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Nonadditive intermolecular forces from the spectroscopy of van der Waals trimers:
A theoretical study of Arz-HF
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Calculations of vibrational energies and rotational constants are carried out for the van der Waals
trimer Ar2-HF. The calculations include all five intermolecular degrees of freedom. The different
intramolecular vibrational states v of the HF molecule are separated out adiabatically, so that
the calculations are carried out on effective intermolecular potentials for each HF vibrational state
separately. Calculations are performed both on pairwise-additive potentials, derived from the well-
known Ar-Ar and Ar-HF potentials, and on nonadditive potentials, incorporating various different
contributions to the three-body forces. The results are compared with experimental results from
high-resolution spectroscopy, and provide detailed information on the anisotropy of the nonadditive
intermolecular forces. As in previous work on Ar&-HCl, it is found that a very important nonadditive
term arises from the interaction between the permanent multipoles of the HF molecule and the
exchange quadrupole caused by distortion of the two Ar atoms as they overlap. An improved model
of this term is described.

PACS number(s): 33.20.Vq, 34.20.Gj, 36.40.—c

I. INTRODUCTION

The intermolecular forces between atoms and mole-
cules are of great importance in studies of solids, liquids,
and clusters. Over the last decade, enormous advances
have been made in our understanding of interaction po-
tentials between atoms and small molecules. In particu-
lar, high-resolution spectra of van der Waals complexes
have been used to obtain very accurate intermolecular
potential energy surfaces for the interaction of Ar atoms
with small molecules such as H2 [1],HF [2], HCl [3], H20
[4], and NHs [5]. In parallel with this work, there have
been important developments in ab initio techniques for
calculating intermolecular potentials.

Despite the advances in our understanding of pair po-
tentials, there remains a major obstacle in using the new
potentials for studies of condensed phases. This is the
problem of nonadditivity: the total interaction energy of
a cluster of molecules is not just the sum of the pairwise
interactions, but also includes three-body and higher n-
body terms [6]. For the rare gas solids, for example,
nonadditive terms are known to contribute up to 10%%uo

to the binding energy. Unfortunately, most of the work
so far on nonadditive forces has been for purely atomic
systems; for systems containing molecules, there are no
reliable models of the nonadditive forces. This efI'ectively
precludes the use of accurate pair potentials in simula-
tions of condensed phases.

There are many properties of matter that depend on
nonadditive interactions, but it is difFicult to find ex-
periments that contain sufFiciently detailed information
to allow information on the three-body forces to be ex-
tracted. The first prerequisite is that the pair potentials
involved should be known very accurately, so that the

efI'ects of nonadditive forces can be isolated. Until re-
cently, suKciently accurate pair potentials were available
only for the rare gas pairs. However, as described above,
very good pair potentials are now available for simple
molecular systems such as Ar-HF and Ar-HCl. In ad-
dition, it has recently become possible to measure high-
resolution microwave, far-in&ared, and in&ared spectra
of van der Waals trimers such as Ar2-HC1 [7—10] and
Ar2 HF [11-,12]. The trimer spectra are very sensitive
to details of the interaction potential, so that there is
now the possibility of obtaining definitive experimental
information on nonadditive forces in systems containing
molecules.

Some progress has already been made toward this ob-
jective. Hutson et aL [13] carried out restricted dimen-
sionality calculations on Ar~-HCl, and established that
the microwave spectra [7] contained valuable informa-
tion on three-body forces. They also pointed out that
far-in&ared spectra would sample the nonadditive forces
over a much wider range of geometries, and might allow
the determination of the three-body forces. This stim-
ulated extensive experimental work on the far-in&ared
spectroscopy of Ar2-HC1 [8—10]. Cooper and Hutson [14]
developed a computational method for calculating the
vibration-rotation energy levels of complexes such as Ar2-
HA(A =F, Cl, Br, etc.), including all five low-&equency
degrees of &eedom. They showed that the &equencies
of the intermolecular bending bands in the far-in&ared
spectrum of Ar2-HCl are very sensitive to three-body
forces, and that there are significant discrepancies be-
tween the predictions of pairwise-additive potentials and
the experimental results. In addition, they showed that
"conventional" types of nonadditive interaction, such as
the Axilrod-Teller triple-dipole term and the interactions
between the induced dipoles on the two Ar atoms, were
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not sufhcient to resolve the discrepancies.
Cooper and Hutson identified a new type of non-

additive force that is expected to be important in all
molecular systems. This arises when two atoms or
molecules come close together and distort, so that their
multipole moments are modified: if the third body in the
system is a molecule (rather than an atom), the distor-
tion modifies the electrostatic interaction, and can thus
have a large effect on the energy. For Ar2-HC1, the im-
portant interaction is that between the distorted charge
distributions of the Ar atoms and the permanent mul-
tipole moments of the HCl molecule. In Ref. [14], the
charge distribution of the distorted Ar2 moiety was rep-
resented by a quadrupole moment at the Ar2 midpoint,
which was then allowed to interact with the dipole and
quadrupole moments of HC1; this was termed the "ex-
change quadrupole" interaction. Including the exchange
quadrupole term was found to give a good qualitative
explanation of the experimental results.

