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Calculations of vibrational energies and rotational constants are carried out for the van der Waals
trimer Arz-HF. The calculations include all five intermolecular degrees of freedom. The different
intramolecular vibrational states v of the HF molecule are separated out adiabatically, so that
the calculations are carried out on effective intermolecular potentials for each HF vibrational state
separately. Calculations are performed both on pairwise-additive potentials, derived from the well-
known Ar-Ar and Ar-HF potentials, and on nonadditive potentials, incorporating various different
contributions to the three-body forces. The results are compared with experimental results from
high-resolution spectroscopy, and provide detailed information on the anisotropy of the nonadditive
intermolecular forces. As in previous work on Ar,-HC], it is found that a very important nonadditive
term arises from the interaction between the permanent multipoles of the HF molecule and the
exchange quadrupole caused by distortion of the two Ar atoms as they overlap. An improved model

of this term is described.

PACS number(s): 33.20.Vq, 34.20.Gj, 36.40.—c

I. INTRODUCTION

The intermolecular forces between atoms and mole-
cules are of great importance in studies of solids, liquids,
and clusters. Over the last decade, enormous advances
have been made in our understanding of interaction po-
tentials between atoms and small molecules. In particu-
lar, high-resolution spectra of van der Waals complexes
have been used to obtain very accurate intermolecular
potential energy surfaces for the interaction of Ar atoms
with small molecules such as H, [1], HF [2], HCI [3], H,O
[4], and NH3 [5]. In parallel with this work, there have
been important developments in ab initio techniques for
calculating intermolecular potentials.

Despite the advances in our understanding of pair po-
tentials, there remains a major obstacle in using the new
potentials for studies of condensed phases. This is the
problem of nonadditivity: the total interaction energy of
a cluster of molecules is not just the sum of the pairwise
interactions, but also includes three-body and higher n-
body terms [6]. For the rare gas solids, for example,
nonadditive terms are known to contribute up to 10%
to the binding energy. Unfortunately, most of the work
so far on nonadditive forces has been for purely atomic
systems; for systems containing molecules, there are no
reliable models of the nonadditive forces. This effectively
precludes the use of accurate pair potentials in simula-
tions of condensed phases.

There are many properties of matter that depend on
nonadditive interactions, but it is difficult to find ex-
periments that contain sufficiently detailed information
to allow information on the three-body forces to be ex-
tracted. The first prerequisite is that the pair potentials
involved should be known very accurately, so that the
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effects of nonadditive forces can be isolated. Until re-
cently, sufficiently accurate pair potentials were available
only for the rare gas pairs. However, as described above,
very good pair potentials are now available for simple
molecular systems such as Ar-HF and Ar-HCl. In ad-
dition, it has recently become possible to measure high-
resolution microwave, far-infrared, and infrared spectra
of van der Waals trimers such as Arp,-HCl [7-10] and
Ar,-HF [11,12]. The trimer spectra are very sensitive
to details of the interaction potential, so that there is
now the possibility of obtaining definitive experimental
information on nonadditive forces in systems containing
molecules.

Some progress has already been made toward this ob-
jective. Hutson et al. [13] carried out restricted dimen-
sionality calculations on Ar;-HCI, and established that
the microwave spectra [7] contained valuable informa-
tion on three-body forces. They also pointed out that
far-infrared spectra would sample the nonadditive forces
over a much wider range of geometries, and might allow
the determination of the three-body forces. This stim-
ulated extensive experimental work on the far-infrared
spectroscopy of Ar,-HC] [8-10]. Cooper and Hutson [14]
developed a computational method for calculating the
vibration-rotation energy levels of complexes such as Ar,-
HX (X=F, Cl, Br, etc.), including all five low-frequency
degrees of freedom. They showed that the frequencies
of the intermolecular bending bands in the far-infrared
spectrum of Ar,-HCI1 are very sensitive to three-body
forces, and that there are significant discrepancies be-
tween the predictions of pairwise-additive potentials and
the experimental results. In addition, they showed that
“conventional” types of nonadditive interaction, such as
the Axilrod-Teller triple-dipole term and the interactions
between the induced dipoles on the two Ar atoms, were
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not sufficient to resolve the discrepancies.

Cooper and Hutson identified a new type of non-
additive force that is expected to be important in all
molecular systems. This arises when two atoms or
molecules come close together and distort, so that their
multipole moments are modified: if the third body in the
system is a molecule (rather than an atom), the distor-
tion modifies the electrostatic interaction, and can thus
have a large effect on the energy. For Ary-HCIl, the im-
portant interaction is that between the distorted charge
distributions of the Ar atoms and the permanent mul-
tipole moments of the HCl molecule. In Ref. [14], the
charge distribution of the distorted Ar; moiety was rep-
resented by a quadrupole moment at the Ar, midpoint,
which was then allowed to interact with the dipole and
quadrupole moments of HCI; this was termed the “ex-
change quadrupole” interaction. Including the exchange
quadrupole term was found to give a good qualitative
explanation of the experimental results.

This model has also been applied to the far-infrared
spectrum of Ar,-DCI [15] and to the vibrational shifts
in the infrared fundamental band of Ar,-HF [16]. In
all these cases, the exchange quadrupole interaction was
found to be the only term large enough to explain the
discrepancies between the pairwise-additive calculations
and the experimental data. However, the model used
for this term in Refs. [14-16] overestimates the correc-
tion required: a rather smaller three-body term is actu-
ally needed to give agreement between experiment and
theory. Very recently, Farrell and Nesbitt [17] have suc-
ceeded in measuring spectra of Ar,-HF that correspond
to excitation of intermolecular bending bands involving
hindered internal rotation of HF in combination with the
HF stretch. In preliminary calculations on these bands,
we have found that our previous model overestimates
the corrections needed even more drastically than for
Ary-HCL. It is thus clear that an improved model of
the exchange multipole forces is needed. In addition,
a model designed to interpret the infrared combination
bands must include the dependence of the additive and
nonadditive forces on the HF stretching state. The pur-
pose of the present paper is to describe such a model,
and to apply it to the bending bands of Ar,-HF.

