to avoid the induced decay
of the fields. We can eliminate thermal photons by cool-
ing the cavities down to a temperature of T=0. 1 K and
the corresponding mean photon number at the above mi-
crowave frequency is 3 X 10 . Finally, we assume 100%%uo

detection efFiciency for the field-ionization detectors
measuring the state of the outcoming atoms in order to
have each atom detected after the interaction.

By the time the atoms' reach the second cavity they
have gone through an interaction with the first field. The
second micromaser is consequently pumped by atoms in a
coherent superposition of their two masing levels depend-
ing upon the state of the field in the first one. In other
words, there are always two different paths that the
atoms can follow to reach the same final state detected,
the probabilities of which depend upon the state of the
field in the first micromaser. Quantum coherence, i.e.,
quantum correlation between the two fields arises from
the interference of the two atomic paths, reminiscent of
the one in Young's double slit experiment [26]. As soon
as we have "which-path" information, i.e., the state of
the atom between the cavities is detected, the coherence
disappears. In the absence of losses we can use the wave
function of the entangled system of the two fields because
pure quantum states are achieved. The effect of losses
and thermal radiation mixing the quantum states of the
fields is investigated in a subsequent publication. It is
shown there that coherence survives these decay process-
es and manifests itself in a typical structure of the density
matrix indicating the two different atomic paths.

The present paper studies the evolution of the pure
quantum states of the composite system of the two fields
for all four schemes described above. The probabilities of
the two atomic paths are manipulated via the interaction
times in the two cavities. For initial uncor related
coherent states of the fields one can produce a two-
dirnensional set of uncor related Fock states using
energy-preserving schemes, while in the case of energy-
transferring schemes transient entanglement of the fields
can be achieved. Combining the two kinds of schemes to-
gether we show that steady-state production of arbitrary
coherent superpositions of macroscopically high photon
number states of the two different micromaser fields—
often referred to as nonlocal Schrodinger cats —can be
generated [27,28].

The paper is organized as follows. Section II reviews
the single lossless micromaser problem with conditional
measurements in order to see the effect of measurement
and to set up a notation. Section III introduces the cor-
responding two-cavity problem the results of which are
then used to investigate the four above mentioned mea-
surement schemes and their combinations in Sec. IV.
Section V is devoted to discussions and summary.

less cavity of zero temperature. Atoms are consecutively
injected in such a way that there is at most one atom in
the cavity at a time, and the interaction time is the same
for each atom (i.e., no atomic velocity spread). We know
the state of the injected atoms before and measure the
state of the outcoming atoms after the interaction. Let us
consider four different schemes: each atom is injected in
its upper (lower) state and detected in its upper (lower)
state in a row. Let us denote these cases by: a-M-a,
b-M-b, a-M-b, and b-M-a, showing the state of the
atoms before and after the maser cavity, M.

The state of the field after the ( k —1 )th atom left but
before the kth atom entered the cavity is given by

iqg(k
—1))—y qI(k —1)i ) (2.1)

(2.2a)

OI

~C'"'& =y e'„k "[C„-),b, n &
—is„~a,n —»], (2.2b)

if atom number k was injected in its upper, or lower state,
respectively. Here C„=cos(gr&n ) and S„=sin(gv.&n ),
where g is the atom-field coupling constant and ~ is the
interaction time assumed to be the same for each atom.

Now, let us make a state measurement on the kth atom
coming out from the cavity and consequently reduce the
state of the field to

")=~'k'y%'"'~n ) (2.3)

where 1V' ' is the normalization constant and 4'„'are the
new amplitudes. Each measurement step is followed by
the normalization of the state vector by N' '. The new
amplitudes, 4'„',are functions of the old ones, 4'„
and for our four schemes they read as follows:

@(k) gp(k —1)C
n n n+1

gp(k) qy(k —1)(
n n n

qf( k) qf( k —1)g
n n —1 n

(k) (k —1)
, S„

(2.4a)

(2.4c)

(2.4d)

for the schemes a-M-a, b-M-b, a-M-b, and b-M-a, re-
spectively, providing us with the iteration rules to deter-
mine the evolution of the state of the fields from atom to
atom. The probability of finding the kth atom in the
desired state is calculated as

After the interaction the state of the atom-field system
reads as

~4'"') =g (Il'„" "[C„+,a, n ) iS„—+(~b, n+I )],

II. SINGLE MICROMASER WITH CONDITIONAL
MEASUREMENTS OF ATOMS

p(k)=y ~q/(k)~2=
~(k)2

n

(2.5)

Consider a beam of two-level atoms (upper ~a ), lower
(b ) ) interacting with a resonant microwave field in a loss-

Starting from an initial field given by the amplitudes,
4'„',apart from the normalization constant the field am-
plitudes after the kth atom are given by
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qp( k) qp(0) C k
n n n+1

qp( k) qg(0) C k
n n n

(k) — (0) kS S &. ~ .S
(k) (0)

+k Sn + 1Sn +2. . .S„+

(2.6a)

(2.6b)

(2.6d)