This model has also been applied to the far-in&ared
spectrum of Ar2-DCl [15] and to the vibrational shifts
in the in&ared fundamental band of Ar2-HF [16]. In
all these cases, the exchange quadrupole interaction was
found to be the only term large enough to explain the
discrepancies between the pairwise-additive calculations
and the experimental data. However, the model used
for this term in Refs. [14—16] overestimates the correc-
tion required: a rather smaller three-body term is actu-
ally needed to give agreement between experiment and
theory. Very recently, Farrell and Nesbitt [17] have suc-
ceeded in measuring spectra of Ar2-HF that correspond
to excitation of intermolecular bending bands involving
hindered internal rotation of HF in combination with the
HF stretch. In preliminary calculations on these bands,
we have found that our previous model overestimates
the corrections needed even more drastically than for
Ar2-HCl. It is thus clear that an improved model of
the exchange multipole forces is needed. In addition,
a model designed to interpret the in&ared combination
bands must include the dependence of the additive and
nonadditive forces on the HF stretching state. The pur-
pose of the present paper is to describe such a model,
and to apply it to the bending bands of Arq-HF.

There have also been some ab initio studies of nonad-
ditive forces in Arz-HA systems [18,19]. Szczqsniak et
al. [19] carried out calculations on Ar2-HCl and Ar2-HF
using supermolecular Mufller-Plesset perturbation theory
calculations, and decomposed the resulting energies into
contributions from different physical effects. Unfortu-
nately, they confined their attention to geometries with
the HX molecule in the heavy-atom plane, so that it is
not possible to use their results directly in dynamical cal-

culationss.

The structure of the present paper is as follows. Sec-
tion II will describe the pairwise-additive potentials used
for Ar-Ar and Ar-HF, and the various nonadditive terms
considered. Sections III and IV will describe the com-
putational method used for calculating the energy levels
and other spectroscopic quantities. Section V will de-
scribe the results of the calculations, and Sec. VI will
summarize our conclusions.

II. COORDINATE SYSTEM
AND POTENTIAL ENERGY SURFACES

The coordinate system used for Ar2-HF is shown in
Fig. 1. The positions of the two Ar atoms and the HF
center of mass are described by a set of Jacobi coordi-
nates: the Ar-Ar distance is denoted p, the distance f'rom

the HF center of mass to the Ar2 center of mass is denoted
B, and the angle between the vectors corresponding to
B and p is denoted y. The HF bond length is denoted
r, and the angle between the r and B vectors is 0, with
0 = 0 corresponding to the H atom of HF pointing di-
rectly towards the Ar2 center of mass. Finally, the angle
P is the torsional angle between the r and p axes, viewed
along B: P = 0 corresponds to HF lying in the plane
of the heavy atoms, while P = 90 is the out-of-plane
geometry.

Ar2-HF is a highly asymmetric top: the c axis is per-
pendicular to the plane of the heavy atoms, and the 6
axis lies close to B.

A. Pairwise-additive potentials

The pair potentials used in the present work follow.
(1) The Ar-Ar Hartree-Fock dispersion individually

damped (HFDID1) potential of Aziz [20]. This poten-
tial is the most recent Gt to a wide range of experimen-
tal data, including both bulk properties such as second
virial coefIicients and transport coefIicients and micro-
scopic properties such as molecular beam scattering re-
sults and vibration-rotation energy levels. The potential
gives highly accurate vibrational frequencies and rota-
tional constants for the Ar dimer.

(2) The Ar-HF H6(4, 3,2) potential of Hutson [2]. This
potential energy surface was fitted to spectroscopic con-
stants obtained &om 24 different bands in the microwave,
far-in&ared, and mid-in&ared spectra of Ar-HF (v = 0, 1
and 2) and Ar-DF (v = 0 and 1). The potential includes
both the anisotropy and the dependence on the vibra-
tional state v of the HF molecule; the latter is built in
parametrically, in terms of the mass-reduced vibrational
quantum number

q = (v+ 2)/PHF
1/2

where pHF is the reduced mass of the HF molecule.
These two potentials are used to build up v-dependent

pairwise-additive potential energy surfaces for Ar2-HF.

FIG. 1. Coordinate system used for Ar2-HF.
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Contour plots of various cuts through the additive sur-
faces are shown in Fig. 2. The heavy atoms form an ob-
tuse isosceles triangle at the equilibrium geometry, with
y = 90 and the H atom of HF pointing to the center
of mass of the Ar dimer, 0 = 0 . The HF molecule exe-
cutes very wide-amplitude bending motions in the angles
8 and P, sampling angles up to 8 = 80' even in the ground
state. The bending motion of the Ar-Ar &agment, repre-
sented by the angle y, is much more hindered: values of
y between about 75 and 105' are sampled in the ground
state. The amplitudes of motion in the B and p coordi-
nates are both about +0.5 A.