There have also been some ab initio studies of nonad-
ditive forces in Ar;-HX systems [18,19]. Szczeéniak et
al. [19] carried out calculations on Ar,-HCI and Ar,-HF
using supermolecular Mgller-Plesset perturbation theory
calculations, and decomposed the resulting energies into
contributions from different physical effects. Unfortu-
nately, they confined their attention to geometries with
the HX molecule in the heavy-atom plane, so that it is
not possible to use their results directly in dynamical cal-
culations.

The structure of the present paper is as follows. Sec-
tion II will describe the pairwise-additive potentials used
for Ar-Ar and Ar-HF, and the various nonadditive terms
considered. Sections III and IV will describe the com-
putational method used for calculating the energy levels
and other spectroscopic quantities. Section V will de-
scribe the results of the calculations, and Sec. VI will
summarize our conclusions.

II. COORDINATE SYSTEM
AND POTENTIAL ENERGY SURFACES

The coordinate system used for Ary-HF is shown in
Fig. 1. The positions of the two Ar atoms and the HF
center of mass are described by a set of Jacobi coordi-
nates: the Ar-Ar distance is denoted p, the distance from
the HF center of mass to the Ar, center of mass is denoted
R, and the angle between the vectors corresponding to
R and p is denoted x. The HF bond length is denoted
r, and the angle between the » and R vectors is 6, with
0 = 0° corresponding to the H atom of HF pointing di-
rectly towards the Ar, center of mass. Finally, the angle
¢ is the torsional angle between the r and p axes, viewed
along R: ¢ = 0° corresponds to HF lying in the plane
of the heavy atoms, while ¢ = 90° is the out-of-plane
geometry.

Ar,-HF is a highly asymmetric top: the c axis is per-
pendicular to the plane of the heavy atoms, and the b
axis lies close to R.

A. Pairwise-additive potentials

The pair potentials used in the present work follow.

(1) The Ar-Ar Hartree-Fock dispersion individually
damped (HFDID1) potential of Aziz [20]. This poten-
tial is the most recent fit to a wide range of experimen-
tal data, including both bulk properties such as second
virial coefficients and transport coefficients and micro-
scopic properties such as molecular beam scattering re-
sults and vibration-rotation energy levels. The potential
gives highly accurate vibrational frequencies and rota-
tional constants for the Ar dimer.

(2) The Ar-HF H6(4,3,2) potential of Hutson [2]. This
potential energy surface was fitted to spectroscopic con-
stants obtained from 24 different bands in the microwave,
far-infrared, and mid-infrared spectra of Ar-HF (v =0, 1
and 2) and Ar-DF (v = 0 and 1). The potential includes
both the anisotropy and the dependence on the vibra-
tional state v of the HF molecule; the latter is built in
parametrically, in terms of the mass-reduced vibrational
quantum number

n=(v+1)/uds, 1)

where ppr is the reduced mass of the HF molecule.
These two potentials are used to build up v-dependent
pairwise-additive potential energy surfaces for Ar,-HF.

o &

FIG. 1. Coordinate system used for Ar,-HF.
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Contour plots of various cuts through the additive sur-
faces are shown in Fig. 2. The heavy atoms form an ob-
tuse isosceles triangle at the equilibrium geometry, with
x = 90° and the H atom of HF pointing to the center
of mass of the Ar dimer, § = 0°. The HF molecule exe-
cutes very wide-amplitude bending motions in the angles
6 and ¢, sampling angles up to § = 80° even in the ground
state. The bending motion of the Ar-Ar fragment, repre-
sented by the angle X, is much more hindered: values of
x between about 75° and 105° are sampled in the ground
state. The amplitudes of motion in the R and p coordi-
nates are both about +0.5 A.

In comparing calculated quantities with experimental
results for the HF bending bands in Ar,-HF, the qual-

45

ity of the Ar-HF pair potential is crucial. The H6(4,3,2)
potential has proved to be remarkably successful in pre-
dicting the results of experiments that were not included
in determining it. A variety of new bands in the infrared
spectrum of Ar-HF have been predicted to within 0.1
cm~! [21,22]. In addition, the potential has been used
successfully to model state-to-state inelastic differential
cross sections [23] and the widths and shifts of pressure-
broadened infrared spectra of HF in Ar [24,25]. We esti-
mate that the remaining uncertainties in the Ar-HF pair
potential lead to uncertainties of 0.3 cm™! in the fre-
quencies of HF bending bands in Ar,-HF. The uncertain-
ties due to the Ar-Ar potential are even smaller than this.
The computational method and basis sets used in the

R (A)
R (A)

~140
Out—of—plane
~160 —_

0 50

100 150

FIG. 2. Contour plots of cuts
through the pairwise-additive
H6(4,3,2) + HFDID1 poten-
tial for v = 1. For each
contour plot, the coordinates
that were not varied were fixed
at the values R = 2.89 A,
p = 3.82 A, x = 90°, with
¢ = 0° for in-plane geometries
and ¢ = 90° for out-of-plane ge-
ometries. Contours are labeled

0.3 0.5
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present work lead to uncertainties of about £0.2 cm™1.