0.8-

0.6-

for a -M-a, b -M-b, a -M-b, and b -M-a, respectively.
In the case of the two energy-preserving schemes,

a-M-a and b-M-b, where atoms are injected and detected
in the same states [29] it can be seen from Eqs. (2.6a) and
(2.6b) that starting from, e.g. , a coherent state of average
photon number, ~a~, the state vector evolves toward one
or a superposition of several distinct Pock states as atoms
go through the cavity. (For the sake of simplicity we are
going to use the term "Fock state" for the states that are
actually Fock states only in the limit of k goes to infinity. )

These peaks arise under the envelope of the initial ampli-
tude distribution at those n's where the cosine function is
equal to zero in the limit of k goes to infinity. This means
that the possible location of the peaks is determined by
the equation, gr&n + l =le for a-M-a and gr&n =l~
for b-M-b, where I =0, 1,2, . . .. Figure 2 gives two exam-
ples for a-M-a for an initial coherent state of average
photon number, a = 10, atom number, k = 100, and in-
teraction parameters, g~=1.0 and m. A single Pock
state, ~9), and a superposition of Fock states at integer's
squares minus one are generated for g&=1.0 and ~, re-
spectively. We get very similar results for b-M-b, al-
though the peaks are shifted exactly by one toward larger
n's for the + 1 difference in the argument of the cosine
functions in Eqs. (2.6a) and (2.6b). For later purposes we
should mention here that for this reason it is possible to
generate the vacuum Fock state, 0), via b M bwhich -is-
not possible via a-M-a. The physical meaning of the +1
is that a two-level atom cannot absorb a photon from, but
can emit a photon to the vacuum. Apart from this
difference these two schemes apply very similar mecha-
nisms. The measurement process favors those photon
numbers for which the Rabi angle is close to the multi-
ples of m in order to have the same atomic state detected
as the one that was injected. The state vector gradually
becomes peaked at these photon numbers as atoms pass
through.

0.4-

0.2-

I

25 30

FIG. 2. Amplitude distribution in the number representation
of the state vector of the field in a single micromaser in the case
of scheme a-M-a. The dot-dashed line represents the initial
coherent field of parameter a =10. The fields generated at
atom number k=100 for g&=1.0 and m are depicted by the
solid and dotted lines, respectively.

For the energy-transferring schemes, a -M-b and
b-M-a, where atoms are injected and detected in different
states, we have a complicated product of different sine
functions in Eqs. (2.6c) and (2.6d). The example depicted
in Fig. 3 for a-M-b shows that the initial distribution of
the coherent states separates into two distinct parts as
atoms pass through. The iteration rule Eq. (2.4c) tells us
that the state vector shifts by one photon and gets multi-
plied by the same sine function, 5„,every time an atom
passes through. Hence, a growing region of the state vec-
tor will have zero amplitudes when multiplied by S„=0,
until finally, at a certain atom number k the whole wave
function becomes zero. For this and all the consecutive
atoms the probability of measuring the desired atomic
state, ~b ), is zero. The atom is trapped in the other state,
~a ), and the conditional measurement scheme cannot be
followed beyond this point. If there is no such integer
number n for which S„=Oexactly, we will end up with a
rapidly oscillating amplitude distribution as can be seen
in the figure enlarged due to the disappearance of the reg-
ular peaks evolving toward larger photon numbers (in
a M batoms -alw-ays leave a photon in the cavity). Al-
though the probability of detecting the lower atomic state

0.8- I I I I I

0.4-

-0.4-
g
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FIG. 3. Amplitude distribution in the nurn-
ber representation of the state vector of the
field in a single micromaser in the case of
scheme a-M-b. The dot-dashed lines represent
the initial coherent field of parameter a =10
and the fields generated at di6'erent atom num-
bers k =4, 8, 30 and 40 for g~=0. 9 are depict-
ed by the solid lines.
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is not zero in this case but it is small. The largest separa-
tion of the regular peaks that can be achieved before
trapping (or before the oscillatory structure would show
up) is determined by the location of the trapping states
for which S„=O,given by n, =(lvrigr), 1=1,2, 3, . . . .

t

The distribution is bound to evolve between these boun-
daries. Apart from the +1 difference in the argument of
the sine functions in Eqs. (2.4c) and (2.4d) we have exact-
ly the same effect for b-M-a, except that the direction of
the shift in Eq. (2.4d) is the opposite, consequently, the
peaks evolve toward lower n's ending up finally in one of
the trapping states after a certain number of atoms (in
b M aa-tom-s always absorb a photon from the cavity).
Schemes, a-M-b and b-M-a, apply the same mechanisms.
The measurement process suppresses those photon num-
bers from the distribution for which the Rabi angle is
close to the multiples of m and the emission (absorption)
of a photon is prohibited for a M b(b-M-a). -A-fter a
certain number of atoms the whole state vector becomes
practically zero and the atoms are trapped in the upper
(lower) state.

We are going to see the implications of these effects in
the two-cavity problem in the next sections in "two de-
grees of freedom. " The measurement process will select a
pair or, more importantly, sometimes two pairs of photon
numbers from the two fields to favor (disfavor). An in-

terference of the two corresponding paths is expected in
the latter case indicating that the states of the fields in the
two separate micromaser cavities are no longer indepen-
dent but they are correlated.

