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Pump-coupled micromasers: Entangled trapping states of nonlocal fields
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A single beam of excited two-level atoms couples two micromasers in a series. It is shown that in the
absence of dissipation the possible steady states of their fields are superpositions, of two-field trapping
number states. Which one is realized depends upon the initial state of the fields and the interaction pa-
rameters, g'r' and g "~",of the two cavities. A large number of these trapping states are pure quantum
states, some of them showing entanglement of the two nonlocal micromaser fields of the form
~N, N+M)+~N+M, N). Here, N and N+M are arbitrary trapping numbers that belong to discon-
nected blocks of the photon number space and M specifies the order of correlation between the fields.
The time evolution of the system toward steady states is investigated numerically, mainly concentrating
on the production of pure entangled trapping states of the form discussed earlier. We describe a special
procedure to amplify a number state, ~N, N ), into such states that is based on conditions regarding the
interaction parameters. In principle, N and M can be made arbitrarily large resulting in a steady-state
nonlocal quantum superposition of distinct macroscopical fields (nonlocal "Schrodinger cat"). We also
present a solution of the standard master equation of a damped harmonic oscillator at finite temperature
and apply it to study the effect of dissipation on the production of entangled trapping states at regular
and Poissonian pump statistics. It is found that although the entanglement does not survive at a steady
state it can build up in the short-time transient regime when cavity losses and the number of thermal
photons are not too large. In this small-loss (large N,„)regime the quantum correlation between the mi-

cromaser fields decays into a steady-state classical superposition at a rate that depends on the cavity life-
time and the difference (or order of correlation), M, between the superposed photon numbers. In the
large-loss (small N,„)regime, however, no transient correlation can be produced and the photon statis-
tics spreads out towards a vacuum for increasing losses. The system undergoes a transition from an un-

correlated to a correlated behavior when the pumping parametrized by N,„exceeds the threshold be-
tween the large- and small-loss regimes. Thermal photons enhance the decay of the correlation and by
coupling the disconnected blocks of the photon number space they populate the trapping number states
of adjacent blocks. However, it is shown that the production of transient entanglement is not
significantly affected by either thermal radiation or pumping fluctuations. The experimental realization
of the entanglement of nonlocal micromaser fields employing these two-field trapping states of small

photon numbers is shown to be feasible in the short-time transient regime using the presently available
high-Q cavities and low temperatures, and could be possible on the macroscopic scale in the near future.

PACS number(s): 42.50.Dv, 42.52.+x

I. INTRODUCTION

The preparation of macroscopic quantum superposi-
tions is of considerable interest in quantum optics. The
principle of superposition is one of the most significant
contradictions between quantum and classical physics,
the implications of which are particularly astonishing on
the macroscopic level. This problem has been exploited
in many different systems, for example, in the micro-
maser [1] that is one of the fundamental systems of this
field of research [2]. Its importance is based upon its
genuine quantum nature exhibiting all the important
quantum phenomena of matter-light interaction, and at
the same time its theoretical tractability [3,4] and experi-
mental feasibility [5,6]. Some of the most important ex-
amples include collapse and revival of the Rabi nutation
[7], generation of nonclassical photon statistics [1—5,8] to
the extreme cases of number states [9], trapping states
[10], and macroscopic coherent superpositions of its
single-mode radiation field [1].

The present paper further extends this respectable list
of nonclassical effects, studying the quantum correlations
between two micromasers coupled in series by the com-
mon pumping atomic beam (see Fig. 1) and investigating
the production of entangled states and nonlocal superpo-
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FIG. 1. Schematic arrangement of two micromasers coupled

by a beam of two-level atoms, the state of which is measured

after the interaction by the field ionization detectors without

selecting a particular result.
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sitions of the two micromaser fields [11—13]. One way to
prepare such quantum fields is to perform conditional
measurements on the atoms emerging from the interac-
tion cavity as discussed in Ref. [12]. However, in this
paper we show that the system can be driven into pure
entangled trapping states of the two fields without per-
forming conditional measurements. In fact, it is possible
to generate arbitrary quantum superpositions of two
nonlocal micromaser fields of the form of

~
X,X +M )+

~
% +M, X ) at steady state in the absence of

dissipation, where N and X +M satisfy the trapping con-
ditions in the two micromasers. We describe a two-step
procedure to generate these states from the number state,
~N, X), that is based on special conditions regarding the
interaction parameters, g'~' and g "~",of the two cavities.
Since quantum superpositions and trapping states are
known to be very fragile against dissipations [14) and
thermal effects [8], the question arises of how well our
procedure performs in the presence of cavity losses and
thermal radiation. Applying our solution of the standard
master equation of a damped harmonic oscillator, it is
shown that these entangled trapping states can be pro-
duced in the transient regime when the pumping, X,„,
exceeds a certain threshold established by the losses. We
also find that finite temperature and pumping fluctuations
do not significantly modify the transient buildup of the
correlation between the fields. According to our esti-
mate, experimental realization of transient entanglement
of nonlocal micromaser fields is feasible using presently
available facilities utilizing special configurations of two-
field trapping states such as, for example, the one above.

The paper is organized as follows. Section II intro-
duces the steady-state solution of the system in the ab-
sence of dissipation, distinguishing between mixed and
pure quantum states. In Sec. III the time evolution to-
ward steady states is studied, especially the pure entan-
gled states of the above form. The e6'ects of dissipation,

thermal radiation, and pump fluctuations on the buildup
of entangled trapping states are investigated in Sec. IV.
The summary and conclusions are presented in Sec. V.

II. STEADY-STATE BEHAVIOR IN THE ABSENCE
QF DISSIPATION

We consider two micromasers pumped by a monoener-
getic beam of excited two-level atoms going through cavi-
ty 1 first and then through cavity 2 with no time delay be-
tween the cavities (see Fig. 1). The density of the atomic
beam is low enough in order to have at most one atom at
a time inside the cavities. The eFect of dissipation is ig-
nored in the present section, it will be taken into account
later on. The state of the atoms is measured after the in-
teraction in cavity 2, but we do not select a particular re-
sult. We assume 100% detection efficiency for the field
ionization detectors measuring the state of the outcoming
atoms in order to have each atom measured after the in-
teraction. The state of the fields is described by the re-
duced density operator obtained by tracing out over the
atomic states. This tracing operation is sometimes re-
ferred to as a nonselective ineasurement [15]. The evolu-
tion of the system is governed by the Jaynes-Cummings
operators, U' and U", during the atom-field interactions
in cavities 1 and 2, respectively. At the instant when the
kth atom leaves cavity 2 the field density operator
reduces to

(k) T [UiiUs (k —i) U'tU"t] (2.1)

where p„, is the atomic and p' " is the field-density
operator at the instant when the kth atom enters cavity 1.
In the number representation

p(„") =(n„n,~p(k)~m„m, &,
n2, 7P. ~

this reads as

p —p C +)C +)C +)C +)+p i )S' S' C"C" +p' ) iS S S +iS
n2, mp n2+1, m2+ i

+p ~ C. +1C- +1S. S- p ~ -1C. +1S C +1S- +1+p(k 11) S' C' +1C"S
n2

—1,m2 —1 n2, m2+1 n2) m2 1

pn» —,m»Sn Cm +&Sn2+&Cm2+, +pn» m» &Cn»+&Sm S„2Cm2 .
n2+1, m2 n2

—a, m2

(2.2)

Here, S„'—:sin(g'r'Qn, ) and S„"—:sin(g"r"p'n2), C„'

and C„"stand for the cosine functions of the correspond-"2
ing arguments, g' and g" are the atom-field coupling con-
stants, and w' and w" are the interaction times in cavities
1 and 2, respectively.