Thus, in general terms, we consider that any discrepan-
cies greater than +£0.5 cm~! between the experimental
results and calculations on pairwise-additive potentials
may be attributed to nonadditive intermolecular forces.

B. Nonadditive forces
1. Dispersion contributions

In atomic systems, the most important nonadditive
forces are those arising from dispersion. The leading
term in the three-body dispersion interaction is the well-
known Axilrod-Teller triple-dipole term [26], which for
atomic systems takes the form

3cos(91c0302cos93+1)’ @)

(3)
Vo =320 (S

where 71, 73, and r3 are the lengths of the sides of the
triangle formed by the three atoms and 6,, 62, and 83 are
the corresponding internal angles of the triangle. The
coefficient vy23 = 3Z,§3L = 269.9 Epad for Ar,-HF has
been evaluated by Kumar and Meath [27] from the dipole
oscillator strength distributions of Ar and HF. However,
this value is appropriate for r = r. (corresponding to a
mass-reduced quantum number 7 = 0), and we require
a coefficient that includes the dependence on 7. In the
present work, we have assumed that the Axilrod-Teller
coefficient has the same 7 dependence as the Ar-HF Cj
coefficient of Ref. [2], so that

v123(n) = v123(0)[1 + 0.02397n/u1/?], (3)

where u is the unified atomic mass unit.

In molecular systems, the triple-dipole interaction is
much more complicated because of the anisotropy of
molecular polarizabilities. An approximate form for the
triple-dipole energy under these circumstances has been
given by Stogryn [28],

y ,
Vopp = —;1_2—3__3 T12)ap(T23)vs(T31) po

3a1a2a
x(a1)va(az)py(@3)su, (4)
where o; is the polarizability tensor and &; is the mean

polarizability for particle i. T}; is a symmetric orientation
tensor, with Cartesian components

(Tig)op = H0e)elitle = et ®)

and (#;j)q is the component of the unit vector between
particles ¢ and j along Cartesian axis a. Equation (4)
uses the usual summation convention, summing over all
repeated suffixes representing Cartesian axes.

In the present work, Vppp was evaluated using aa, =
11.096 a} [29] and the 7-dependent HF polarizabilities
o) (n) and oy (n) of Ref. [2]. A contour plot of the result-
ing contribution in the (R, #) plane is shown in Fig. 3; it

180
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FIG. 3. Contour plot of the dispersion contribution Vppp
to the intermolecular potential for Arz;-HF (v = 1), for
R=289A, p=382A, and x = 90°.

is repulsive for all angles around the equilateral geometry.
However, it depends only weakly on the HF orientation,
and so may be expected to have relatively little effect on
the HF bending frequencies in the trimer.

For pair potentials, it is well known that the dispersion
interaction must be damped when overlap is significant,
to prevent the inverse power terms dominating the poten-
tial at short range. In principal, analogous damping func-
tions are needed for nonadditive dispersion terms [30,31].
However, damping functions for three-body interactions
are not as well understood as for pair potentials, and it
has been shown for Ar,-HCI [14] that damping the triple-
dipole term has little effect on the bending energy levels.
Accordingly, the triple-dipole formula was used without
damping in the present work.

2. Induction contributions

In a complex such as Ar;-HF, the highly polar HF
molecule creates substantial electric fields at the locations
of the two Ar atoms. These fields (and the corresponding
field gradients) polarize the Ar atoms, producing induced
dipole moments (and higher multipoles). The interac-
tions between the induced moments and the permanent
moments of the HF are already taken into account in the
Ar-HF pair potential, but there is a nonadditive energy
contribution arising from the interactions between the
induced moments on the two Ar atoms.

The electrostatic potential V at atom i is

V= Z Q1P (cos 19,-)/R£+1, (6)
1

where @ is the 2!-pole moment of HX, Pi(z) is a Leg-
endre polynomial, and R;,¥;,¢; are the coordinates of
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atom ¢ in an axis system with its z axis along the XH

bond. The corresponding components of the electric field
are

F, = Z[Q;R’+l(cos 9;) sin¥Y; cos <p,-]/R£+2,

l

F, = Z[Q,P{H(cos 9;) sin¥; sin<p,~]/R£+2, (7)

l

F, =) (I+1)QiPr1(cos 19,-)/R§+2,

l

where P/(z) = dP;(x)/dz. If only the dipole polarizabil-
ity of the Ar atoms is included, the fields produce in-
duced dipoles with Cartesian components p"‘d = o Fp.
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In previous work, the fields at the two Ar atoms were
evaluated, including HX multipole moments up to hex-
adecapole, and the interaction energy of the two induced
dipoles was calculated from

Vina = — [3(u? - D) (6 - ) — i - 3] /0%, (8)
where p is a unit vector along the Ar-Ar axis. The energy
contribution resulting from this treatment for Ar,-HF is
shown in the center right panel of Fig. 4. However, as will
be seen below, there are important cross terms between
the induced dipoles and other effects. We will therefore
postpone further consideration of the induction forces to
the next subsection.

Ar,—HF (new, eq)

Ar,—HF (old, eq)

-2

FIG. 4. Contour plots of var-

ious nonadditive contributions

23 to the intermolecular potential

0 0
0 50 100 150 0 50 100 150 for Ar;-HF (v = 1). All cuts
¢ (deg) ¢ (deq) through the potential are for
50 R =289 A, p=382A4A, and
180 — 90°
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quadrupole contribution, mod-
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3. Overlap-dependent contributions

In previous work, we considered short-range non-
additive forces arising from two different sources.