III. CQUPI. KB MICRQMASERS
WITH CQNDITIQNAI. MKASUREMKNTS QF ATOMS

Let us consider now two micromaser fields coupled by
the common pumping atomic beam in such a way that
atoms first interact with the field in cavity 1 and then
proceed to cavity 2 (see Fig. 1). The same assumptions
apply as in Sec. II: no cavity losses, zero temperature,
single atom resonant interaction, no atomic velocity
spread, 100% detection efficiency. Similarly to Sec. II we
investigate four different schemes: a -M'M"-a,
b-M'M"-b, a-M'M"-b, and b-M'M"-a indicating the
state of each atom, ~a ) or b ), before and after the two
maser cavities, M' and M".

The state of the field after the (k —1)th atom left but
before the kth atom entered the cavity is given by

(3.1)
nl, n2

After the kth atom has interacted with the fields the state
of the atom-fields system reads as

4'"')= g (P'„„"[C„'+, (C„"+,a, n„n2) iS„"+,—b, n„n2+1))
nl, n2

—iS„'+i(C„"~b, n)+1, n2) iS„"
~ , a—n+)I, n 2 1))], (3.2a)

or

N("') = g q((„"„"[C„'(C„"~b, n „nz) iS„"~—a, n „nz—1) )

nl, n2

—iS„' (C„"+, ~a, n) —I, n~ ) iS„"+,(b, n, ——l, n2+1) )], (3.2b)

if the atom was injected in its upper, or lower state,
respectively. Here, S„'—:sin(g'r'Qn i ) and C„'

1 1:—cos(g'r'Qn, ) correspond to the first and the double-
primed ones, S„"and C„",to the second micromaser.

n2 n2'

After the interaction with both fields the state of the
atom is measured and the state of the fields is reduced to

~ip(k)) ~(k) y y(k)
~

)
n l, n2

(3.3)

(3.4b)

(3.4c)

Each measurement is followed by a renormalization of
the state vector by X' '. The new amplitudes, 0"„'„,are

functions of the old ones, 4'„"„",and for our four
1' 2

schemes they read as follows:

(k) (k —1) (k —1) I II
%'nl n2

—Tnt n2 Cnl+1Cn2+1 0'nl 1 n2+ 1Sn Sn +

I

(k) (k —1) (k —1) II
+n l, n2 +nl, n2+ 1Cn1Sn2+ 1 ++n

l + 1,n2Sn l + 1Cn2+ 1

(3.4d)

for a-M'M"-a, b-M'M"-b, a-M'M"-b, and b-M'M"-a,
respectively, providing us with the iteration rules deter-
mining the evolution of the state of the fields from atom
to atom. The probability of finding the kth atom in the
desired state is

p(k)= g n l, n2 ~(k)2
nl, n2

(3.5)

The evolution of the two fields will be studied in the next
section by iterating the amplitudes according to one of
the rules above starting from coherent states of the two
fields. We are going to investigate the correlations build-
ing up between the two micromasers as a result of the in-
terference between the two paths that each atom can fol-
low when traversing the cavities. In order to do so we
define mth-order correlation by the nonseparability con-
dition given by
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&(& & ) &&&& &&&™) (3.6)

where &, and &2 are the field operators of micromasers 1

and 2, respectively. We would like to draw attention to
that fact that this is a correlation between fields of two
difFerent micromasers, i.e., an entanglement of two nonlo-
cal subsystems. Thus, carrying out a measurement that
reduces the state of one of the fields results in a reduction
of the state of the other field located at a difFerent point
in space. One example of such a state vector of Mth-
order correlation is given by

—(ln„~,)+~~, +M, ~,+I ) ),
2

(3.7)

a possible production of which will be shown in the next
section (see also in Ref. [28]).

IV. EVOLUTION OF THK FIELDS
FOR VARIOUS CONDITIONAL MEASUREMENT

SCHEMES

Let us assume that both field are initially in coherent
states of the same a given by

nI+n2
~e"'& =e y ~n, , n, &

nl, n2 n 1!n 2'
(4.1)

A. Energy-preserving schemes, a-M'M"-a and b-M'M"-b

Atoms are injected into the first cavity and detected
after the second one in the same state. Let us consider
scheme a-M'M"-a first. The possible paths the atom can
follow are aoaiaz and aob&a2 in Fig. 4. They both
preserve the total energy of the two micromasers. Fur-
thermore, aoaia2 preserves the photon number in both
cavities separately, while aobia2 make the photon num-

ao a~ a2
in-a ~- ' — - ' — — ~ out-a

in-b
b

ORE-b

b,

FIG. 4. Possible paths a two-level atom (upper a, lower b)
can follow when passing through the two micromaser fields.
The indices 0, 1, and 2 represent the position of the atom before,
between and after the two cavities, respectively. Starting from
ni and n2 the final number of photons due to each path is
shown above the arrows.

depicted for a =10 and k=0 in Fig. 5. According to
Eq. (3.6) the two fields are uncorrelated because their
state vector is separable into a tensor product of two
coherent states in the two cavities

~
a )„„;,„,~

a )„„;,„2.
We are going to consider typical examples for the evolu-
tion of the fields for the four conditional measurement
schemes, a -M'M"-a, b -M'M"-b, a -M'M"-b, and
b-M'M"-a, applying the corresponding iteration rules of
Eq. (3.4) and assuming equal interaction parameters,
g ~=g'~'=g "~",in both cavities.

ber increase in the first and decrease in the second cavity.
We can manipulate the probabilities of these paths via
the interaction times in the cavities. Let us see some typ-
ical examples for the evolution and the steady state of the
fields at difFerent parameters.