Representing the four-dimensional density matrix as a
supermatrix of matrices where one matrix is specified by
the photon numbers of the first field, (ni, m(), and one
element of this matrix is given by those of the second

field, (n2, mz), Eq. (2.2) tells us that any matrix element,
( n „m„n2, m z ), is coupled to others located along a
"double square" as depicted in Fig. 2. This shows, for ex-
ample, that the photon statistics [diagonal elements,
(ni, ni, ni, n2)] are coupled to the coherence terms [off-
diagonals, ( n „n,+ 1,n z+ 1,n z )], indicating the essential
role of correlations in this system. The strength of the
coupling is determined by the sine and cosine functions in
Eq. (2.2). In the interaction picture and in the absence of
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by numerically evaluating Eq. (2.2} for a stream of atoms.
It can be seen from Eq. (2.2) that for steady states of

the fields one needs
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dissipation the density operator does not evolve during
the time interval t between the atoms. Thus, successive
iterations of Eq. (2.2) yield the stroboscopic time evolu-
tion of the fields. This will be studied in the next section

FIG. 2. The structure of the coupling between the elements
of the field-density matrix arranged in the form of a superma-
trix, one matrix of which is given by the photon numbers of the
first micromaser, ni and m i, while the elements of this matrix
are given by n2 and m2 of the second micromaser. (The indices,
n& and n&, increase downward and mi and m2 to the right. )

Two examples show how a matrix element depicted by a star is
coupled according to Eq. (2.2) to others located along the dou-
ble square shown by the solid circles. The four solid rectangles
give an example for the structure of a pure state given by
l0, 3 )+ l3,0) (apart from a normalization factor).

which is the trapping condition satisfied by any combina-
tions of any four numbers N1, M„X2,and Mz for each
of which gr&N+1=qm, where q is an integer and N is
any of the four numbers. Thus, in the absence of dissipa-
tion, the only possible steady states of tht„system are the
superpositions of these two-field trapping number states
satisfying Eq. (2.3). They include both mixed and pure
quantum states of the fields as can be seen from the su-
permatrix picture. Populating, for example, the diagonal
trapping number states only will provide us with mixed
states of no correlation between the fields, while also po-
pulating the off-diagonal ones will result in correlations
between the micromasers and in some cases of pure quan-
tum states. An example is given in Fig. 2 representing
the pure quantum state, l0, 3&+l3,0& (apart from a nor-
malization factor), that is an entangled trapping state of
the two micromaser fields for the interaction parameters,

We want to select pure states from this broad set of
steady states by applying the following factorization ar-
gument [1]. Let us assume that the initial state of the
fields is given by

(2.4)
nl, n2

We require this state to be a steady state of the fields. In-
teracting with an atom initially in its upper state,

l
a ), the

atom-field system under the Jaynes-Cummings dynamics
evolves into the state given by

le& = y q'„„[(C„'+,C„"+,ln„n2)—S„'+iS„"lni+ 1,n2 —1&)la &

nl n2

i(C„' +—,S„'+i lni n2+»+S„' +ic.", lni+i, nz &}lb &] . (2.5)

The requirement that the fields remain in the same pure
state after the interaction implies that

l
4 & must factorize

into a tensor product of the initial pure state of the fields
given by Eq. (2.4) and a pure state of the atoms as

(2.6}

where a, P, 8 are indePendent of n „nz and

lal + lPl =1. Comparing Eqs. (2.5) and (2.6) we readily
find CN) +1CN2+1 (2.9)

It is apparent from Eq. (2.8) that for a steady state we

need p=0, and consequently a=+1 and e' =+1, i.e.,
atoms to leave cavity 2 in their upper state. This implies
that they need to be in their upper state before, between,
and after the cavities at steady state. Hence, it follows
from Eq. (2.7) that the necessary condition for a nonzero
field amplitude, %'& z %0, is

+n&, n2 +n&, n n&+1Cn2+1 +nl —1,n2+1 n n2+1

(2.7)

which is satisfied by the two-field trapping conditions

(2.10)

(2.8)

(2.11)

Any combination of NI ' and Nz'~' determines a point in
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There are no other pure steady states of the system. It is
apparent that the solution of Eq. (2.3) provides a broader
set of trapping states including the ones given by Eq.
(2.12) as well as those for which a pure state vector does
not exist. In the case of gr =g'r'—=g"r" Eq. (2.12)
reduces to the combination of a single set of trapping
photon numbers. Choosing, for example, gr 7T/+5, tile
possible trappings occur at photon numbers
&'~'=4, 19,44, . . . for p =1,2, 3, . . . , resulting in trapping
states such as number states, 4, 4 & or

I
19, 19 &, and a

combination thereof, or such as entangled states exhibit-
ing strong correlation between the two nonlocal micro-
maser fields [12,13], for example,

I+& =- —(l4, 19&+I19,4&)
2

(2.13)

Going back to the supermatrix picture we find that the
ensemble of possible trapping number states determined
by the interaction parameters, g'~' and g "~", marks the
borders of disconnected blocks inside which the fields are
bound to evolve. Unless finite temperature is introduced
into the system (as will be studied in Sec. IV) the fields
cannot reach beyond the trapping states and enter the re-
gion of another block in the supermatrix, but they must
stay in the block they started in. Hence, the initial state
of the fields and the interaction parameters determine

the photon number space, ni-n2, where a nonzero ampli-
tude, 0'&~~~ &«~%0, can arise, resulting in the most gen-

1 ~ 2

eral steady states of the fields given by

(2.12)

which part of the general trapping state [mixed, Eq. (2.3)
or pure, Eq. (2.12)] the system will evolve into. The dy-
namics of the fields will be studied in the next section
where, in particular, we are going to describe a procedure
that takes advantage of the disconnected structure of
blocks in the photon number space and generates various
nonlocal superpositions of trapping states [such as Eq.
(2.13)] starting from initial fields that overlap several
(two) blocks simultaneously.

III. TIME EVOI.UTION TOWARD TRAPPING STATES
IN THE ABSENCE QF DISSIPATION

We have seen in the preceding section in the absence of
dissipation the steady state of the fields consists of vari-
ous ensembles of two-field trapping number states, some
of which exhibit pure entanglement of the two nonlocal
micromaser fields. In this section we are investigating
typical time evolutions of the fields toward steady states,
considering various initial conditions and concentrating
mainly on the production of pure entangled states. We
compute the density matrix for a stream of atoms by nu-
merically iterating Eq. (2.2).