First, there is a short-range term analogous to that
for Ars, termed the exchange overlap contribution [32]:
when two atoms or molecules approach one another
closely, their electron clouds distort away from one an-
other in such a way as to reduce overlap. This distortion
modifies their overlap with a third body; if the third
body is near the axis of the first two, the overlap is in-
creased and there is a positive contribution to the three-
body energy. Conversely, for near-equilateral geometries,
the deformation produces a negative contribution to the
three-body energy. The previous work on Ar,-HCl [14]
showed that the exchange overlap term makes very small
contributions to the nonadditive shifts; accordingly, it
has not been included in the present study.

Secondly, as described in the Introduction, the overlap
distortion of the two Ar atoms produces a quadrupole
moment on the Ar; pair, and this can interact with the
permanent multipoles of the HF molecule. This gives rise
to an important electrostatic contribution to the non-
additive forces. In our previous work, this interaction
was calculated by representing the distorted charge dis-
tribution of the two Ar atoms by a p-dependent point
quadrupole ©(p) located at the midpoint of Ar,. How-
ever, the midpoint is usually considerably closer to HF
than either of the Ar atoms, and this model substantially
overestimates the field that results at the HF molecule.
It is much better to use a distributed multipole repre-
sentation of the Ar, charge distribution. The simplest
possible distributed representation, which is used in the
present work, is to replace the Ar, quadrupole with two
equal and opposite dipoles pfqd located on the Ar atoms,

ui = —pst = 10(p)p/p, (9)

where the superscript eqd indicates exchange quadrupole
plus dispersion. The quadrupole moment ©(p) of the Ar,
pair is evaluated using the functional form

2 exp(_% equ2)

Op) = -1
) = 2 n(-120)

+ ©6/p°. (10)

The first term in Eq. (10) is termed the exchange
quadrupole (eq) contribution, and is represented here us-
ing a functional form derived by Jansen [33] from a single-
electron approximation. However, Jansen’s value of Beq
is known to produce a substantial overestimate of the
exchange quadrupole, so we used instead a value B.q =
0.936 A~1, obtained by fitting to self-consistent-field
(SCF) calculations of the short-range overlap quadrupole
of Ar; [34]. The second term in Eq. (10) arises from dis-
persion [35], and was not included in our earlier work on
Ary-HX, but in fact can make a significant contribution:
in the present work, the quadrupole dispersion coefficient
Og is estimated as Og = (%BA,/aA,)Cs [36], where Ba,
is the quadrupole hyperpolarizability of the Ar atom and
Cs is the (negative) dispersion energy coefficient for Ar-
Ar. The value used in the present work, ©¢ = 2086 ea$,

is based on the Cg coefficient for the HFDID1 poten-
tial [20] and the ratio of By, and o, obtained from SCF
calculations by Maroulis and Bishop [37]. The dispersion
contribution to ©(p) is of opposite sign to the exchange
quadrupole term, and about 30% as large at the equilib-
rium geometry.

It is straightforward to calculate the energy contri-
butions arising from interaction of either the central
quadrupole or the distributed dipoles with the perma-
nent multipoles of HF using standard electrostatic formu-
las [38]. In the present work, the HF charge distribution
was represented by a single-center multipole expansion,
including multipoles up to the hexadecapole at the HF
center of mass. The results of the central quadrupole
(old) and distributed dipole (new) representations, ne-
glecting the dispersion term involving Og, are compared
in the top panels of Fig. 4. It may be seen that the
two results are substantially different: the distributed
dipole representation gives a much smaller energy contri-
bution, though the term is still substantially larger and
more anisotropic than the triple-dipole term, Vppp. The
distributed dipole representation actually somewhat un-
derestimates the field at the HF center of mass for the
equilibrium geometry, and thus underestimates the in-
teraction energy. It would clearly be desirable to use a
more sophisticated distributed representation of the Ar,
charge distribution, but not enough is known about the
p dependence to allow this at present.

In previous work, the exchange quadrupole term and
the induction term were evaluated independently. How-
ever, the present treatment makes it clear that both ef-
fects produce dipole moments (and, in principle, higher
moments) on the Ar atoms. There are thus cross terms
involving interactions between the dipole moments aris-
ing from the two sources. In the present work, therefore,
we calculate the vector sum of the two dipole contribu-
tions on each atom, pf°t = pird 4 ufqd. The energies of
interaction between the two total dipoles and between
each of them and the multipole moments on the HX
molecule are easily calculated. However, care is needed to
avoid double counting: all contributions that are part of
the Ar-Ar and Ar-HX pair potentials must be excluded
from the three-body terms. The interactions between
pi*d and the HX multipoles and between % and p$®?
are of this type. The resulting three-body term is thus

Vs = —Fyr-ui™ — F - 3™
—B(wi™ - B) (" - p) — pit - 5] /o
eqd - eqd - eqd eqd
+[B(13% - p) (3% - p) — w3 - w3 /p%. (11)

Since S and pt? are directed along p, and are equal
and opposite, the last term simplifies to —2|u$|2/p% =
—10(n)/p.

The energy contributions resulting from this treatment
are shown in the two lower left panels of Fig. 4, with and
without the dispersion quadrupole. It may be noted that,
in Ar,-HF, the exchange quadrupole (eq) and induction
(ind) terms are of comparable magnitude. However, it
should be emphasized that, in the present model, the
“eq+ind” result is not just the sum of the “eq” and “ind”
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terms, but also includes cross terms.