Consider the interaction parameter, g~=1.0. Figure 5
shows that the state of the fields gets localized approxi-
mately in the Fock state, 9,9), as atom number k
goes to infinity, with some contributions from

~
10,8 ), ~

11,7 ), . . . , 18,0 ) that are decreasing with k.
The solid line in Fig. 7 shows that the probability of
finding the atom in the required upper state is increasing
with k and is approximately unity for large k's. This
efFect can be understood in the following way. The initial
amplitudes of the coherent fields are the largest around
n, =n2=10. For these photon numbers and for the
above interaction times the probability of path aoa, a& is
much larger than the one for the alternative path aob, az,
because C,o—= 1 and S,o—=0 [see Eqs. (2.2a) and (2.2b)].
The fields get localized around n& —=nz—=9 due to path
aoa ia2 corresponding to a Rabi angle of ~, which locali-
zation further increases the enhancement of path aoa, a2
itself. Path aob, a2 gives rise to the small contributions
from

~
10,8 ), 11,7 ), . . . , ~

18,0) . Apart from these small
amplitudes this production of a Fock state is very similar
to the one discussed in Sec. II for the case of the single
micromaser. Since path aoa &a2 has a very high probabil-
ity throughout the whole evolution all atoms are practi-
cally in their upper state before, between, and after the
cavities. We practically have two independent micro-
masers both operating in scheme a-M-a, where atoms
enter and leave both cavities in their upper state. Conse-
quently, the same mechanism applies as the one for the
single micromaser in a-M-a discussed in Sec. II, and we
get the uncorrelated Fock state, ~9, 9), as a product of
two ~9)'s depicted in Fig. 2 for each cavity. Small corre-
lation builds up only in the transient regime of coexisting
paths.

Let us now look at the interaction parameter, g~=0. S.
Figure 6 shows the evolution of the state of the fields,
while the probabilities of detecting the emerging atoms in
the upper state are given by the dashed line in Fig. 7. For
the initial coherent states the probability of path aoaiaz
is now much smaller than the one for aob, a2, which im-

plies that the number of photons is initially increasing in
cavity 1 and decreasing in cavity 2. This can be seen in
Fig. 6 for k =10 and 70. At around k =114 the field in
cavity 2 experiences a jump from vacuum to a high pho-
ton number, and finally the system settles to a Fock state
around

~
39, 39 ) with some contributions from

~40, 38), ~41, 37), ~42, 36), . . . , ~78, 0). Since aob, a2 has
a high probability initially, atoms enter cavity 2 in their
lower state. Thus cavity 1 operates in scheme a-M-b and
cavity 2 in b-M-a. Due to the increasing photon number
in cavity 1 this mechanism terminates itself according to
the trapping efFect in scheme a-M-b discussed in Sec. II.
At n i

=—39 the probability of dropping a photon in cavity
1 becomes approximately zero, because S„+,—=0, and the

system is back to the schemes a-M-a, a-M-a in both cavi-
ties discussed above. The photon number in cavity 1
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FIG. 5. Density plots show-
ing the evolution of the ampli-
tude distribution of the fields in
the number representation in the
case of scheme a -M'M"-a.
Lighter and darker points indi-
cate positive and negative ampli-
tudes, respectively, as compared
to the gray base of the zero level.
The initial coherent field of pa-
rameter a =10 is given by the
plot denoted by atom number
k=O. The fields generated at
gw= 1.0 for atom numbers
k=10, 70, and 300 show a local-
ization around the Fock state,
19,9), with small contributions

that are decreasing with k.

60-
I I I I

40-

20—

40-

20-

UIH!

w r Ii'Ir—

FIG. 6. Density plots show-

ing the evolution of the ampli-
tude distribution of the fields in
scheme a-M'M"-a starting from
the field shown in Fig. 5 for
k=O. The generated fields at
g~= O. 5 for atom numbers
k=10, 70, 114, and 300 show a
jump in the photon number in
the second cavity around
k=114 and then a localization
around the Fock state, 139,39),
with small contributions from
140,38), 141,37), 142, 36 ), . . . ,
178,0) that are decreasing with
k.
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locks to n
&
—=39, while the one in cavity 2 becomes

peaked according to the mechanism in a single micro-
maser in scheme a-M-a. Thus, the same uncorrelated
steady state of the fields is generated as if they were in-

dependent, but the time evolution is di6'erent. Both fields
lock to photon numbers that assure a Rabi angle of m.

that implies an a-M-a, a-M-a operation for both micro-
masers.