In comparing calculated quantities with experimental
results for the HF bending bands in Ar2-HF, the qual-

ity of the Ar-HF pair potential is crucial. The H6(4, 3,2)
potential has proved to be remarkably successful in pre-
dicting the results of experiments that were not included
in determining it. A variety of new bands in the in&ared
spectrum of Ar-HF have been predicted to within 0.1
cm i [21,22]. In addition, the potential has been used
successfully to model state-to-state inelastic diQ'erential
cross sections [23) and the widths and shifts of pressure-
broadened infrared spectra of HF in Ar [24,25]. We esti-
mate that the remaining uncertainties in the Ar-HF pair
potential lead to uncertainties of +0.3 cm in the fre-
quencies of HF bending bands in Ar~-HF. The uncertain-
ties due to the Ar-Ar potential are even smaller than this.
The computational method and basis sets used in the
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present work lead to uncertainties of about +0.2 cm
Thus, in general terms, we consider that any discrepan-
cies greater than +0.5 cm between the experimental
results and calculations on pairwise-additive potentials
may be attributed to nonadditive intermolecular forces.

B. Nonadditive forces
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In atomic systems, the most important nonadditive
forces are those arising &om dispersion. The leading
term in the three-body dispersion interaction is the well-
known Axilrod-Teller triple-dipole term [26], which for
atomic systems takes the form
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Vddd = 3 g&gg 3 3 3 l

T] P2 P3
(2)

where rq, r2, and r3 are the lengths of the sides of the
triangle formed by the three atoms and Oq, 02, and 03 are
the corresponding internal angles of the triangle. The
coefBcient vg23 ——3Z~~~ ——269.9Eh, ao for Ar2-HF has
been evaluated by Kumar and Meath [27] from the dipole
oscillator strength distributions of Ar and HF. However,
this value is appropriate for r = r, (corresponding to a
mass-reduced quantum number rl = 0), and we require
a coeKcient that includes the dependence on g. In the
present work, we have assumed that the Axilrod-Teller
coeKcient has the same q dependence as the Ar-HF C6
coefficient of Ref. [2], so that

vi2s (g) —vi23 (0) [1 + 0.0239rI/u ], (3)

where u is the uni6ed atomic mass unit.
In molecular systems, the triple-dipole interaction is

much more complicated because of the anisotropy of
molecular polarizabilities. An approximate form for the
triple-dipole energy under these circumstances has been
given by Stogryn [28],

0 («g)
FIG. 3. Contour plot of the dispersion contribution VDDD

to the intermolecular potential for Ar2-HF (v = 1), for
R = 2.89 A, p = 3.82 A, and y = 90'.

is repulsive for all angles around the equilateral geometry.
However, it depends only weakly on the HF orientation,
and so may be expected to have relatively little effect on
the HF bending frequencies in the trimer.

For pair potentials, it is well known that the dispersion
interaction must be damped when overlap is significant,
to prevent the inverse power terms dominating the poten-
tial at short range. In principal, analogous damping func-
tions are needed for nonadditive dispersion terms [30,31].
However, damping functions for three-body interactions
are not as well understood. as for pair potentials, and it
has been shown for Ar2-HCl [14] that damping the triple-
dipole term has little efFect on the bending energy levels.
Accordingly, the triple-dipole formula was used without
damping in the present work.

&&23
VDLiD = (T») p(T»)~q(T»)„30!y 0!20!3

x (ni) „(n2)p~(ns)g„, (4)

where o,, is the polarizability tensor and n,. is the mean
polarizability for particle i. T,~ is a symmetric orientation
tensor, with Cartesian components

(T
3(r' ) (r*')p ~ pij)aP— r-- 3

and (r;~.) is the component of the unit vector between
particles i and j along Cartesian axis n. Equation (4)
uses the usual summation convention, summing over all
repeated sufBxes representing Cartesian axes.

In the present work, VDDD was evaluated using o.A, ——

11.096 ass [29] and the q-dependent HF polarizabilities
n~~ (g) and n~(rI) of Ref. [2]. A contour plot of the result-
ing contribution in the (R, 8) plane is shown in Fig. 3; it

2. Induction conte'ibutions

In a complex such as Ar2-HF, the highly polar HF
molecule creates substantial electric fields at the locations
of the two Ar atoms. These fields (and the corresponding
field gradients) polarize the Ar atoms, producing induced
dipole moments (and higher multipoles). The interac-
tions between the induced moments and the permanent
moments of the HF are already taken into account in the
Ar-HF pair potential, but there is a nonadditive energy
contribution arising &om the interactions between the
induced moments on the two Ar atoms.

The electrostatic potential V at atom i is

V = ) QiPi(cos6;) R,'+,

where Qi is the 2'-pole moment of HA, Pi(x) is a Leg-
endre polynomial, and B;,6;, y, are the coordinates of
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3. Over lap-dependent conte ibtctions

In previous work, we considered short-range non-
additive forces arising &om two difFerent sources.