The dependence of the nonadditive terms on the HF
vibrational level v is easily built in by using v-dependent
(or nm-dependent) values of the HF multipole moments
Q;. In the present work, the HF dipole and quadrupole
were represented using the 7 dependent functions given
in Table I of Ref. [2], and the HF octopole and hexade-
capole were taken from the work of Bulanin et al. [39];
the n dependence of the octopole and hexadecapole was
neglected.

III. COMPUTATIONAL METHOD

The computational method used in the present work
is discussed in detail in Ref. [14], and will be described
only briefly here.

The vibrational Hamiltonian for the Ar-HF trimer,
neglecting some kinetic energy terms involving mixed
derivatives between 6 and x, is

R 2 2 2 2
e (N R (8
2uR \ OR? Ma.p \ Op?
+ K2 + B2 0 . 2 0
2uR?2  Ma.p? ) Ocosx s Xacosx

h? R
+ (bv + '27}‘25) J%—IF + Vv(Ry Py X 01 d’) Ll (12)

where p = 2Ma, Myur/(2Ma, + Mur) is the reduced
mass of the diatom-diatom complex, jgr is the body-
fixed angular momentum operator for the rotation of HF
in the trimer, and b, is the rotational constant of the HF
molecule for the vibrational state concerned. The Hamil-
tonian depends on the complete intermolecular potential
Vo (R, p,Xx,0,¢), which is averaged over the vibrational
motion of HF in the adiabatically decoupled vibrational
state v. The five-dimensional vibrational problem for
the Ar,-HF complex is solved for each such state v by
diagonalizing a single Hamiltonian matrix using a non-
orthogonal basis set:

(1) For the R coordinate, a distributed Gaussian ba-
sis set [40] is used, with IV; Gaussian functions ¥;(R)
distributed on an equally spaced grid between the limits
Rin and Ryax- The basis set used here had N; = 16
Gaussians, with Rumin = 2.5 A and Rmax = 5.0 A.

(2) For the p and x coordinates, orthonormal sets of
suitably adapted one-dimensional basis functions, Y,,(p)
and ®,(cosx), are used. These functions are defined
as eigenfunctions of effective potentials for the p and
x motions, as described below. The resulting product
basis set is restricted by the conditions w < wmax and
w + ¢ < @gmax; in the present work, we used wWpax = 2
and gmax = 4.

(3) For the angular motion of the HF molecule, a basis
set of spherical harmonics Yk (0, ¢) with jnax = 5 is used,
excluding the functions with j = 4, k = 4 and j = 5,
k>1.

The vibrational basis functions may be classified ac-
cording to their symmetry (+ or —) under exchange of
the two argon atoms, (12), and the inversion operation,

E*. The resulting symmetry labels 7 and € are 0 or 1, in-
dicating the symmetries (—1)” and (—1)€ under (12) and
E*, respectively (see also Ref. [14]). The symmetrized
basis functions are given by

‘I’?::ujk(R7 P, X0, ¢) = [2(1 + (5"30)]‘1/2
XW;(R) Y (p)Pu(cos x)
X [Y;k(0$ ¢) + (_1)k+5Yj—k(07 ¢)] )

(13)

where dz¢ is the Kronecker symbol. Because of the sym-
metry, u + k and n must be either both even or both
odd. The Hamiltonian matrix thus factorizes into four
independent blocks.

The basis functions Y,,(p) and ®,(cosx) are defined
to be eigenfunctions of one-dimensional Hamiltonian op-
erators.

(1) For the coordinate p, the Hamiltonian defining the
basis set is

- A2 6?
By = 51— (357 ) o+ Verlo). (14)
This contains a one-dimensional effective potential
Ve (p). The convergence of the five-dimensional calcu-
lation naturally depends on the choice of this potential.
For Ar,-HF, we have found that basis functions derived
using an adiabatic potential V.g(p) as described by Elrod
et al. [15] give slightly better convergence than those ob-
tained using a simple cut through the complete potential
as used in Ref. [14]. In the present work, therefore, we
follow Ref. [15]: for each value of p, a three-dimensional
problem in R, 8, and ¢ is solved, with x fixed at 90°. This
defines a set of adiabatic potentials U,,(p). The Ar-Ar
stretching basis functions Y, (p) are taken to be eigen-
functions of the Hamiltonian (14) with Veg(p) = Uo(p).

(2) For the coordinate x, the Hamiltonian defining the
basis set is

. K2 h?
H, = +
x (2lu’R12:ut MArPiut)

sin? x ] + Veg(cos x). (15)

X —_—
dcosx [ dcos x

In this case, the effective potential Veg(cos x) is taken to
be a cut through the full potential, V(Rcut, Pcut, X, 0 =
0°,¢ = 0°). To choose Ry, a three-dimensional prob-
lem in R, 0, and ¢ is solved; p and x are clamped at their
equilibrium values, and R, is taken to be (R)1, the ex-
pectation value of R for the first excited stretching state.
The value of pcus is chosen to be (p)1, the expectation
value of p for the basis function Y, (p).

The full Hamiltonian matrix is constructed in the non-
orthogonal basis set (13), as described in Ref. [14]. The
resulting generalized eigenvalue problem is then solved
using routines from the NAG FORTRAN Library [41].
The resulting wave functions are given by

v = c:flwujk‘l’?:;ujk : (16)
iwujk
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The wave functions are used to calculate rotational con-
stants as described below, and overall band intensities as

described in Ref. [14].