A. Uncorrelated initial states

As a first example let us start the fields from vacuum
and set g~=O. 5. It can be seen from Fig. 3 that the field
in the second micromaser experiences an initial Aip: after
an initial growth it falj.s back to vacuum around the 20th
atom. This "second threshold" corresponds to a com-
plete depletion of the upper atomic level by the first mi-
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FIG. 3. Density plot of the time evolution
of the photon statistics of the fields started
from vacuum applying g~= 0.5. Brighter
points correspond to higher probabilities, the
gray level to zero, and numbers k in the figure
are the atom numbers. After an initial Hip
lasting until k—=20 the fields evolve toward
n I —=n2 =—38 in a well-localized structure.
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cromaser and it is studied in Ref. [16] in detail. The flip
is longer in time and sweeping over larger photon num-
bers for smaller g~'s, while it is shorter and will even
disappear for larger parameters. After the Aip the fields
evolve toward n&=n2—=38, which is close although not
exactly equal to the m-trapping point, N& =38.478. This
"pseudotrapping" point attracts the fields to spend a long
time in its vicinity, but then the system moves on. This
can be seen from another example depicted in Figs. 4(a)
and 4(b), where go=3m/&29 resulting in the "pseudo-
trapping" points attracting the fields to N, =2.222 and

N2 =11.889, and the "true-trapping" point at N3 =28.
Figure 4(a) shows that the system spends long times in
the two pseudotrapping points, but then it finally evolves

into its true steady state, ~28 28). The evolution of the
purity factor defined as g'"'= Tr[p'"' ] as a function of
atom number k is depicted in Fig. 4(b). We have ob-
tained very similar effects including the initial Aip and the
attraction by pseudotrapping points when starting the
fields from a single or from an incoherent mixture of
number states, although in the latter case the system may
evolve into a classical mixture of several trapping points
belonging to different disconnected blocks of the photon
number space. (We are using the terms "classical" and
"incoherent" as equivalents throughout this paper. ) Simi-
larly, starting from initially uncorrelated coherent states
the system simultaneously deals with several (both
"pseudo-" and "true-") trapping points depending on gr.
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FIG. 4. (a) Density plot of the time evolu-
tion of the photon statistics of the fields started
from vacuum applying g~=3m/&29. The sys-
tem spends long times in the pseudotrapping
points around N& =—2 and N&—= 12 and com-
binations thereof, until it finally evolves into
the true-trapping point at F3=28. (b) The
evolution of the purity factor, g'"'= Tr[p'"' ],
as a function of the atom number k corre-
sponding to the fields depicted in (a). The peak
around k-=400 corresponds to photon statis-
tics that are very similar to that of the number
state, ~12, 12), at the pseudotrapping point,
N2-——12. Finally, the steady state is the num-
ber state, ~28, 28 ), with purity factor of l.
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After the initial Aips it finally settles down to an in-
coherent mixture of trapping photon numbers located at
difFerent disconnected blocks under the envelope of the
initial fields, showing no correlation between the micro-
maser fields (this is similar to the problem discussed in
Ref. [12] in detail). We could not generate pure entan-
gled states starting from these uncorrelated initial states
even if they overlapped several disconnected blocks of the
photon number space.

B. Amylification of correlated states,
~
4 &'„'

We are going to show, however, that a correlated state
of the two micromaser fields, ~qj&'„', that exhibits a
structure given by

1
(~n, n+m &+ n+m, n &)

2
(3.1)

S„'+i =S„"+i =0 (3 3)

can be amplified into the pure steady state, 4' &Iv ', of the
same form as above, provided X and % +M are trapping
numbers. It should be mentioned here that, defining
mth-order correlation by the nonseparability condition

&(&,&, ) &&&&i &&o2~ (3.2)

where &, (d, ) and a2 (az ) are the field operators in mi-
cromasers 1 and 2, respectively, it is easy to show that
these states, ~V&'„', exhibit mth-order correlation. We
would like to draw attention to the fact that this is a
correlation between fields of two spatially separated mi-
cromasers, i.e., a nonlocal entanglement. The state of one
of the fields can be inferred from a measurement made on
the state of the other field located at a diferent point in
space.

The amplifying procedure of an initial state, ~%&'„',
the preparation of which will be discussed later on, is
based on conditions regarding the interaction parameters,
g'~' and g"~", of the two cavities. Choosing the ap-
propriate parameters, we want to trap photon number n
in its initial value in Eq. (3.1), making

~
4 & „' ' overlap two

di6'erent disconnected blocks in the photon number
space. Thus, n is going to be a constant throughout the
procedure, i.e., X=n, while n+m located in the other
block disconnected from the one of n can be amplified.
Due to the structure of j%&™the roles of the two fields
are interchanged in the two terms: the first and second
fields are trapped only in the first and second terms, re-
spe:"tively. Therefore, an increase in m will result in a
symmetrical amplification of the di6'erent fields in the
di8'erent terms until the trapping number X +M is
reached, preserving the structure of the entanglement the
same as in Eq. (3.1). This also implies an increase in the
order of correlation trapped at the value
of m =M at steady state. It follows from Eq. (2.5) that
since the amplitudes of the initial fields are4„„+=+4„+„=1/&2this procedure can be car-
ried out by simultaneously satisfying two conditions
given by

S„"=0. (3.4)

The first condition most importantly ensures that a given
state, ~% &~„~,gets amplified in the desired way when the
atom leaves the interaction in its lower state, while to-
gether with the second one they prevent quantum states
of structures diFerent than ~%'&„ from contributing to
the state of the fields when the atom leaves in its upper
state. In particular, considering the second line of Eq.
(2.5) the initial amplitude, 4„„+(4„+„),allows only
the first (second) term to contribute and the other one is
suppressed due to Eq. (3.3). Similarly, in the first line of
Eq. (2.5) only the first term contributes and the second
one is suppressed for both amplitudes as a result of Eqs.
(3.3) and (3.4). These two conditions imply that the in-
teraction parameters must be integer multiples of

/v'n . + 1 and+/&n simultaneously Sinc.e this is not, in
general, possible we are going to start in the following ex-
amples with concentrating on the first condition only,
describing the resulting eFect of mixing difFerent struc-
tures into the evolution of the fields, and then apply the
second condition approximately. It will be shown that
this approximate solution for gw works very well in the
amplifying procedure and the generated states are very
close to the pure entangled trapping states, ~'P &Iv '. We
should mention here without going into details that un-
equal interaction parameters, g'v' and g "~" [both ap-
proximately satisfying Eqs. (3.3) and (3.4)], result in a
reduction and ultimately a loss in the correlation and
purity of the fields at steady state due to an asymmetrical
amplification of the state vector. Therefore, we require
g~=—g'~'=g "~"in the amplifying procedure.