At large g~-s the system does not follow this kind of
evolution (see Fig. 8). There are several photon numbers
in this case that drive the atom into both atomic states
between the cavities resulting in superimposed
a -M-a, a -M-b operation of the first and a -M-a, b -M-a
operation of the second micromaser. Nevertheless, the
state of the fields at steady state settles to a superposition
of Pock states in both cavities that assure Rabi angles
that are the multiples of x resulting again in an indepen-
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FIG. 7. The probabilities of detecting the upper state, ~a ), of
atom number k in scheme a-M'M"-a during the evolution of
the fields shown in Figs. 5 and 6 for g~= 1.0 and 0.5 depicted by
the solid and dashed lines, respectively.
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FIG. 8. (a) Density plot of the amplitude
distribution of the fields in scheme a-M'M"-a
at atom number k =50 for g~= m starting from
coherent fields of parameter n =30. The gen-

erated Fock states are located at photon num-

bers that are squares integers minus one under

the envelope of the amplitude distribution of
the initial fields. (b) Three-dimensional plot of
the photon statistics that are the squares of the

amplitudes depicted in (a).
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where X stands for normalization. It is easy to see that
according to Eq. (3.6) the two fields are uncorrelated, be-
cause the state vector above is separable as

I
+ &

—=N(124&+135 & )„„;,y, (124 &+ I35 & ),.„,,y, . (4.3)

In these examples for a-M'M"-a both micromasers
operate at steady state in scheme a-M-a, i.e., from the
possible paths aoa, a2 is realized only. The redistribution
of the photons along path aobia2 changes the probabili-
ties for the two paths in such a way that after a certain
time evolution it will ultimately terminate itself. This
will put both cavities into independent a-M-a schemes
and atoms will go along aoa, a2 at steady state. Starting
from uncorrelated coherent states of both fields there is a
transient entanglement between them during the photon
redistribution process until the steady state is reached.
Due to the separability of the initial state the independent
production of Fock states under the envelope of the ini-
tial amplitude distribution in the two cavities will also be
separable providing us with fields that are uncorrelated at
steady state as well.

Scheme b-M'M"-b is very similar to a-M'M"-a dis-
cussed above with some minor differences. First, there is
a + 1 difference in the generated Fock states as a result of
the +1 difference in the arguments of the cosines in Eqs.
(2.6a) and (2.6b) similarly to what we have seen in Sec. II.
Second, it has also been shown there that due to this + 1

scheme b-M-b can while a-M-a cannot generate the vac-
uum. As a consequence of this the second field jumps to
a vacuum in the case of scheme b-M'M"-b instead of the
finite photon number that we have found above for
a -M'M"-a at g~ =0.5. Third, the opposite energy
transfer between the cavities (the possible paths are
bob, b2 and boa, bz ) implies that the set of states contrib-
uting to the field additionally to the main Fock states is
approximately the mirror image of the one in scheme
a-M'M"-a. It follows that the degree of (transient) corre-
lation is of the same order in both schemes.

In this subsection we considered the two energy
preserving schemes, a-M'M"-a and b-M'M"-b, where
the atoms are injected before and detected after the in-
teraction to be in the same state. There are two possible
paths they can follow: one which transports photons
from one of the cavities to the other one and another
which does not change the photon number at all. Only
the latter one survives at steady state. The transporting
path is transient and serves as a photon redistribution
process to set the steady state of the fields in which it
then terminates itself. Consequently, both micromasers
are independently in the photon-preserving schemes,
a-M-a or b-M-b, at steady state providing us with a set
of Fock states assuring Rabi angles to be the multiples of

dent a-M-a, a-M-a operation for both micromasers. In
the example in Fig. 8, where the parameter of the initial
coherent state is a =30 and g~=~ the fields settle to a
steady-state superposition of Pock states at integer
squares minus one, mainly at 24 and 35. Thus, the state
of the field can be approximated with

N(—24, 24 & +
I »,» & +

l
24, 35 & +

l
35,24 & ), (4.2)

~ located under the envelope of the initial state of the
fields. We want to emphasize here that only uncorrelated
initial fields have been considered so far. It has been seen
from the examples above that if the initial state of the
fields were separable, then their steady state would be
separate as well, i.e., uncorrelated initial fields provide us
with uncorrelated steady-state fields. We are going to see
in a later subsection that correlated initial fields result in
correlated steady-state fields. We will show that an en-
tanglement generated via some other schemes can be
frozen into a steady state using one of the energy-
preserving schemes, a-M'M"-a, or b-M'M"-b.

B. Energy-transferring schemes, a-M'M"-b and b-M'M"-a,
and tw'0-cavity trapping

Atoms are injected into the first cavity and detected
after the interaction in different states. Let us consider
scheme a-M'M"-b first. The possible paths are aoa, b2
aIld a0~1~2 b th Ilc eas Ilg th e eigy the system by
one photon. The former one preserves the energy of the
first and the latter one preserves the energy of the second
micromaser.