IV. ROTATIONAL STRUCTURE

It is not at present feasible to solve the full vibration-
rotation problem for total angular momentum J > 0.
Because of this, rotational constants must be calculated
from expectation values involving the vibrational wave
functions. In previous work on van der Waals trimers
[13-15], rotational constants were calculated from expec-
tation values based on formulas that assumed that one
of the inertial axes always lies along the intermolecular
vector R. However, we have recently shown that, for
complexes containing fragments with large moments of
inertia, this approximation can lead to errors of several
percent [42]. More accurate expressions can be obtained
by applying the Eckart conditions explicitly to obtain in-
ertial axes that move as the molecule vibrates. In Ref.
[42], we described how to apply this procedure in Jacobi
coordinates for a complex formed from an atom and a
linear molecule. If the HF molecule is approximated as
a point mass, the formulas of Ref. [42] can be applied to
Ar,-HF. For a triatomic complex with a C3, equilibrium
geometry described by coordinates Ry and pg, the angle
o between the R vector and the nearby inertial axis (b in
the present case) is

dcosy

tano = —— %
ano 1+4dsiny’

(17)

where § = par,ppo/uRRo and par, = Ma,/2. Inverting
the moment of inertia tensor, the rotational constants
can be shown to be [42]

A— fi_2 wR?sin® a + pa., p?sin? 8 (18a)
2 pR?pr, p? sin® x ’ *
T STy [,
2 uR2pac, p? sin? x '
R? 1
o Ry . —
2 <uR2 + LAr, P? > ’ (18¢)

where 3 = x + a. These expressions are more accu-
rate than those used in Refs. [14,15] for Ar,-HCl and
Ar,;-DCl, but nevertheless neglect the structure of the
HX molecule, treating it as a point particle. This ap-
proximation is likely to cause the rotational constants to
be overestimated by a few MHz. However, a more seri-
ous approximation is that the expressions above also ne-
glect Coriolis coupling. For triatomic complexes, Coriolis
coupling affects only the out-of-plane rotational constant
[42], but the effects are not as simple in the present case.

In the present calculation, the expectation values of the
rotational constants were evaluated by numerical quadra-
ture over R, p, and x. The integrals over p and x were
carried out by Gauss-Hermite quadrature, and those over
R by the trapezium rule. Since the operators in (18)
do not depend on 6 and ¢, and the spherical harmonics

Yk (6, ¢) are orthonormal, no numerical integration over
them is needed.

V. RESULTS

The vibrational energy levels for Ar,-HF in v = 0 and
1, calculated using the complete nonadditive potential
described above, are shown in Fig. 5. The levels shown
are basically of two types. First, there are heavy-atom
vibrations similar to those that exist in Arz (or Ar;-Ne)
[32]. These can be thought of as built upon three normal
modes: a symmetric (breathing) stretch (A; symmetry),
an asymmetric stretch (A4; symmetry), and an Ar; rock
(B2 symmetry). The asymmetric stretch and Ar; rock
are degenerate for Ars, but not for Arp-HX. Secondly,
there are vibrations due to hindered internal rotation of
the HF molecule within the complex. The ground state
correlates with HF (j = 0), while the next three HF bend-
ing levels correlate with HF (j = 1). The projection of j
onto the intermolecular axis (or b axis) is approximately
conserved, and is denoted k: the two j = 1, |k| = 1 states
(II states) are coupled by the ¢ dependence of the poten-
tial, and mix to form in-plane (B2) and out-of-plane (Bj)
bending states, while the 7 = 1,k = 0 state (X bend, A;
symmetry) is unsplit and actually lies between the two
IT states. This energy level pattern contrasts with that
expected for the bending states of a near-rigid molecule,
where the ¥ bend is actually the overtone of the bending
vibrations: in the present case, the ¥ bend lies below the
out-of-plane bend, so that it is clearly inappropriate to
use the normal-mode description.

The main difference between the energy level diagrams
for Aro-HF in v = 0 and 1 states is that, for v = 1, the
excited HF internal rotor states move to higher energy

vo (cm™?)

901

801
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50 L
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70 ——c¢

40

30 —_—

|
|

20 ]
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0l .

a
*Ground state. ®In-plane II bend. °T bend. 4Out-of-plane II bend.

FIG. 5. Energy levels for Ar;-HF (v = 0 and 1) calculated
using the total nonadditive potential.
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(relative to the ground state). This arises simply because
of the increased anisotropy for v = 1. As a result, the
levels correlating with HF j = 1 move upwards through
the manifold of heavy-atom vibrational levels. The vi-
brational shift is most marked for the out-of-plane and %
bending states. The ¥ bend, in particular, moves from
a reasonably isolated position for v = 0 into near de-
generacy with an excited heavy-atom bending state for
v = 1; the resulting states are strongly mixed in our cal-
culations, with both mixed levels having a substantial
amount of ¥ bend character.

More details of our calculations are given in Table
I for states of Arp-HF correlating with HF (v = 0
and 1) and in Table II for states correlating with HF
(v =2 and 3). The potentials listed are (i) the pairwise-
additive potential formed from the Ar-Ar HFDID1 and
Ar-HF H6(4,3,2) potentials; (ii) a potential including
the anisotropic triple-dipole term of Eq. (4) as the only
nonadditive contribution; (iii) the total nonadditive po-
tential, including both the dispersion term and the new
model of the induction and electrostatic distortion terms
as described in Sec. II B; the three-body part of the total
potential is shown in the bottom right panel of Fig. 4.

For v = 0, contour plots of the wave functions for the
ground state, in-plane II bend, ¥ bend, and the out-of-
plane IT bend are shown in Fig. 6. The ground state wave

function is concentrated around 8 = 0°, and does not
penetrate significantly beyond about 8§ = 80°. The in-
plane and out-of-plane bends show very similar structure.
Both peak at about § = 50° and spread considerably over
the whole region in §. The ¥ bend wave function has
maxima at both § = 0° and 6 = 180°, with the larger
peak corresponding to the H atom of HF pointing away
from the Ar, midpoint.