First, there is a short-range term analogous to that
for Ars, termed the exchange overlap contribution [32]:
when two atoms or molecules approach one another
closely, their electron clouds distort away &om one an-
other in such a way as to reduce overlap. This distortion
modi6es their overlap with a third body; if the third
body is near the axis of the 6rst two, the overlap is in-
creased and there is a positive contribution to the three-
body energy. Conversely, for near-equilateral geometries,
the deformation produces a negative contribution to the
three-body energy. The previous work on Ar2-HC1 [14]
showed that the exchange overlap term makes very small
contributions to the nonadditive shifts; accordingly, it
has not been included in the present study.

Secondly, as described in the Introduction, the overlap
distortion of the two Ar atoms produces a quadrupole
moment on the Ar2 pair, and this can interact with the
permanent multipoles of the HF molecule. This gives rise
to an important electrostatic contribution to the non-
additive forces. In our previous work, this interaction
was calculated by representing the distorted charge dis-
tribution of the two Ar atoms by a p-dependent point
quadrupole 8(p) located at the midpoint of Ar2. How-
ever, the midpoint is usually considerably closer to HF
than either of the Ar atoms, and this model substantially
overestimates the field that results at the HF molecule.
It is much better to use a distributed multipole repre-
sentation of the Ar2 charge distribution. The simplest
possible distributed representation, which is used in the
present work, is to replace the Ar2 quadrupole with two
equal and opposite dipoles p,,

' located on the Ar atoms,

S i"= —~2" = —,'O(p) pip

where the superscript eqd indicates exchange quadrupole
plus dispersion. The quadrupole moment O(p) of the Ar2
pair is evaluated using the functional form

exp( ——,'P.' p')
1 —exp( —-'P p )

(10)

The first term in Eq. (10) is termed the exchange
quadrupole (eq) contribution, and is represented here us-
ing a functional form derived by Jansen [33] from a single-
electron approximation. However, Jansen's value of P,~
is known to produce a substantial overestimate of the
exchange quadrupole, so we used instead a value P,„=
0.936 A. i, obtained by fitting to self-consistent-field
(SCF) calculations of the short-range overlap quadrupole
of Ar2 [34]. The second term in Eq. (10) arises f'rom dis-
persion [35], and was not included in our earlier work on
Ar2-HX, but in fact can make a significant contribution:
in the present work, the quadrupole dispersion coeKcient
8s is estimated as 8s ——( zB~,/n~, )Cs [36], where BA,
is the quadrupole hyperpolarizability of the Ar atom and
Cs is the (negative) dispersion energy coefficient for Ar-
Ar. The value used in the present work, 06 ——2086 ea0,

is based on the C6 coeKcient for the HFDID1 poten-
tial [20] and the ratio of B~, and n~, obtained from SCF
calculations by Maroulis and Bishop [37]. The dispersion
contribution to 8(p) is of opposite sign to the exchange
quadrupole term, and about 30%%u0 as large at the equilib-
rium geometry.

It is straightforward to calculate the energy contri-
butions arising &om interaction of either the central
quadrupole or the distributed dipoles with the perma-
nent multipoles of HF using standard electrostatic formu-
las [38]. In the present work, the HF charge distribution
was represented by a single-center multipole expansion,
including multipoles up to the hexadecapole at the HF
center of mass. The results of the central quadrupole
(old) and distributed dipole (new) representations, ne-
glecting the dispersion term involving 86, are compared
in the top panels of Fig. 4. It may be seen that the
two results are substantially diferent: the distributed
dipole representation gives a much smaller energy contri-
bution, though the term is still substantially larger and
more anisotropic than the triple-dipole term, V~DD. The
distributed dipole representation actually somewhat un-
derestimates the field at the HF center of mass for the
equilibrium geometry, and thus underestimates the in-
teraction energy. It would clearly be desirable to use a
more sophisticated distributed representation of the Ar2
charge distribution, but not enough is known about the
p dependence to allow this at present.

In previous work, the exchange quadrupole term and
the induction term were evaluated independently. How-
ever, the present treatment makes it clear that both ef-
fects produce dipole moments (and, in principle, higher
moments) on the Ar atoms. There are thus cross terms
involving interactions between the dipole moments aris-
ing from the two sources. In the present work, therefore,
we calculate the vector sum of the two dipole contribu-
tions on each atom, p,, = p,,'" + p,,'. q . The energies of
interaction between the two total dipoles and between
each of them and the multipole moments on the HX
molecule are easily calculated. However, care is needed to
avoid double counting: all contributions that are part of
the Ar-Ar and Ar-HX pair potentials must be excluded
&om the three-body terms. The interactions between
p, ,'" and the HX multipoles and between p, z and p, 2q

are of this type. The resulting three-body term is thus

V3 ———Fg. p —F2 peqd eqd

+[3(~i" p)(V2" p) —ui" u2"]/p'.