Figure 9(a) shows typical evolution of the fields for
short interaction times as in our example for g&=0.3,
0.5, and 0.8. It can be seen in the first row of the figure
for go=0. 3 that since the probabilities of the two atomic
paths are approximately equal at these interaction times
for the dominant part of the initial field [C,o —=S,o in Eqs.
(2.2a) and (2.2b)] the amplitude distribution is stretched
along a straight line as it is shown for k =20. It is easy to
see that the state vector of the system cannot be separat-
ed into a product of two, consequently, the fields are
correlated in this regime. In other words, clue to the "op-
timum lack of which-path information" about the state of
the atom between the cavities there is a strong interfer-
ence between the two paths. The distribution, the shape
of which becomes thinner as it evolves toward higher
photon numbers (in the present scheme, a M'M" b, --
atoms are required to leave a photon in one of the two
cavities), separates into two regions and finally ends up in
a rapidly oscillating structure mainly around the vacuum
of cavity 2 and n

&

-——50 at k =40. The other region at the
vacuum of cavity 1 and n i

-=—50 has already disappeared.
This effect cannot be explainecI by the single cavity trap-
ping mechanism discussed in Sec. II since the formula
n, =(Iir/gr) predicts a trapping for 3 =1 at the photon
number n, =—100 that is much higher than where the dis-
tribution is located in this example. We will explain later
that this is due to a new mechanism that we call tmo-
cavity trapping based on the coupling between the two
fields to distinguish it from the single-cavity trapping dis-
cussed in Sec. II. In the second row for g~=0. 5 consid-
ering the dominant part of the initial field it is highly
probable that the atom leaves a photon in cavity
1[Cio—=0 and Sio—= 1 in Eq. (2.2a)] making the second
cavity operate in scheme b-M-b. Thus, the photon num-
ber increases in both cavities in such a way that the dis-
tribution localizes around a point in the ni —n2 space
where n, —=n2 showing a balance between the fields. The
mechanism is very similar to the one for b-M'M"-b ex-
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cept now the distribution as a whole evolves toward
higher photon numbers. Due to the localization, or in
other words due to the "which-path" information that
the atom is in its lower state between the cavities with
high probability the two micromasers are uncorrelated in
this regime. At n, =n2 =40 the two fields independently
reach their single-cavity trapping points determined by
the formula n, =(lm/gr} . for l = I, where the oscillatory
structure shows up exactly the same way as it has been
discussed in Sec. II. The uncorrelated evolution ends up
in an uncorrelated single-cavity trapping.

These two regimes shown in the first two rows of the
figure are the basic mechanisms that the system follows.
For larger interaction parameters, for example, for
g~=O. 8 shown in the third and fourth rows of the figure,
the system undergoes transitions between them. It can be
seen in the third row that it switches from the uncorrelat-
ed regime to the correlated one at k =15. However, the
stretched distribution evolving toward higher photon
numbers experiences a new effect. It becomes double
peaked around k =30 showing fields with state vector ap-
proximately of the form of

I+& -=&(l», 50&+ 150, iS) ), (4.4)

exhibiting, according to Eq. (3.6), 35th-order correlation
(X is a normalization constant}. This effect is similar to
what happened to the distribution at g~=0. 3 and cannot
be explained by the single-cavity trapping effect of Sec.
II. The iteration rule given for the present scheme by Eq.
(3.4c} tells us that the distribution separates into two
parts as soon as it reaches n, =-nz =—35. At these photon
numbers and interaction parameters, g ~=0.8, the cosines
C„and C„become zero in the formula resulting in a

1 "2
zero amplitude for the middle of the stretched distribu-
tion. This zero amplitude region increases as atoms pass
through due to the shift of the amplitudes from atom to
atom in a similar way as discussed for the single-cavity
trapping effect in Sec. II, except now it happens in two
dimensions. This is a two-cavity trapping effect strongly
relying on the coupling between the two fields, because it
requires the cosines of both cavities C„and C„ to be

1 "2
zero simultaneously in order to have both terms in the
sum zero in Eq. (3.4c). Furthermore, it can be seen that
since the amplitudes are shifted in both n, and n 2 in the
equation the distribution will be suppressed in both direc-
tions of the n, —n2 space. In the single-cavity trapping the
sine function is zero resulting in trapped photon numbers
at n, =(le./gr), / = 1,2, 3,4, . . . , while in the case of the
two-cavity trapping the cosine function is zero implying
It«=(lm/2gr), l= 1,3, 5, . . . . Figure 9(a) shows that the
double-peaked distribution built up by k =30 begins to be
destroyed at k =35. The two-cavity trapping suppresses
the amplitudes starting from the middle, while the
single-cavity trapping bounds the stretched distribution
from the ends, showing the presence of the sine functions
in the equation. These two mechanisms gradually
suppress the state vector and finally result in the oscilla-
tory structures as can be seen in the figure for k =35. In
our example for g~=0. 8 the l=1 single-cavity trapping
lines are located at n, =—15 in both directions of n, and n2

binding the stretched distribution from "outside. " The
two-cavity trapping takes place when the middle of the
distribution is at n& —=nz ———35. These two mechanisms
determine the location of the two peaks around n& =—15
and 50 as well as n 2

—=50 and 15 that can be approximat-
ed by Eq. (4.4). The photon statistics of the fields that are
equal to the square of the amplitude distribution given in
the density plots are shown in Fig. 9(b) for the double-
peaked structure depicted in Fig. 9(a} for g&=0.8, and
k=30. Similar explanation can be given for what we
have seen in the case of g~=O. 3.