The only experimental results so far available for Ar;-
HF in v = 0 are the rotational constants of the van der
Waals ground state [11], which are measured as A =
3576.5 MHz, B = 1739.1 MHz, and C = 1161.0 MHz.
The pairwise-additive calculations give results that differ
from these by +26.5 MHz, +18.9 MHz, and +11.6 MHz.
The triple-dipole term decreases the calculated rotational
constants by between 2 and 7 MHz: it improves the
agreement slightly, but not enormously. The total non-
additive potential, on the other hand, gives almost exact
agreement with experiment for B and C, though A is still
overestimated by 17.2 MHz.

The total nonadditive potential predicts reasonably in-
tense far-infrared bending bands of Ar,-HF with band
origins around 60.0, 71.8, and 81.5cm™!. Measurements
of these bands would provide very valuable information
on the nonadditive forces.

For v = 1, the rotational constants of the van der

TABLE I. Results of the calculations for Ar;-HF (v = 0 and 1).

v=20 v=1
Quantity Additive Dispersion Total Additive Dispersion Total

Ground state (A4; symmetry)
Eq (cm_l) —284.702 —281.937 —277.086 —300.056 —297.146 —291.663
Redshift (cm™1) 15.354 15.209 14.577
A (MHz) 3595.4 3588.9 3593.7 3593.8 3587.6 3593.6
B (MHz) 1765.6 1761.6 1739.2 1771.8 1767.3 1742.8
C (MHz) 1172.6 1170.0 1160.2 1175.5 1172.6 1162.1
Intensity 0.4974 0.4947 0.4645 0.5416 0.5389 0.5114

In-plane II bend (B2 symmetry)
Vo (cm'l) 64.044 63.655 60.046 66.348 65.907 62.000
A (MHz) 3619.3 3608.4 3641.3 3632.1 3622.1 3662.5
B (MHz) 1734.3 1730.7 1718.6 1735.1 1731.4 1715.7
C (MHz) 1158.0 1154.7 1154.8 1159.5 1156.2 1155.8
Intensity 0.1912 0.1889 0.2213 0.1760 0.1740 0.2076
Y bend (A; symmetry)
Vo (cm“l) 76.943 76.680 71.800 85.896 85.548 79.389%
A (MHz) 3554.4 3537.9 3554.2 3579.2 3570.4
B (MHz) 1744.0 1739.6 1743.8 1743.3 1738.0
C (MHz) 1156.3 1152.1 1156.5 1157.9 1154.2
Intensity 0.0617 0.0614 0.0761 0.0468 0.0475 0.058
Out-of-plane IT bend (B; symmetry)

Vo (Cm_l) 85.223 84.901 81.495 91.703 91.320 87.575
A (MHz) 3550.5 3542.0 3540.5 3551.5 3543.0 3542.8
B (MHz) 1747.1 1743.1 1736.5 1749.0 1745.0 1736.8
C (MHz) 1158.2 1155.3 1152.2 1159.4 1156.5 1152.7
Intensity 0.1604 0.1609 0.1676 0.1451 0.1456 0.1514

2Strongly mixed with a heavy-atom vibrational state; the other combination is at vo = 80.498 cm™"'.

1

®Intensity summed over both mixed states with ¥ bend character.
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Waals ground state have been measured by Mcllroy et
al. [12] as A = 3578.7 MHz, B = 1742.5 MHz, and C =
1163.0 MHz. The comparisons with the three potentials
are much the same as for v = 0: the pairwise-additive
and dispersion-corrected potentials substantially overes-
timate all three rotational constants, while the total non-
additive potential is in good agreement with experiment
for B and C but overestimates A by 14.9 MHz. In addi-
tion, Mcllroy et al. observed the shift between the band
origin of Ar,-HF and that of the HF monomer, which
is a measure of the difference in binding energy between
v = 0 and 1. The measured redshift is 14.827 cm™?,
which may be compared with the values of 15.354 and
14.577 cm™! calculated using the pairwise-additive and
total nonadditive potentials, respectively.

Farrell and Nesbitt [17] have very recently observed
the in-plane and out-of-plane HF bending combination
bands of Ar,-HF (v = 1 < 0). For the out-of-plane
band, their measured band origin is about 5.6 cm™! be-
low the prediction of the pairwise-additive potential, but
within 1.5 cm~?! of the prediction of the total nonaddi-
tive potential. For the in-plane band, the measured band
origin is 62.0 cm™!, which is very close to the calculated
result for the total nonadditive potential. Qur previous
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model of the exchange quadrupole gave an out-of-plane
bending frequency about 81.4 cm™!, overestimating the
nonadditive shift by about 4.7 cm™?!, so that the model
in the present paper is a clear improvement. The C ro-
tational constant of the out-of-plane bend appears to be
drastically overestimated by all the potentials. However,
it is likely that this can be attributed to deficiencies in the
computational method, and in particular to the neglect
of Coriolis terms, rather than to the potential surfaces
used.

Table I also gives calculations of the frequency of the
Y. bend combination band. For the pairwise-additive and
dispersion-corrected potentials, it is clear which calcu-
lated state corresponds to the ¥ bend. However, for the
total nonadditive potential for v = 1, there is strong
mixing between the ¥ bend and one of the heavy-atom
vibrational states (see also Fig. 5), and both of the re-
sulting levels have substantial calculated intensity. The
heavy-atom vibrations are not as well converged as the
HF internal rotations in our calculations, so it is difficult
to make definite conclusions about the degree of mixing
to be expected experimentally.