Since p, z and p, & are directed along p, and are equal
and opposite, the last term simplifies to —2~~i

~ /p—-', [O(p)]'/p'.
The energy contributions resulting &om this treatment

are shown in the two lower left panels of Fig. 4, with and
without the dispersion quadrupole. It may be noted that,
in Ar2-HF, the exchange quadrupole (eq) and induction
(ind) terms are of comparable magnitude. However, it
should be emphasized that, in the present model, the
"eq+ind" result is not just the sum of the "eq" and "ind"
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terms, but also includes cross terms.
The dependence of the nonadditive terms on the HF

vibrational level v is easily built in by using v-dependent
(or g-dependent) values of the HF multipole moments
Qi. In the present work, the HF dipole and quadrupole
were represented using the g dependent functions given
in Table I of Ref. [2], and the HF octopole and hexade-
capole were taken from the work of Bulanin et al. [39];
the g dependence of the octopole and hexadecapole was
neglected.

E*. The resulting symmetry labels g and e are 0 or 1, in-
dicating the symmetries (—1)" and (—1)' under (12) and
E*, respectively (see also Ref. [14]). The symmetrized
basis functions are given by

4,"'„,„(R,p, ~, 8, $) = [2(1+b„,)]
—'i'

x 4';(R) T (p)4 (cos y)
[Y (8 &)+(—)"+' .— ( 4)],

(13)

III. COMPUTATIONAL METHOD

The computational method used in the present work
is discussed in detail in Ref. [14], and will be described
only brieHy here.

The vibrational Hamiltonian for the Ar2-HF trimer,
neglecting some kinetic energy terms involving mixed
derivatives between 0 and y, is

li' (0' ) h' t'0'i
2pR (BR ) M~, p (Bp )
f h' 5' ) 0+I, +(2pR2 M~, p2) Bc soy

( h,'
+

I
t-+

2 R, IjHF+V-(»p x 8 &)

SlIl icos g

(12)

where p = 2M~, MHF/(2M~, + MHF) is the reduced
mass of the diatom-diatom complex, jHF is the body-
fixed angular momentum operator for the rotation of HF
in the trimer, and 6 is the rotational constant of the HF
molecule for the vibrational state concerned. The Hamil-
tonian depends on the complete intermolecular potential
V„(R,p, y, 8, $), which is averaged over the vibrational
motion of HF in the adiabatically decoupled vibrational
state v. The five-dimensional vibrational problem for
the Ar2-HF complex is solved for each such state v by
diagonalizing a single Hamiltonian matrix using a non-
orthogonal basis set:

(1) For the R coordinate, a distributed Gaussian ba-
sis set [40] is used, with N, Gaussian functions g;(R)
distributed on an equally spaced grid between the limits
R;„and R „. The basis set used here had N; = 16
Gaussians, with R;„=2.5 A and R „=5.0 A. .

(2) For the p and y coordinates, orthonormal sets of
suitably adapted one-dimensional basis functions, T (p)
and 4„(cosy), are used. These functions are defined
as eigenfunctions of effective potentials for the p and
y motions, as described below. The resulting product
basis set is restricted by the conditions m ( m and
m + u ( q~~„; in the present work, we used m~~„= 2
and qznax = 4.

(3) For the angular motion of the HF molecule, a basis
set of spherical harmonics Y~I, (8, P) with j „=5 is used,
excluding the functions with j = 4, A: = 4 and j = 5,
k&1.

The vibrational basis functions may be classified ac-
cording to their symmetry (+ or —) under exchange of
the two argon atoms, (12), and the inversion operation,

where bI, O is the Kronecker symbol. Because of the sym-
metry, u + k and g must be either both even or both
odd. The Hamiltonian matrix thus factorizes into four
independent blocks.

The basis functions T (p) and C'„(cosy) are defined
to be eigenfunctions of one-dimensional Hamiltonian op-
erators.

(1) For the coordinate p, the Hamiltonian defining the
basis set is

(0'i
Hp = —

M I ~, I
p+V.ir(p).

M~, p (Bp2) (14)

X icos g
0

sin
Bcosg + V,ir(cos y) . (15)

In this case, the effective potential V,ir(cos y) is taken to
be a cut through the full potential, V(R,„t,p«t, y, 8 =
O', P = 0'). To choose R,„t, a three-dimensional prob-
lem in R, 8, and P is solved; p and y are clamped at their
equilibrium values, and R,„t is taken to be (R)i, the ex-
pectation value of R for the first excited stretching state.
The value of p,„t is chosen to be (p)i, the expectation
value of p for the basis function Ti(p).

The full Hamiltonian matrix is constructed in the non-
orthogonal basis set (13), as described in Ref. [14]. The
resulting generalized eigenvalue problem is then solved
using routines from the NAG FORTRAN Library [41].
The resulting wave functions are given by

'g6
n J' ~ nimu jk iupu jA:

imu jIc
(16)

This contains a one-dimensional effective potential
V,ir(p). The convergence of the five-dimensional calcu-
lation naturally depends on the choice of this potential.
For Ar2-HF, we have found that basis functions derived
using an adiabatic potential V,&(p) as described by Elrod
et al. [15] give slightly better convergence than those ob-
tained using a simple cut through the complete potential
as used in Ref. [14]. In the present work, therefore, we
follow Ref. [15]: for each value of p, a three-dimensional
problem in R, 8, and P is solved, with y fixed at 90'. This
defines a set of adiabatic potentials U (p). The Ar-Ar
stretching basis functions T (p) are taken to be eigen-
functions of the Hainiltonian (14) with V,ir(p) = Uo(p).

