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Propagation of mutual coherence in refractive x-ray lasers using a WKB method
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We derive an expression for the mutual coherence function for a lasing medium with spatially varying
refraction and gain using a ray-tracing (WKB) formalism. The expression is valid in the limit of large re-
fractive Fresnel number, which is equal to the geometric Fresnel number multiplied by the ratio of laser
length to refraction scale length. For quasihomogeneous sources, the coherence function has the form of
a Fourier transform of a source function which is modulated by a Gaussian whose width varies inversely

with the square root of the gain. This result may be viewed as a generalization of the van

Cittert —Zernike theorem to include both refraction and gain. For the case of refractive defocusing, we

find the coherence length scales as the square root of the product of gain and the refraction scale length,
inversely with the refractive Fresnel number, and exponentially with laser length. For a parabolic
profile, this result is exact. We also treat hyperbolic secant refractive and gain profiles. Comparison of
our results with numerical computations shows good agreement. We also indicate how to generalize the
method to nonideal profiles obtained from measurements or hydrodynamic simulations.

PACS number(s): 42.55.Vc, 42.50.Ar

INTRODUCTION

Coherence is a central issue in the design of current x-
ray lasers. It is well known that refractive defocusing by
plasma electrons leads to improved coherence compared
with that expected from geometrical propagation [1—5].
It is also well established that gain guiding causes mode
discrimination which also leads to enhanced coherence
over the constant gain case [1—3]. These results were
determined by a variety of means, including modal
analysis [1—3], numerical solution of the paraxial wave
equation [4], ray optics estimates [3,5], and Wentzel-
Kramers-Brillouin (WKB) approximations [6,7].

The WKB method is attractive because it allows in-
clusion of phase information in a ray optics calculation,
and ray optics is virtually always an excellent approxima-
tion for x-ray lasers. This approach has been taken by
Hazak and Bar-Shalom [6], who have used a ray-tracing
approach to solve the Maxwell-Bloch equations describ-
ing gain buildup and propagation of radiation in x-ray
lasers. In a similar spirit, Zahavi, Hazak, and Zinamon
[7] recently presented a simple generalization of the van
Cittert —Zernike theorem to include refraction (but not
gain), in which the exponential scaling of the coherence
length with propagation distance is manifested in the ex-
ponential divergence of nearby ray orbits.

The thrust of this paper is somewhat different: we de-
velop a WKB methodology using an asymptotic parame-
ter which reAects the highly refractive nature of current
laboratory x-ray lasers. The most important rays con-
tributing to the WKB coherence function are those with
largest gain length, which allows us to evaluate the coher-
ence function approximately by expanding the ray trajec-
tories about the maximum gain-length ray. In this
manner we are able to obtain an analytic expression for
the coherence function in the presence of both refraction
and spatially varying gain. This expression shows explic-

itly how a nonconstant gain profile leads to enhanced
coherence due to an effective narrowing of the source.
The mutual coherence function takes the form of a
Fourier transform of a Gaussian modulated source func-
tion, a result which may be viewed as a generalization of
the van Cittert —Zernike theorem to include both refrac-
tion and gain. Going beyond this expansion technique,
the WKB methodology may also be applied directly to a
system for which the ray trajectories are known either
analytically or numerically.

This paper is organized as follows. In Sec. I we derive
a formula for the mutual intensity in the WKB approxi-
mation, valid for large refractive Fresnel number (to be
defined below). While we do not give a detailed deriva-
tion of the WKB propagator, which can be found in the
literature, we review the basic steps of the derivation and
its geometrical interpretation. In Sec. II we consider the
special case of gain proportional to electron density. We
then show how to evaluate the coherence function ap-
proximately for quasihomogeneous profiles by expanding
the ray trajectories about the maximum gain-length ray
and derive the Fourier transform relation noted above.
In Sec. III we apply the method to the case of parabolic
transverse refraction and gain and derive a scaling law
for the coherence length. We then treat approximately
the more realistic sech (x) density and gain profiles and
compare the results to the parabolic profile. This is fol-
lowed by a discussion of the implementation of the
methodology to more general density and gain profiles
which might be obtained from either experiment or hy-
drodynamic and atomic physics simulations.