Table II gives predictions of the energy levels of Ar,-
HF for v = 2 and 3. The v = 3 levels are particularly

TABLE II. Results of the calculations for Ar;-HF (v = 2 and 3).

v =2 v=3
Quantity Additive  Dispersion Total Additive  Dispersion Total
Ground state (A; symmetry)
E (cm_l) —-317.095 —314.027 —307.917 —335.875 —332.638 —325.913
Redshift (cmhl) 32.393 32.090 30.831 51.173 50.701 48.827
A (MHz) 3590.9 3585.1 3592.3 3587.4 3581.6 3589.5
B (MHz) 1778.4 1773.9 1747.2 1785.8 1781.3 1752.7
C (MHz) 1178.4 1175.6 1164.2 1181.5 1178.7 1166.7
Intensity 0.5808 0.5782 0.5533 0.6156 0.6130 0.5903
In-plane II bend (B2 symmetry)
Vo (cm_l) 69.046 68.553 64.366 72.082 71.540 67.089
A (MHz) 3644.2 3634.6 3682.5 3647.6 3634.6 3700.6
B (MHz) 1736.9 1732.7 1712.6 1740.1 1736.8 1710.2
C (MHz) 1161.3 1158.1 1156.6 1162.7 1159.2 1157.6
Intensity 0.1609 0.1589 0.1939 0.1426 0.1391 0.1805
3 bend (A; symmetry)
Vo (Cm_l) 96.414 95.945 89.561 109.226* 108.531° 100.351
A (MHz) 3577.8 3573.4 3566.4 3566.6
B (MHz) 1739.1 1736.6 1729.1 1742.6
C (MHz) 1155.7 1154.4 1146.6 1154.4
Intensity 0.0326 0.0342 0.0372 0.022° 0.024° 0.0263
Out-of-plane II bend (B: symmetry)
Vo (cm_l) 99.066 98.621 94.614 107.051 106.549 102.373
A (MHz) 3550.8 3542.7 3543.4 3547.6 3540.2 3541.9
B (MHz) 1751.9 1747.6 1737.5 1756.0 1751.4 1739.2
C (MHz) 1160.9 1158.0 1153.4 1162.7 1159.7 11544.3
Intensity 0.1324 0.1329 0.1377 0.1222 0.1227 0.1267

®Strongly mixed with a heavy-atom vibrational state;

108.654 cm™!.

PStrongly mixed with a heavy-atom vibrational state; the other combination is at vo

107.784 cm™1.

the other combination is at vy =

“Intensity summed over both mixed states with ¥ bend character.
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interesting, because second overtone spectra of van der
Waals complexes such as Ar-HF can be measured with
sensitivity comparable to that achieved in the HF fun-
damental region [43,22]. It would be very interesting to
observe HF overtone spectra of Arp,-HF, in order to ex-
tend our knowledge of the v dependence of nonadditive
forces.

VI. CONCLUSIONS

We have carried out calculations on the Ar,-HF van
der Waals trimer, using both pairwise-additive and non-
additive interaction potentials. The calculations included
all five low-frequency degrees of freedom, and also in-
cluded a parametric dependence on the HF vibrational
state. The results of the calculations are compared with
experimental results from microwave and infrared spec-
troscopy.

As in earlier work on Ar;-HCI, we have found substan-
tial differences between the experiments and the calcula-
tions that use pairwise-additive potentials. In particular,
the frequencies of HF bending (hindered internal rota-
tion) bands have been observed up to 5 cm™! lower than
the pairwise-additive calculations. Less than 0.5 cm™!
of this discrepancy can be attributed to uncertainties in
the Ar-HF and Ar-Ar pair potentials, and the remainder

0.0 -0.5
cos 6

must be due to nonadditive intermolecular forces.

We have investigated various ways of modeling the
nonadditive intermolecular forces. Since the experiments
deal with HF bending bands, the anisotropy of the non-
additive terms is crucial. As for Ar,-HCI, we have found
that “conventional” types of nonadditive force, such as
Axilrod-Teller triple-dipole forces and the interactions
between induced dipole moments on the two Ar atoms,
are much too weak to explain the observed effects. How-
ever, the shifts can be explained by invoking “exchange
quadupole” interactions, which arise from the interac-
tion between the permanent multipole moments of the
HF molecule and the quadrupole moment that develops
on a pair of Ar atoms when their charge distributions
overlap.

For Ar,-HF, we found it necessary to use a more so-
phisticated model of the exchange quadrupole interac-
tion than for Ar,-HCl. Owur earlier model, in which
the Ar; charge distribution is represented by a single
quadrupole located at the Ar, midpoint, drastically over-
estimates the nonadditive shifts for Ar,-HF. Instead, we
have used a distributed representation, in which the ex-
change quadrupole of Ar; is represented by equal and
opposite dipoles located on the two Ar atoms. In addi-
tion, we have included a dispersion contribution to the
Ar, quadrupole, and have also considered cross terms
that arise due to interaction of the exchange dipoles on
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the Ar atoms with the dipoles induced by the HF charge
distribution. The resulting model gives a smaller total
nonadditive energy, and gives reasonably good agreement
with the observed infrared bending frequencies.

The present work has confirmed that, even for sys-
tems containing only one molecule, there are very im-
portant nonadditive interactions that do not arise in the
purely atomic case. The dominant interaction in Ar,-
HF arises from the fact that the charge distributions of
the constituents are modified by overlap effects, and this
causes a substantial modification of the electrostatic in-
teractions. Such effects may be expected to be important
in all molecular systems, and will be very important in
simulations of the properties of condensed phases.
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