(2) For the coordinate y, the Hamiltonian defining the
basis set is
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The wave functions are used to calculate rotational con-
stants as described below, and overall band intensities as
described in Ref. [14].

Yzy(8, P) are orthonormal, no numerical integration over
them is needed.

IV. ROTATIONAL STRUCTURE

bcosy
tano, = 1+bsiny ' (17)

where b = p~„ppp/pRRp and pz„= Mz, /2. Inverting
the moment of inertia tensor, the rotational constants
can be shown to be [42]

It is not at present feasible to solve the full vibration-
rotation problem for total angular momentum J ) 0.
Because of this, rotational constants must be calculated
&om expectation values involving the vibrational wave
functions. In previous work on van der Waals trimers
[13—15], rotational constants were calculated from expec-
tation values based on formulas that assumed that one
of the inertial axes always lies along the intermolecular
vector R. However, we have recently shown that, for
complexes containing fragments with large moments of
inertia, this approximation can lead to errors of several
percent [42]. More accurate expressions can be obtained
by applying the Eckart conditions explicitly to obtain in-
ertial axes that move as the molecule vibrates. In Ref.
[42], we described how to apply this procedure in Jacobi
coordinates for a complex formed from an atom and a
linear molecule. If the HF molecule is approximated as
a point mass, the formulas of Ref. [42] can be applied to
Ar2-HF. For a triatomic complex with a C2„equilibrium
geometry described by coordinates R0 and po, the angle
n between the R vector and the nearby inertial axis (b in
the present case) is

V. RESULTS

The vibrational energy levels for Ar2-HF in v = 0 and
1, calculated using the complete nonadditive potential
described above, are shown in Fig. 5. The levels shown
are basically of two types. First, there are heavy-atom
vibrations similar to those that exist in Ars (or Ar2-Ne)
[32]. These can be thought of as built upon three normal
modes: a symmetric (breathing) stretch (Aq symmetry),
an asymmetric stretch (Aq symmetry), and an Ar2 rock
(B2 symmetry). The asymmetric stretch and Ar2 rock
are degenerate for Ar3, but not for Ar2-HX. Secondly,
there are vibrations due to hindered internal rotation of
the HF molecule within the complex. The ground state
correlates with HF (j = 0), while the next three HF bend-
ing levels correlate with HF (j = 1). The projection of j
onto the intermolecular axis (or b axis) is approximately
conserved, and is denoted k: the two j = 1, ~k~ = 1 states
(II states) are coupled by the P dependence of the poten-
tial, and mix to form in-plane (B2) and out-of-plane (Bq)
bending states, while the j = 1, k = 0 state (Z bend, Aq

symmetry) is unsplit and actually lies between the two
II states. This energy level pattern contrasts with that
expected for the bending states of a near-rigid molecule,
where the Z bend is actually the overtone of the bending
vibrations: in the present case, the Z bend lies below the
out-of-plane bend, so that it is clearly inappropriate to
use the normal-mode description.

The main difference between the energy level diagrams
for Ar2-HF in v = 0 and 1 states is that, for v = 1, the
excited HF internal rotor states move to higher energy

2 pR pAr p sin

ps cos ck+ pA p cDs
p)2 pR pAr2 p sin

h~ 1C=—
2 pR +p p

(18a)

(18b)

(18c)

A1

V0 (Cm )

90

80

v=0
B2 A1

v=1
B2 B1

where P = y + n. These expressions are more accu-
rate than those used in Refs. [14,15] for Ar2-HC1 and
Ar2-DCl, but nevertheless neglect the structure of the
HX molecule, treating it as a point particle. This ap-
proximation is likely to cause the rotational constants to
be overestimated by a few MHz. However, a more seri-
ous approximation is that the expressions above also ne-
glect Coriolis coupling. For triatomic complexes, Coriolis
coupling affects only the out-of-plane rotational constant
[42], but the effects are not as simple in the present case.

In the present calculation, the expectation values of the
rotational constants were evaluated by numerical quadra-
ture over R, p, and y. The integrals over p and y were
carried out by Gauss-Hermite quadrature, and those over
R by the trapezium rule. Since the operators in (18)
do not depend on 0 and P, and the spherical harmonics

70
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40

30
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0

Ground state. In-plane II bend. 'E bend. Out-of-plane II bend.