As the simplest example let us consider an initial state,
~'P &o™,given by Eq. (3.1) for n =0. It can be seen from
Eq. (2.5) that detecting the first atom emerging from the
interactions in the upper state, ~a &, will not change the
state of the fields, ~4&o' ', (apart from a phase factor) if
g~=q~, where q is an integer. On the other hand,
detecting the lower state, ~b &, will increase m by 1 until
the trapping point M is reached, and at the same time
preserve n =0 unchanged, resulting in the state
~%&o' +". The tracing operation averages the two atom-
ic paths out and the state of the fields is a statistical mix-
ture of the two corresponding quantum states, ~4&o'
and ~%&~™+I),both exhibiting the form of Eq. (3.1).
Similarly, for all the consecutive atoms the states of the
fields during the evolution are always statistical mixtures
of quantum states of the form of ~%&&'P' only; no other
structures will contribute. This suggests that the system
inevitably evolves into the trapping state, ~%&o ', where
M can be any trapping number M =3, 8, 15, . . . depending
on which disconnected block we are working in. In other
words, the trajectory of the fields (i.e., the sequence of
states they evolve along) consists of states like ~%&z™
only, where I is increasing with the number of injected
pumping atoms while n =0 is kept constant. Figure 5(a)
depicts the field-density matrix for the first two atoms in
the form of a supermatrix (arranged in the same way as in
Fig. 2) starting from the initial state, ~V&o", at g7.=m.
Comparing the structure of the pure state, ~%' &o ', depict-
ed in Fig. 2 to Fig. 5(a) it can be seen that the system
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FIGR S. Density plot of field-density ma-
trices in the form of supermatrices discussed in
Fig. 2 at atom numbers k given in the figure
(dark points correspond to negative values).
The initial states and applied g ~ s are (a)
l+)o" g~=~, (b) l%')I" g~=a/&2, and (c)
ltp)', ",go=7~/i/2 The. evolution of the den-
sity matrix shows statistical mixtures of pure
states of (a) l+)OI ' for m =1,2, 3 and (c) 0')'t
for m =1,. . . , 6, resulting in pure steady states
of (a) l+)OI ' and (c) l+)P'. In the case of (b)
other states of different structures also contrib-
ute, resulting in a mixed quantum state of the
fields at steady state.
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evolves along a statistical mixture of pure states, lq/)o™,
of m =1,2, 3. Numerically iterating Eq. (2.2) for several
atoms we find that the fields finally evolve into the trap-
ping state, lq/)oi '. The solid line in Fig. 6 shows that the
purity factor g'"I experiences an initial drop due to the
statistical averaging of the two atomic paths, but then it
goes back up to unity at steady state. We should mention
at this point that the initial state, q/)oI", can be generated
from vacuum, l0, 0), with a probability of 1 by sending
one single excited atom through the cavities at g'r'=sr/4
and g "r"=m./2 [see Eq. (2.5)].

For an initial state, l%')'„',given by Eq. (3.1) for n&0
the time evolution of the system is more complicated.
Although the condition given by Eq. (3.3) ensures that m
is increased by 1 and at the same time n is left unchanged
when the lower atomic state is detected, the state vector
is not necessarily preserved, as it has been for n =0 above
when the upper atomic state is detected. This implies
that new quantum states exhibiting structures different
than the one given by Eq. (3.1) also contribute to the
fields, making the trajectory of the system more compli-
cated, and, as the example given by the dotted line in Fig.
6 shows, the purity of the system can be lost at steady
state. Here, we start from the initial state, l+)I", and
apply gr=~/&2 to satisfy Eq. (3.3). The more compli-
cated trajectory is apparent when comparing the evolu-
tion of the field-density matrix depicted in Fig. 5(b) to
Figs. 5(a) and 2. The steady state of the fields is not the
pure state, l

q/)', ', that we aimed at, although it is close to
that. The nonzero field-density matrix elements given by
the indices ( n „m„n2, m 2 ) are the diagonal terms
(1,1,7,7) and (7,7, 1,1) equal to 0.500, and the off-diagonal
ones (1,7,7, 1) and (7,1,1,7) equal to 0.223 (instead of
0.500) that show a mixed quantum state of purity factor

(=0.600. Considering another interaction parameter of
g&=2r//&2 for which the condition of Eq. (3.3) is still
satisfied, the effect is even stronger. Only the diagonal
elements (1,1,7,7) and (7,7, 1,1) survive at steady state hav-
ing the same value as above O.SOO; the off-diagonal eleRR

ments are equal to —0.01 resulting in the steady-state
purity factor (=0.500. The evolution of gi"i as a func-
tion of the atom number k is depicted by the dot-dashed
line in Fig. 6. Since new quantum states have been in-
volved in the evolution of the system exhibiting different
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FICr. 6. The evolution of the purity factor g'"I as a function
of atom number k. The initial states of the fields are the pure
states, l%')0", at gr=m depicted by the solid line, ltd)I" at
gr =m/&2 depicted by the dotted line, and

l
4 )I" at

go=2m/&2 depicted by the dot-dashed line. The steady state is
a coherent superposition, l tp)0 ', of purity factor /= 1.0 in the
first case, a mixed state showing some correlation indicated by
g'=0. 6 in the second case, aud a classical mixture of photon
numbers 0 and 3 indicated by (=0.5 in the third case.
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Flax. 7. The evolution of the purity factor g'"' as a function
of atom number k. The initial state is

~
4 ) '," applying

g~=l'm/&2, where 1=7, 10, and 17 depicted by the dot-dashed,
dotted, and solid lines, respectively. The steady state in each
case is approximately the same pure quantum state,

~
4 ) I ',

[within the + sign in Eq. (3.1}]although the time evolutions are
different. The solid line indicates that in the case of i=17 the
system is attracted by the pseudotrapping state, ~1, 3) —~3, 1),
around k —=9 which slows down its evolution toward the final
state,

~
1,7 ) —

~ 7, 1 ) (apart from a normalization factor).

structures than the one in Eq. (3.1), the state of the fields
irreversibly lost all the correlation and purity. The
steady state is a classical (nonlocal) mixture of photon
numbers 1 and 7 given by the density operator of the
form ~1,7) (1,7~+ ~7, 1)(7, 1~ (apart from a normaliza-
tion factor).