The probabilities that the atoms are detected in their
lower state after the interaction according to the scheme
a-M'M"-b are depicted in Fig. 10 for the three examples
of go=0. 3, 0.5, 0.8 given in Fig. 9(a). It can be seen that
the probability drops at the transitions between the un-
correlated and correlated regimes as well as at the trap-
ping. For go=0. 3 (solid line) it decreases around k —=20
due to the two-cavity trapping effect separating the
stretched distribution into two regions. For g~=0. 5

(dashed line) it starts from a low level due to the coex-
istence of the uncorrelated and correlated regimes and
then it drops again when the single-cavity trapping takes
place at k =—40. The dot-dashed line for g~=0. 8 exhibits
drops of the probability around k =—13 at the transition
between the uncorrelated and correlated regimes and
around k -=33 where the effect of the two trapping mech-
anisms becomes dominant. In order to generate the
double-peaked superposition given in Fig. 9(a) first of all
we have to follow the conditional measurement scheme
a-M'M"-b and detect atoms always in their lower state
after the interaction. This is made difBcult especially by
the dips in the probability curve. Furthermore, even if
we measured the required sequence of atoms we have to
shut the atomic beam down after the 30th atom, because
the superposition would be destroyed by the atoms to
come due to the trapping effects.

For large g~-s the distribution is bound in a dense lat-
tice of single-cavity trapping lines as it can be seen in Fig.
11 for e =30,gz=m. In this case the trapping lines are
located around photon numbers of squares of integers
mainly at 25, 36, and 49 corresponding to 1=5, 6, and 7,
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FIG. 10. The probabilities of detecting the lower state ~b ) of
atom number k in scheme a-M'M"-b during the evolution of
the fields shown in Fig. 9(a) for g~=0.3, 0.5, and 0.8 depicted by
the solid, dashed, and dot-dashed lines, respectively.
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respectively, due to the o,'=30 initial fields in this exam-
ple. This implies that the system reaches its trapping
points after a few atoms very soon. In our example we
get a lot of oscillatory structures above atom number
k =6 and the 6eld depicted in Fig. 11 disappears.

Scheme b-M'M"-a is very similar to a-M'M"-b dis-
cussed above. The system experiences similar transitions
between correlated and uncorrelated regimes, except the
distribution evolves toward lower photon numbers, since
in this scheme atoms are required to take a photon away
from the fields. This also follows from the opposite shift
of the amplitudes in Eq. (3.4d).

In this subsection we considered the two schemes,
a-M'M"-b and b-M'M"-a, that do not preserve the ener-

gy of the system, which implies that stationary behavior
cannot be achieved. The regular operation ends when the
system runs into trapping points where the amplitude dis-
tribution is taken over by complicated rapidly oscillating
structures. Nevertheless, in the regular regime before
these structures would appear the system can exhibit
correlated and uncorrelated regimes as we11 as transitions
between them. In the correlated regime double-peaked
photon statistics can be generated due to the effect of the
coexisting single- and two-cavity trapping mechanisms.
These fields showing high-order correlation seem to be
diKcult to produce in an experiment due to their tran-
sient character and the low detection probabilities of the
conditioned atomic states. In the next subsection we are
going to show that a combination of the energy-
transferring and energy-preserving schemes can generate
arbitrary entangled steady states of the two fie1ds at
reasonably high atomic detection probabilities.

C. Combination of energy-transferring
and energy-preserving schemes

It was shown in Sec. IV A that one can generate a set
of Fock states located under the envelope of the initial

~% -=X( ~99, 35 &+ ~63, 63 &+
~
35,99 & ), (4.5)

where X is a normalization factor. This is also the steady
state of the fields, since the production of the Fock states
is a result of the same mechanism as the one discussed in
Sec. IV A. In this case, however, the "initial" fields are
correlated.

A "two-term" superposition of the fields can be pro-
duced if instead of m/2 we choose go =1.0 to be the new
interaction parameter. The generated fields are depicted
in Fig. 12 (c) and can be approximated with

coherent states of the fields by the energy-preserving
schemes, although they will be uncorrelated if the initial
fields were uncorrelated. In Sec. IV 8 we learned that it
is possible to generate correlated fields starting from un-
correlated ones by the energy-transferring schemes, al-
though as a result of the trapping effects not at steady
state. In the present section we want to combine these
two kinds of schemes in such a way that after preparing a
correlated state of fields from uncorrelated ones by
energy-transferring schemes we use these correlated fields
as initial condition and switch to an energy-preserving
scheme. This way the generated Fock states will be lo-
cated under the envelope of the "initial" correlated fields
at steady state showing strong correlation between the
two micromasers. Let us start the system in the scheme
a-M'M"-b at interaction times such as go=0. 142 from
uncorrelated coherent fields of a =30. It can be under-
stood from Sec. IV 8 that after 100 atoms the generated
fields wi11 exhibit a long stretched distribution as depicted
in Fig. 12(a) showing strong correlation between the
fields. This correlation would be destroyed by the atoms
to come due to the trapping mechanisms if scheme
a-M'M"-b would be followed any further. We switch
our system to another scheme instead. From k =101 we
continue in the energy-preserving scheme, a-M'M"-a,
with altered interaction times, e.g., such as gr=m. /2.
The interaction time can be changed in an experiment by
changing the velocity of the atoms. After the next 200
atoms we get a superposition of three Fock states at
squares of even integers minus one depicted in Fig. 12(b)
that could be approximated by

iq &=—X(i88,38&+i38,88&) (4.6)

FIG. 11. Density plot of the amplitude distribution of the
fields in scheme a-M'M"-b at atom number k=6 for gw=m
starting from coherent fields of parameter o. =30.

showing 50th-order correlation at steady state. A three-
dimensional plot of the photon probability distribution is
given in Fig. 13 for this case. In Fig. 12(d) we show what
happens if we switch between the schemes too early. In-
stead of k ==100 we make the same switch as above but
now at k =50. Obviously, the distribution at the switch
is much broader this time than it was in Fig. 12(a) allow-
ing for a peak to arise at ~38, 38 &.