FIG. 5. Energy levels for Arz-HF (v = 0 and 1) calculated
using the total nonadditive potential.
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(relative to the ground state). This arises simply because
of the increased anisotropy for v = 1. As a result, the
levels correlating with HF j = 1 move upwards through
the manifold of heavy-atom vibrational levels. The vi-
brational shift is most marked for the out-of-plane and E
bending states. The Z bend, in particular, moves from
a reasonably isolated position for v = 0 into near de-
generacy with an excited heavy-atom bending state for
v = 1; the resulting states are strongly mixed in our cal-
culations, with both mixed levels having a substantial
amount of Z bend character.

More details of our calculations are given in Table
I for states of Arz-HF correlating with HF (v = 0
and 1) and in Table II for states correlating with HF
(v = 2 and 3). The potentials listed are (i) the pairwise-
additive potential formed &om the Ar-Ar HFDID1 and
Ar-HF H6(4, 3,2) potentials; (ii) a potential including
the anisotropic triple-dipole term of Eq. (4) as the only
nonadditive contribution; (iii) the total nonadditive po-
tential, including both the dispersion term and the new
model of the induction and electrostatic distortion terms
as described in Sec. II B; the three-body part of the total
potential is shown in the bottom right panel of Fig. 4.

For v = 0, contour plots of the wave functions for the
ground state, in-plane II bend, Z bend, and the out-of-
plane II bend are shown in Fig. 6. The ground state wave

function is concentrated around 0 = 0, and does not
penetrate significantly beyond about 0 = 80 . The in-
plane and out-of-plane bends show very similar structure.
Both peak at about 0 = 50 and spread considerably over
the whole region in 0. The E bend wave function has
maxima at both 0 = 0 and 0 = 180, with the larger
peak corresponding to the H atom of HF pointing away
&om the Ar2 midpoint.

The only experimental results so far available for Ar2-
HF in v = 0 are the rotational constants of the van der
Waals ground state [llj, which are measured as A
3576.5 MHz, B = 1739.1 MHz, and | = 1161.0 MHz.
The pairwise-additive calculations give results that dier
&om these by +26.5 MHz, +18.9 MHz, and +11.6 MHz.
The triple-dipole term decreases the calculated rotational
constants by between 2 and 7 MHz: it improves the
agreement slightly, but not enormously. The total non-
additive potential, on the other hand, gives almost exact
agreement with experiment for B and C, though A is still
overestimated by 17.2 MHz.

The total nonadditive potential predicts reasonably in-
tense far-in&ared bending bands of Ar2-HF with band
origins around 60.0, 71.8, and 81.5cm . Measurements
of these bands would provide very valuable information
on the nonadditive forces.

For v = 1, the rotational constants of the van der

TABLE I. Results of the calculations for Ar2-HF (v = 0 and 1).

Quantity

Ep (cm ')
Redshift (cm )
A (MHz)
B (MHz)
C (MHz)
Intensity

Additive

—284.702

3595.4
1765.6
1172.6

0.4974

v=0
Dispersion Total Additive

Ground state (Az symmetry)
—281.937 —277.086 —300.056

15.354
3588.9 3593.8
1761.6 1771.8
1170.0 1175.5

0.4947 0.5416

Dispersion

—297.146
15.209

3587.6
1767.3
1172.6

0.5389

Total

—291.663
14.577

3593.6
1742.8
1162.1

0.5114

vp cm
A (MHz)
B (MHz)
C (MHz)
Intensity

64.044
3619.3
1734.3
1158.0

0.1912

In-plane II bend (Bq symmetry)
63.655 60.046 66.348

3608.4 3641.3 3632.1
1730.7 1718.6 1735.1
1154.7 1154.8 1159.5

0.1889 0.2213 0.1760

65.907
3622.1
1731.4
1156.2

0.1740

62.000
3662.5
1715.7
1155.8

0.2076

vp cm
A (MHz)
B (MHz)
C (MHz)
Intensity

?6.943
3554.4
1744.0
1156.3

0.0617

Z bend (Az symmetry)
76.680 71.800

3537.9 3554.2
1739.6 1743.8
1152.1 1156.5

0.0614 0.0761

85.896
3579.2
1743.3
1157.9

0.0468

85.548
3570.4
1738.0
1154.2

0.0475

79.389

0.058

vp cm
A (MHz)
B (MHz)
C (MHz)
Intensity

85.223
3550.5
1747.1
1158.2

0.1604

Out-of-plane II bend (Bz symmetry)
84.901 81.495 91.703

3542.0 3540.5 3551.5
1743.1 1736.5 1749.0
1155.3 1152.2 1159.4

0.1609 0.1676 0.1451

91.320
3543.0
1745.0
1156.5

0.1456

87.575
3542.8
1736.8
1152.7

0.1514

Strongly mixed with a heavy-atom vibrational state; the other combination is at vp ——80.498 cm
Intensity summed over both mixed states with Z bend character.
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Waals ground state have been measured by McIlroy et
al. [12] as A = 3578.7 MHz, B = 1742.5 MHz, and C =
1163.0 MHz. The comparisons with the three potentials
are much the same as for v = 0: the pairwise-additive
and dispersion-corrected potentials substantially overes-
timate all three rotational constants, while the total non-
additive potential is in good agreement with experiment
for B and C but overestimates A by 14.9 MHz. In addi-
tion, McIlroy et al. observed the shift between the band
origin of Ar2-HF and that of the HF monomer, which
is a measure of the difference in binding energy between
v = 0 and 1. The measured redshift is 14.827 cm
which may be compared with the values of 15.354 and
14.577 cm calculated using the pairwise-additive and
total nonadditive potentials, respectively.