However, for any initial state of the fields, ~%')(„',
given by Eq. (3.1) one can choose gr in such a way that it
satisfies the condition given in Eq. (3.3), and at the same
time drastically reduces (although does not completely
destroy) the probabilities of mixing quantum states of
different structures into the evolution of the fields by ap-
proximately satisfying Eq. (3.4). In this case, when gr is
an integer multiple of vr/V'n +1 and at the same time it
is close to an integer multiple of vrlv'n, the system does
evolve into a steady trapping state that can very well be
approximated with the pure entangled trapping state,
4 )z '. In the example of the initial fields above given by

~%)'," we now apply go=7m. /V'2=4. 950m. The evolu-
tion of the purity of the state of the fields is shown in Fig.
7 by the dot-dashed line and an illustration of the evolu-
tion of the field-density matrix is depicted in Fig. 5(c). It
is apparent that the system evolves along a trajectory
predominantly of state vectors, ~%)(, ', m =1,2, . . . , 6;
new states of different forms have no significant contribu-
tion. This is similar to the cases of n =0 as can be seen
by comparing Fig. 5(c) to 5(a). The steady-state diagonal
elements are the same as they were in the examples above
for gr=n. /V'2 and 2m/V2, both (1,1,7,7) and (7,7, 1,1)
equal to 0.500, while the off-diagonal terms (1,7,7, 1) and
(7,1,1,7) are now equal to 0.496, resulting in the steady-
state purity factor /=0. 992. The steady state of the sys-
tem is approximately equal to the entangled trapping
state,

~
4)(i . We have found very similar steady states for

g r = I m /v'2, for l =7, 10, 17, . .. [within the + sign in Eq.
(3.1)], although the time evolution can be very different as

depicted in Fig. 7 by the dot-dashed, dotted, and solid
lines, respectively. The evolution of the system toward
its steady state is particularly slow, for example, for
1=17 (solid line), due to its being attracted by the pseu-
dotrapping state, ~1,3) —~3, 1), along its way around the
atom number k =9.

The two micromaser fields can be amplified into arbi-
trary entangled trapping states, I')Iv ', starting from an
appropriate initial state, ~% )'„',when the interaction pa-
rameters gr (where gr =—g'r'=g "r")approximately satis-
fy Eqs. (3.3) and (3.4) simultaneously. These two condi-
tions ensure that the fields evolve along statistical mix-
tures of state vectors of the form given by Eq. (3.1) only.
In this case the transient drop in the purity due to the
statistical average of the mixture goes back up to 1 as the
fields approach the pure trapping state, ~4)&( ~. Involv-
ing quantum states of different structure into the evolu-
tion results in an irreversible loss of purity, and the sys-
tem evolves into a mixed quantum state of reduced or
vanishing correlation. The same occurs in the case of un-
equal interaction parameters as we mentioned earlier.
Although new structures will not appear when g'~' is
different than g"r" [both approximately satisfying Eqs.
(3.3) and (3.4)] the fields will not be amplified symmetri-
cally, resulting in a reduction of correlation at steady
state. In the example of the initial state, ~ql)I", above,
applying g'r' and g "r" equal to le/V 2 (l =7, 10, 17) and
now using different I s for the different cavities, the corre-
lation is completely gone and the purity factor is (=0.5
at steady state.

C. Preparation of the initial state,
~
4 )'„",and switching

to its amyli6cation

For n %0 the preparation of the fields in the appropri-
ate initial state, ~%)„,starting from the number state,

~
n, n ), is not as simple as it has been for n =0 above (on

the production of number states, see Refs. [9,12,18]).
The reason for this is similar to the one in the amplifying
step of the procedure above when contrasting the two
cases of n =0 and n&0, namely, undesirable quantum
states show up when the atom leaves the interaction in its
upper state. Although the probability of this effect can-
not in principle be destroyed completely, it can be drasti-
cally reduced by applying the same idea as above. Let us
send one single excited atom through the fields started
from the number state,

~
n, n ), and set the interaction pa-

rameters, g'w' and g"~", in the two cavities as follows
(g'r' =g"r" is required only in the amplifying procedure,
not here). First of all, g'r' must satisfy the condition

~
C„'+i ~

= ~S„'+,~. On the other hand, we need the second
interaction parameter, g"~", to approximately satisfy
conditions ~S„"+,

~

—= 1 and S„"—=0 simultaneously In this.
case Eq. (2.5) tells us that the probability of detecting the
outcoming atom in its upper state is close to zero, while
the other atomic path provides us with fields in a state
approximately equal to ~%')(„".We have seen above that
this obviously works for a vacuum, n =0. In the case of
n = 1, choosing, for example, g'r' =m /(4V 2) and
g"r"=17m./(2V'2)=6. 01m gives us the probability of
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0.1% to detect the upper atomic state and the general
fields can very well be approximated by the pure state,

~
4 ) ',". Once the initial state,

~
4 ) '„",is prepared for

amplification by one single atom we can proceed to the
second (amplifying) step of the procedure by switching
the interaction parameters to the appropriate values dis-
cussed above.

The switching itself sounds simple in principle, but it
raises some technical difficulties in a real experiment. It
is easy to see that, in general, one cannot rnatch the in-
teraction parameters between the two steps (preparation
of the state and its amplification) by simply switching the
velocity of the atomic beam. In order to do that the ra-
tio, g '~'/g "~", would need to remain the same
throughout the procedure. This, however, is not possible
because the equality condition, g'~'=g "~",of the second
step cannot possibly be met in the first one (see the condi-
tions above). Since the purpose of this condition is to as-
sure a symmetric amplification, it can be ignored only if a
trapping state of first-order correlation (I =1) is to be
produced (since there is no amplification here at all). In
this case one can find interaction parameters, g'~'Wg "r",
that prepare the state,

~

4 )'„",starting from the number
state,

~ n, n ), in the first step and then trap it by simply
switching the atomic velocity in the second one. This ob-
viously imposes a restriction on the set of parameters that
have been found above for the two steps separately, since
now we need only those of them that satisfy the condi-
tions of both steps simultaneously. For example, the con-
ditions to generate ~%)0 ' from ~0, 0) are
g'r'=m/4+k~/2 and g"r"=sr/2+le, while those to
trap this state are g'r'=pm. and g "r"=q7r/&2. Choos-
ing the integers k, l, p, and q to be 2, 8, 5, and 48, respec-
tively, the ratio g'v'/g "r" is 5/34 in both steps. Thus, a
simple change in the atomic velocity (in this example a
decrease by a factor of 4) after the first atom will trap the
fields in the state ~%)0". We should mention at this
point that, as is going to be shown in the next section
(also see Ref. [14]), the smaller the correlation (m) the
longer the lifetime of the pure state is at the presence of
dissipations (see also in Ref. [14]). Therefore a simple
procedure to generate the long-lived state, ~%)'„",from
the number state, n, n ), is possible. This nonlocal entan-
glement, as discussed in Ref. [19], can prove useful in
several interesting applications, such as to generate in-
teratomic Einstein-Podolsky-Rosen (EPR) correlations
between spatially distinct atomic beams that can, for ex-
ample, be applied to test the principle of complementari-
ty of quantum mechanics.