The probability of finding the atoms in the desired
states (

~
b & before and

~
a & after the switch) is depicted in

Fig. 14. After getting through the risky erst scheme,
a-M'M"-b, and generating the stretched distribution for
scheme a-M'M"-a to continue from, the detection of the
conditioned atomic states becomes highly probable (unity
at large k's) locking the fields into a coherent superposi-
tion at steady state. In principle any superposition can be
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FIG. 12. Density plots of the
amplitude distributions of the
fields. (a) At the 100th atom
starting from coherent fields of
o. =30 in scheme a-M'M"-b for
g~=0. 142; (b) at the 300th atom
after switching from the field
generated in (a) at the 100th
atom to a-M'M"-a for

g ~= m /2; (c) same as (b) but
switching to g&=1.0; (d) same as
(c) but switching at the 50th
atom.
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FIG. 13. Three-dimensional plot of the pho-
ton statistics that are the squares of the ampli-
tudes depicted in Fig. 12(c) showing a double-
peaked distribution at steady state.
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FIG. 14. Probabilities of detecting the required state of atom
number k corresponding to the evolution of the fields in the
schemes given in Fig. 12(b), 12(c), and 12(d) depicted by solid,
dashed, and dot-dashed lines, respectively. The probability de-
creases before the switching, then after a transient at the switch-
ing it jumps to a high value and then increases to unity at steady
state.

V. SUMMARY

In the present paper we studied two lossless micro-
masers coupled by the common pumping beam of two-
level atoms when the state of the atoms is conditionally
measured after the interaction. The atoms can follow
two possible paths to reach the same final state the proba-
bilities of which can be manipulated by the interaction
times in the two cavities. The interference of two equally
probable paths entangles the two fields while a single
highly probable path results in two independent micro-
masers. Hence, the two fields can be correlated or
decorrelated as we decide whether to favor two paths
simultaneously or only one of them ("which-path" infor-

produced by choosing the appropriate initial coherent
states and interaction parameters. The initial states set
the region in the space, n& —nz, where we are going to
work. Using scheme a-M'M"-b the interaction parame-
ters assure the production of a stretched distribution in
this region provided g~a=m. /4 is satisfied, and then in
scheme a-M'M"-a they fix the location of the final Fock
states under the envelope of the stretched distribution.

We should mention here, that stretched distributions
can be generated by any of the two energy-transferring
schemes, and any of the energy-preserving schemes can
produce Fock states under the envelope of initial corre-
lated fields. Thus, any pair of the energy-transferring and
energy-preserving schemes can be used to produce a
steady-state entanglement of nonlocal fields with consid-
erably high detection probability.

mation). This is very similar to Young s double slit ex-
periment.

The pure evolution of the fields starting from uncorre-
lated coherent states is studied for the four simplest mea-
surement schemes denoted by a-M'M"-a, b-M'M"-b,
a-M'M"-b, and b-M'M"-a showing the state of the
atoms,

~
a ) and

~
b ), before and after the two maser cavi-

ties M' and M"
~ The energy-preserving schemes where

all the atoms are injected before and detected after the in-
teraction in the same state can be used to generate an un-
correlated set of Pock states in two dimensions under the
envelope of the initial fields at steady state. We have very
small transient entanglement of the two micromasers.
The probability that the atoms follow the prescribed evo-
lution scheme is high. It increases with atom number k
and it is approximately unity for large k's and at steady
state.

In the case of the energy-transferring schemes the sys-
tem is shown to operate in correlated or uncorrelated re-
gimes or to make transitions between them depending on
the interaction times. An entanglement of the fields
resembling the two-term form of ~N, N+M )
+ ~N+M, N) of Mth-order correlation can be achieved
in the optimum case at a certain number of atoms as a re-
sult of the so-called single- and two-cavity trapping
mechanisms. This entanglement is a transient efFect, be-
cause further injection of atoms will destroy the superpo-
sition due to the trapping mechanisms themselves. The
probability to detect atoms in the required lower state is
low in these schemes and exhibits significant drops at the
transitions between the correlated and the uncorrelated
regimes as well as at the trapping points.

However, it is possible to generate an arbitrary steady-
state entanglement of the fields with high detection prob-
ability by switching the system from an energy-
transferring scheme to an energy-preserving one at an op-
timum atom number. The correlated state of fields gen-
erated by the former scheme serves as an initial condition
for the latter one. This implies that the Fock states gen-
erated by the latter scheme will be located under the en-
velope of this amplitude distribution and the two nonlo-
cal micromaser fields will be strongly correlated. In prin-
ciple, arbitrary entanglement of macroscopically large
number states of two nonlocal fields (nonlocal
Schrodinger cat) can be achieved via this combination of
schemes at steady state with high detection probability.
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