Farrell and Nesbitt [17] have very recently observed
the in-plane and out-of-plane HF bending combination
bands of Ar2-HF (v = 1 E 0). For—the out-of-plane
band, their measured band origin is about 5.6 cm be-
low the prediction of the pairwise-additive potential, but
within 1.5 cm of the prediction of the total nonaddi-
tive potential. For the in-plane band, the measured band
origin is 62.0 cm, which is very close to the calculated
result for the total nonadditive potential. Our previous

model of the exchange quadrupole gave an out-of-plane
bending &equency about 81.4 cm, overestimating the
nonadditive shift by about 4.7 cm, so that the model
in the present paper is a clear improvement. The C ro-
tational constant of the out-of-plane bend appears to be
drastically overestimated by all the potentials. However,
it is likely that this can be attributed to deficiencies in the
computational method, and in particular to the neglect
of Coriolis terms, rather than to the potential surfaces
used.

Table I also gives calculations of the frequency of the
Z bend combination band. For the pairwise-additive and
dispersion-corrected potentials, it is clear which calcu-
lated state corresponds to the Z bend. However, for the
total nonadditive potential for v = 1, there is strong
mixing between the E bend and one of the heavy-atom
vibrational states (see also Fig. 5), and both of the re-
sulting levels have substantial calculated intensity. The
heavy-atom vibrations are not as well converged as the
HF internal rotations in our calculations, so it is diKcult
to make definite conclusions about the degree of mixing
to be expected experimentally.

Table II gives predictions of the energy levels of Ar2-
HF for v = 2 and 3. The v = 3 levels are particularly

TABLE II. Results of the calculations for Ar2-HF (v = 2 and 3).

Quantity

E (cm ')
Redshift (cm )
A (MHz)
B (MHz)
C (MHz)
Intensity

Additive

—317.095
32.393

3590.9
1778.4
1178.4

0.5808

v = 2
Dispersion Total Additive

Ground state (Az symmetry)
—314.027 —307.917 —335.875

32.090 30.831 51.173
3585.1 3592.3 3587.4
1773.9 1747.2 1785.8
1175.6 1164.2 1181.5

0.5782 0.5533 0.6156

'U=3
Dispersion

—332.638
50.701

3581.6
1781.3
1178.7

0.6130

Total

—325.913
48.827

3589.5
1752.7
1166.7

0.5903

vo cm
A (MHz)
B (MHz)
C (MHz)
Intensity

69.046
3644.2
1736.9
1161.3

0.1609

In-plane II bend (B2 symmetry)
68.553 64.366 72.082

3634.6 3682.5 3647.6
1732.7 1712.6 1740.1
1158.1 1156.6 1162.7

0.1589 0.1939 0.1426

71.540
3634.6
1736.8
1159.2

0.1391

67.089
3700.6
1710.2
1157.6

0.1805

&o cm
A (MHz)
B (MHz)
C (MHz)
Intensity

96.414
3577.8
1739.1
1155.7

0.0326

Z bend
95.945

3573.4
1736.6
1154.4

0.0342

(Az symmetry)
89.561

3566.4
1729.1
1146.6

0.0372

109.226

0.022'

108.531

0.024'

100.351
3566.6
1742.6
1154.4

0.0263

vo cm
A (MHz)
B (MHz)
C (MHz)
Intensity

99.066
3550.8
1751.9
1160.9

0.1324

Out-of-plane II bend (Bq
98.621 94.614

3542.7 3543.4
1747.6 1737.5
1158.0 1153.4

0.1329 0.1377

symmetry)
107.051

3547.6
1756.0
1162.7

0.1222

106.549
3540.2
1751.4
1159.7

0.1227

102.373
3541.9
1739.2

11544.3
0.1267

Strongly mixed with a heavy-atom vibrational state; the other combination
108.654 cm
Strongly mixed with a heavy-atom vibrational state; the other combination

107.784 cm
'Intensity slimmed aver both mixed states with Z bend character.

is at vo

is at vo
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the Ar atoms with the dipoles induced by the HF charge
distribution. The resulting model gives a smaller total
nonadditive energy, and gives reasonably good agreement
with the observed in&ared bending &equencies.

The present work has con6rmed that, even for sys-
tems containing only one molecule, there are very im-
portant nonadditive interactions that do not arise in the
purely atomic case. The dominant interaction in Ar2-
HF arises &om the fact that the charge distributions of
the constituents are modified by overlap effects, and this
causes a substantial modification of the electrostatic in-
teractions. Such effects may be expected to be important
in all molecular systems, and will be very important in
simulations of the properties of condensed phases.
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