The generation of higher-order correlations, however,
seems to be more complicated. Since the equality condi-
tion, g'w'=g"~", is crucial for pure amplification, such
parameters that can be switched by atomic velocities can-
not be found. A rather unrealistic adjustment of the cavi-
ty lengths or of the coupling constants relative between
the two cavities seems to be necessary when proceeding
from the preparation to the amplification step. There
may be some, probably difficult, technical tricks to get
around this problem, for example, shooting the single
atom in the first step through the cavities at an angle al-
lowing for a control of the individual interaction times in

I

X p(k)(0) (4.1)

either of the two cavities separately.
Another possibility to reconcile the two steps of the

procedure may be to use conditional measurements in the
first step [12]. The two possible outcomes when detecting
the final state of the first single atom imply two possible
pure states for the fields. We can set the parameters in
such a way that one of these would be the desired

~
4 ) '„"

for the fields. Thus, we impose the condition that the
atomic state generating

~
4 ) '„"needs to be detected in or-

der to proceed to the amplifying step of the procedure.
Starting, for example, from the field state,

~
1, 1 ), and us-

ing g 'r'
= g

"r"=7m. /4&2 the detection of the lower
atomic state, ~b ), (the probability of which is about 50%
in this example) ensures that the field state,

~
4 )',", has

been generated. (If we detect ~a ) then we need to recon-
struct ~1, 1) and start again until ~b ) is detected. ) Now
lowering the atomic velocity by a factor of 4 we are back
to the same amplifying step as the one discussed in Sec.
III 8 above in detail to generate the trapping state,

We have shown in this section that entangled trapping
states, ~%')Iv ', given by Eq. (3.1) of arbitrary X and M
can be produced using a two-step procedure that is based
on conditions regarding the interaction parameters of the
two cavities. In principle, X and M can be made arbi-
trarily large, resulting in a nonlocal quantum superposi-
tion of distinct macroscopical fields —sometimes referred
to as a nonlocal Schrodinger cat. Since quantum super-
positions are well known to be very sensitive to dissipa-
tions [14] we are going to study the effect of cavity losses
and finite temperature on the method discussed above in
the next section.

IV. THE EFFECT OF DISSIPATION
ON THE PRODUCTION

OF ENTANGI. ED TRAPPING STATES

Pure steady-state entanglement of the nonlocal micro-
maser fields has been found in the absence of dissipation
in the form of trapping states, ~%) Iv ', given by Eq. (3.1).
In this section we study the efFect of finite losses and tem-
perature numerically, concentrating on the production of
these states. We assume that the interaction time an
atom spends in the cavities is much shorter than the cavi-
ty lifetime. (In a typical experimental setup the difference
is three orders of magnitude. ) In this case we can ignore
the decay of the fields during the time an atom is inside
the cavities and separate the evolution of the system into
two parts: atom-field interaction (pumping) and decay of
the fields (damping). Thus, the field-density matrix at the
instant when an atom leaves cavity 2 can be calculated
from Eq. (2.2), resulting in the matrix p(0), the decay of
which is then calculated from this initial condition as a
function of time by applying the solution of the standard
master equation for a field mode of an empty cavity
damped to a reservoir of finite temperature given by

n —I
pf Qo A'

(k}(t) —y(k/2)t ~ ~ C(k)
Pn n, m, l Bm+k+1

1=0m =n —l
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Here, p I k ~ =p„with k =m —n, y is the cavity decay
rate, and t is time. The coefBcients are given by

0.8-

+k+I
Cjkj —

( 1)I

m+0
X

n —l]
1/2I

(4.2)

0.6-

0.4-

0.2

A:(—nb +.1)(1—e r') 8:—1+n&(1 —e r'), 2 '—:e
n&(1——e r'), and 8'=—A' —e r', where nb is the aver-

age number of thermal photons. A derivation of this
solution is given in the Appendix (see also Ref. [17]). It is
easy to show that in the special case of zero temperature,
i.e., nb =0, Eq. (4.1) reduces to

1/2m+0 m
jkj(t) —y(n+ki2)t yPn

m=0

yt)m n—jk—j(0) (4.3)

The two fields decay according to this time-dependent
density matrix during the time interval until the next
atom arrives. Hence, the time evolution of the fields for a
stream of atoms is calculated by numerically iterating the
two cycles of pumping and damping by applying Eqs.
(2.2) and (4.1), respectively. Apparently, the pump statis-
tics of the micromasers can also be taken into account via
the distribution of time intervals of the decay cycles in
the procedure. The effect of pump Auctuations will be
studied later on by assuming Poissonian statistics for the
atomic beam.

In the first examples we consider regular pump statis-
tics and the temperature of the reservoir is assumed to be
zero [Eq. (4.3) is applied]. We study the effect of cavity
losses on the production of entangled trapping states dis-
cussed in the earlier sections. Let us start the fields from
a pure state,

~
4)oj", and apply g 7.= rr. Figure 8 shows the

evolution of the purity factor g'"' for four different
values of yt, illustrating the evolution of the fields. We
find that provided the losses are not too large {in this ex-
ample if yt ~0.001) the same entangled trapping state,
~'P)oj ', is produced in the short-time transient regime as
in the absence of losses, followed by a decay of the corre-
lation the rate of which depends on yt (see solid and dot-
dashed lines in Fig. 8). For larger losses the complete en-
tanglement has no chance to build up (dashed and dotted
lines). Some correlation can be found for yt =0.01 at
short times (dashed line), but no correlation at all for
yt=0. 1 (dotted line). The steady state of the fields in
each of these four cases is a mixed quantum state of no
o8'-diagonal elements in the density matrix, i.e., no corre-
lation between the fields. The photon statistics are de-
picted in Fig. 9(a), and apparently the steady state is a
(nonlocal) classical superposition of the photon numbers
0 and 3 if yt ~0.001. The only nonzero matrix elements
are the (0,0,3,3) and (3,3,0,0) equal to 0.5 resulting in a
purity factor of /=0. 5 (see solid and dot-dashed lines
Fig. 8). On the other hand, Fig. 9(a) shows how this clas-
sical superposition decays due to losses exceeding this
threshold (yt &0.001) until finally the fields settle down

200 400 600 800 1000

number of atoms, k

FKx. 8. The evolution of the purity factor g'"' as a function
of atom number k for four diferent cavity losses of yt =0.0001,
0.001, 0.01, and 0.1 depicted by solid, dot-dashed, dashed, and
dotted lines, respectively. The initial state of the fields is the
pure state j%')o", applying gr=sr, which would evolve into the
steady state ~%')&'&

' in the absence of losses. Apparently, in the
cases of small losses (solid and dot-dashed lines) this state can
build up in the transient regime where g'"' is close to 1 and then
decay into the classical superposition of the above photon num-
bers 0 and 3. In the case of large losses (dotted line) there is no
transient correlation and the steady state spreads out toward the
vacuum of g= 1.0.

to the vacuum (of steady-state purity factor /=1. 0, the
dotted line in Fig. 8). These two regimes of small and
large losses can also be distinguished in the next example
where the fields are started from the initial state, ~%)'i",
and g~=77rl&2 is applied. The evolution of the purity
factor g'"' is depicted in Fig. 10 for the same four values
of yt as in Fig. 8. It can be seen that some correlation
builds up in the transient regime if yt 0.001 (see solid
and dot-dashed lines in Fig. 10) while there is no correla-
tion between the fields at any time if the losses are larger.
Comparing Fig. 10 to Fig. 8 it is apparent that the quan-
tum superposition,

~

qI }I, that we want to generate in the
present example is more sensitive to cavity losses than the
one

~

ql ) oj
' was before, and the threshold for a correlation

to build up is higher. This has been discussed by others,
for example, in Ref. [14]: that a quantum superposition
decays exponentially faster for superposed states of larger
separation (or order of correlation, which is M in our
case). The steady-state photon statistics of the fields for
the present example is depicted in Fig. 9(b) showing a
nonlocal classical superposition of photon numbers 1
and 7 for small losses (yt (0.001) that spreads out to-
ward the vacuum if the losses are larger.

We also studied the (zero temperature) decay of the en-
tanglement in the two examples of the quantum states
above for Poissonian pump statistics. Comparing Fig. 11
to Figs. 8 and 10 it can be seen that apart from the Auc-
tuations there is no significant difference in the decay of
the correlation between the regular and Poissonian cases.
For small cavity losses where the average of yt is smaller
than 0.01 even the fluctuations are negligible. This sug-
gests that the transient production of entanglement is not
significantly sensitive to pumping fluctuations.
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How, let us assume that finite thermal radiation is
present in the cavities [Eq. (4.1) is applied], and consider
regular pump statistics. The most significant e6'ect is that
a coupling arises between the blocks in the photon num-
ber space that were disconnected by the trapping states at
zero temperature. As a result of this new diagonal ele-
ments contribute to the density matrix, located exactly at
the trapping points of the adjacent blocks, although new
correlation obviously does not build up. The photon
statistics of the fields starting from the state t%')0 and
applying gz=m are depicted in Fig. 12 for four di6'erent
mean numbers of thermal photons at a cavity loss of
yt =0.0001, showing the new terms arising at the adja-
cent trapping points of the system. The larger the tem-
perature the more diagonal trapping points are populated
besides the zero-temperature ones, (0,0,3,3) and (3,3,0,0).
Another significant e6'ect of thermal radiation is the
enhancement of the decay of correlation between the mi-
cromasers. The o6'-diagonal terms of the field-density

V t '
~

0.8-

0.4-

400
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FIG. 10. The evolution of the purity factor g'"I as a function
of atom number k for four different cavity losses of y t =0.0001,
0.001, 0.01, and 0.1 depicted by solid, dot-dashed, dashed, and
dotted lines, respectively. The initial state of the fields is the
pure state, ~%')I", applying gr=7rrl+2, which would evolve
into the steady state, jiII )',6', in the absence of losses. It can be
seen that the losses are large enough to prevent this state from
building up at any time, although some correlation arises in the
case of the smallest amount of loss (solid line).
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dll, I I// matrix decay faster for larger numbers of thermal pho-
tons. As an example, Fig. 13 depicts the evolution of the
purity factor g'"' toward the state of the fields described
in Fig. 12, showing the enhanced decay of correlation for
the same four mean numbers of thermal photons and cav-
ity loss. Comparing Fig. 13 to Fig. 8 it is apparent that
for small temperatures (nb (0.01) the short-time tran-
sient entanglement can still be produced. In fact, finite
temperature seems to predominantly afFect the steady
state rather than the transient regime.

Assuming the experimentally available lowest tempera-
ture 0.1 K and the corresponding mean thermal photon
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FIG. 9. Steady-state photon statistics of the fields started
from the initial pure states (a) ~% )0 ', at gr= mand (b)

~
IIi )'i", at.

g~=7~/&2 for three different losses of yt =0.001, 0.01, and 0.1

given in the figure. In the case of small cavity losses the steady
states of the fields are classical mixtures of the photon numbers

(a) 0 and 3 and (b) 1 and 7, which spread out toward the vacuum
for increasing losses.

FICx. 11. The evolution of the purity factor g'"I as a function
of atom number k for Poissonian pump statistics. The initial
state of the fields is for curves a and b ~%')OI" at gr=m. and for
curves c and d ~III )II" at go=7~/&2. The average loss is curves
a and c yt =0.01 and curves 6 and d y t =0.1. Considering Figs.
8 and 10 we find that apart from the fluctuations the short-time
transient behavior is not significantly affected as compared to
regular pump statistics. For smaller cavity losses, yt, even the
fluctuations are negligible.
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FIG. 12. Density plot of the photon statis-
tics for four different values of the mean

thermal photon number nb that are given in

the figure at cavity loss of yt =0.0001 and at
atom number k =1000. The initial state of the
fields is the pure state, ~%)p", applying gr=m. ,
the steady state of which would be ~V)p ' in

the absence of losses. New trapping states
contribute due to the coupling between the
blocks that were disconnected at zero tempera-
ture.
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number nb =3 X 10, it is easy to see that in the case of
yt =0.001 the e6'ect of thermal radiation can be neglect-
ed. If the cavity lifetime were assumed to be 1/y =1.0 s
then according to Fig. 14 the entangled state,

~
4 )Il ', sur-

vives with purity factors of g=—90%, 80%, and 70% for
time intervals of about 30, 80, and 150 ms, respectively.
Introducing the generally used pumping parameters
N,„,and l9, where X,„=l/yt and H=gr+X,„,the
above pumping corresponds to X„=1000 and
8=m+%,„=99.3 (since gr =a is required by the ampli-

fying mechanism to generate the state
~

4 ) Il
'). The above

comparison of regular and Poissonian pumping statistics
suggests that this estimate is not particularly sensitive to
pump fluctuations. It is also in accordance with the two
usual "micromaser conditions. " First, assuming the ex-
perimentally available coupling g -=40 kHz the separation
to pumping and damping cycles is well justified since
~«1/y. On the other hand, it follows from yt =0.001
(X,„=1000) that the time interval between the successive
atoms (or the average of it for Poissonian statistics) is
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FKJ. 13. The evolution of the purity factor g'"' as a function

of atom number k for four different mean numbers of thermal

photons nb —0.01, 0.1, 0.5, and 1.0 depicted by solid, dot-

dashed, dashed, and dotted lines, respectively, at a cavity loss of
yt=0. 0001. The initial state of the fields is the pure state,

~%')p, applying gr=m, the steady state of w. hich would be(&)

~
4 )p" in the absence of losses.

time {msec)

FIR. 14. Time evolution of the purity factor g' for X,„=1000,
100, 50, and 20 depicted by solid, dot-dashed, dashed, and dot-

(&)
te lines, respectively, when starting from the initial t tsae,

)p, applying g~= n Transient correla. tion starts building up
when N,„exceeds50 that grows up to a complete (transient) en-
tanglement into the state,

~
4 )p ', above N,„=1000.
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about t =—1.0 ms, which implies that there is at most one
atom in the cavities at a time because ~&&t. Going for
lower values of y t (larger N,„)in order to hold the entan-
glement for a longer time interval, or to be able to deal
with a superposition of larger separation (or order of
correlation) M, we need to elongate the cavity lifetime.
The time interval t between the atoms could be reduced
only if g were enlarged to have the second micromaser
condition satisfied.

As a summary to this section it can be said that, al-
though finite dissipation prevents the steady-state pro-
duction of entangled nonlocal fields, transient correlation
insensitive to thermal radiation and pumping fluctuations
can still build up for a pumping, N,„,that exceeds a cer-
tain threshold established by the losses. This suggests
that the state of the fields undergoes a transition from an
uncorrelated to a correlated behavior above threshold.
The lifetime of the correlated regime depends on the cavi-
ty damping rate y and the separation (or order of correla-
tion) M of the two trapped number states in the quantum
superposition. Experimental realization of transient en-
tanglement of nonlocal fields employing two-field trap-
ping states of small photon numbers seems to be feasible
by the presently available exceedingly high-Q (Q —= 10'o)
micromaser cavities at low temperatures (T=0.1 K,
nb =3X10 ), and could be extended to macroscopical
quantum superpositions by using longer cavity lifetimes
and stronger atom-field coupling in the near future.

V. SUMMARY

In the present paper the fields of two coupled micro-
masers are studied. The state of the atoms establishing
the coupling via passing through the cavity 1 first and
then cavity 2 is nonselectively measured after the interac-
tion (see Fig. 1). In the absence of dissipation the possi-
ble steady states are the various superpositions of two-
field trapping number states satisfying the trapping con-
dition given by Eq. (2.3), many of which are pure quan-
tum states given by Eq. (2.12). They rely on the fact that
the photon number space consists of disconnected blocks
in this case of two dimensions due to the two nonlocal
fields and each block may contribute to the superposition
with its own trapping number state. The realization of
one of these steady states, i.e., populating a certain
configuration of trapping numbers, depends upon the ini-
tial state of the fields and the interaction parameters of
the micromasers. The time evolution of the fields toward
these steady states is studied numerically, concentrating
mainly on the production of pure entangled states of the
form ~N, N+M)+~N+M, N). Here, N and N+M are
arbitrary trapping numbers belonging to disconnected
blocks of the photon number space, and M specifies the
order of correlation between the two nonlocal fields.
They, in principle, can be made arbitrarily large resulting
in a steady-state nonlocal quantum superposition of dis-
tinct macroscopical fields —sometimes referred to as a
nonlocal Schrodinger cat. Starting from a number state,
~N, N), these states can be produced using a two-step
procedure. First, we introduce some correlation into the
system via generating the above state of M=1 by one

single atom and then amplify it to a larger M correspond-
ing to the trapping state above. Both steps are based on
special conditions regarding the interaction parameters,
g't' and g "t",of the two cavities. They are chosen to en-
sure that the fields evolve along statistical mixtures of
state vectors of the form given by Eq. (3.1) only. In this
case the purity of the fields after experiencing a transient
drop due to the statistical mixture will be regained at
steady state showing a pure quantum state of the struc-
ture above. An inclusion of different quantum states into
the evolution, or an asymmetrical amplification of the
state vector (when g't'Wg"t") would result in an irrever-
sible loss of purity and mixed quantum states of no corre-
lation at steady state. In the absence of losses this pro-
cedure provides us with arbitrary (micro- as well as ma-
croscopical) quantum superpositions of nonlocal fields at
steady state.

Introducing dissipation into the system by applying
our solution of the standard master equation of a
damped harmonic oscillator we find that although entan-
glement in the above form cannot be produced at steady
state it can build up in the short-time transient regime if
the losses are small enough. The rate of the decay of
correlation depends upon the cavity lifetime and the sep-
aration (or order of correlation) M of the photon numbers
in the superposition above. On the other hand, for
exceedingly large losses correlation has no chance to arise
at any time. The system undergoes a transition from an
uncorrelated to a correlated behavior when the pumping
parametrized by X,„exceedsa certain threshold between
the large- and small-loss regimes (gr is fixed throughout
the procedure). In the small-loss (large N,„)regime the
entanglement finally decays into a classical mixture of the
above photon numbers, X and %+M, at steady state
while in the large-loss (small N,„)regime the photon
statistics spreads out toward a vacuum. It is also showrl
that the transient behavior is only slightly modified by
finite temperature and pump fluctuations. Finite ternper-
ature enhances the decay rate, mainly affecting the steady
state of the fields, and at the same time establishes a cou-
pling between the disconnected blocks of the photon
space allowing for new but only diagonal trapping states
to contribute. We conclude that an entanglement of non-
local micromaser fields can be produced via this nonselec-
tive measurement scheme by utilizing the two-field trap-
ping states and the discussed amplification mechanism-
in principle, even on the macroscopic leve1. Experimen-
tal realization of these states seems to be feasible in the
transient regime by the presently available facilities for
trapping states of microscopically small photon numbers,
and could be extended to macroscopical quantum
superpositions —nonlocal Schrodinger cats —by applying
longer cavity lifetimes and stronger atom-field coupling
in the near future.
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APPENDIX

In Sec. IV the effect of finite losses and temperature in
the two micromaser cavities is studied by applying the
time-dependent density matrix given by Eq. (4.1). We
show here that it is the solution of the standard
interaction-picture master equation for a field mode of an
empty cavity coupled to a reservoir of finite temperature
that reads as

Defining the function
' )/2

[k!( r)
—y [k[(t)

n=0 nt
(A3)

the master equation Eq. (A2) can be transformed into a
partial differential equation for g ["!(z, t) given by

IkI g Ik)
+(z —1)[1—n&(z —1)]

Bt az

p= [(nb+1)(2apat —atap —pata )
2

+nb(2a pa —aa p
—paa )], (A 1)

k
nb(z —1)(k + 1)——g ["!,

2

the solution of which reads as

(A4)

where y is the coupling constant between the cavity
mode and the reservoir, a and a are the mode creation
and annihilation operators, and nb is the average number
of thermal photons [17]. It can be seen in the number
representation that the elements of the density matrix
p„arecoupled only along the same diagonal. Introduc-
ing pI I=—p„,where k=m —n, the master equation
reads as

1/2

g[k!(z t)=e r(kl—2)t ~ [kj(0) (n +k)'
~Pn

n=0 n.
gn

Bn+k+1

(A5)

p[ [=y(n(, +I) &(n+1)(n +k+1)p[ "+[,

where

A:—1 —(z —1)[nb(1 —e rt) er—t],
8—:1 —nb(z —1)(1—e r') .

The inverse transformation of Eq. (A3) is given by

(A6)

(A7)
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2
gn Ikj

[k[(r)
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(A2) resulting in the final solution for the density matrix

n gm
k!(t) —y(k I2)t ~ ~ C[k[

Pn n, m, l
i=0m =n —I

where

n —l B'
B
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and 2 ' =()3 /t)z, 8':—M /t)z. It is easy to show that in the special case of zero temperature this reduces to
1/2

Pl +k pl
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