I. BASIC FORMULATION

Our starting point is the mutual intensity I (x,x';z),
which is the two-point spatial correlation function of the
electric field:
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I (x,x';z) = (E"(x,z)E(x', z) ),
where the angular brackets denote an ensemble average
and the scalar quantity E refers to any polarization com-
ponent of the field. The propagation direction is z and x
is a transverse coordinate. If we express the electric field
in the form E(x,z)=exp(ikz rot—)E(x,z) and make the
paraxial assumption B E/Bz «k(BE/Bz), then E(x,z)
satisfies the steady-state paraxial wave equation [8]

+—,—h(x)+ig(x) E(x,z) = 4rrk—P, (x,z),1 B'
Bz k B~2

(1.2)

where k=ro/c, co is the angular frequency of the laser
light, h (x) =co (x)/kc, co (x) is the electron plasma fre-
quency, g (x) is the atomic gain of the plasma, and P,„(x)
is the spontaneous atomic polarization, or source. We
will also be interested in the complex degree of coherence

I (x,x', z)y(x, x', z) =
v I(x;z)I(x', z)

(1.3)

(1.4)

where K(x,z;xp, zp) is a solution of Eq. (1.2) without the
source term, with the initial condition

(x o'xo zo)=5(x xo) . (1.5)

where I(x;z)=I (x,x;z) is the intensity, and its magni-
tude or degree of coherence p(x, x';z) =

~ y(x, x';z) ~.

The solution for E(x,z) can be expressed in terms of
the Green's function K(x,z;xp, zp) for the paraxial wave
equation as

E(x,z)= f f dxpdzpE(x, z'xp zp)P(xp zp)
source

To motivate the approximation we intend to use, it is
convenient to recast Eq. (1.2) in dimensionless form.
Suppose the peak gain and maximum density occur at
x =0. We define a refraction angle O„=co (0)/ck; a re-
fraction length L„=a/O„where a is the characteristic
laser half-width; normalized coordinates x~ x/ a and
z —+z/L„; normalized refraction strength h(x)=h(x)/
kg2=ro2/ro (0); normalized gain g(x)=g(x)/g(0);
a refractive Fresnel number F„=ka /L„; a refractive
gain length G„=g (0)L„; and a refraction parameter
i) =F„/G„. Equation (1.2) with P, =0 may now be writ-
ten as

i BE
F„ Bz

—h (x)+i ri g(x) E(x,z) . (1.8)
B'

2 F2 B~2

This form allows us to identify the important parameter
F„ for this problem, which may be written numerically as

1/2

F, =5.96X10'
1021

a
100 pm

(1.9)

(1/k.')Bk. /Bx «1.
To see this, we use

k -Ok= ka
x r

(1.10)

where n, is the electron density. This expression shows
that F„ is large ( =600) for the typical x-ray laser param-
eters a = 100 pm and n, = 10 ' cm

The physical meaning of F„))1is just that the frac-
tional variation of the transverse wave number k is small
over a transverse wavelength scale 1/k, or

The spontaneous polarization is assumed to be 5 function
correlated in space' and proportional to the source inten-
sity at each point,

(P( pxzp) P(xp zp ) )

Bk

Bx L,

so we then have

(1.12)

=const XI(xo,zp )5(xp —x o )6(zp —zo ) . (1.6)

If we substitute Eq. (1.4) into Eq. (1.1) and use (1.5), we
obtain for the mutual intensity

a2 F„
(1.13)

r(x, x';z) =const X f f dxpdzpI(xp zp)
source

XX(x,z;xo, zp )'

XK(x z'xp'zp)

The assumption of 5 correlation is only an idealization; in
fact, the correlation length can be no less than a wavelength and
paraxiality requires that it be many wavelengths.

We must exercise caution in evaluating Eq. (1.6) in the limit
of small z, due to the singular source correlation (1.5). If the in-
tensity is taken simply as I(x,z) =I (x,z;z), then the source in-
tensity is singular. It is physically more plausible to define

c, /2I(x,z)=lim, o 1(x,x+gz)dg', which gives the correct
source intensity.

which justifies our assertion. For the case of weak refrac-
tion L/L„& 1, we would replace the refraction angle O,
by the geometric angle Oo=—a/L and obtain a condition
on the conventional Fresnel number. Naturally this is a
heuristic argument which will break down if the field
suffers wavelength scale amplitude variations, as would
occur at a focal (caustic) surface.

Our method involves a WKB expansion in 1/F, rather
than in the conventional Fresnel number (F=ka /L
=1.05X10 [(A, /200 A)(L/3 cm)] '[a/100 pm], for a
laser of length L). This approach is advantageous for
several reasons. First of all, the latter is usually smaller,
i.e., L/L„) 1. Second, it will become apparent that F„

3We note here that, because P, =co (0)/ck, F„ is actually in-
dependent of k: F, =co~(0)a/c.
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figures prominently in solutions of (1.8) and therefore is a
useful parameter for refractive x-ray lasers. Third, and
most fundamentally, because the plasma refractive index
depends on the wavelength, an attempt to formally solve
Eq. (1.8) based on an expansion in 1/F will spoil the usu-
al ordering. For example, if we hold all laser parameters
constant except for the wavelength and seek a large F
solution, the refraction term will be 0(1/k ) =0 (1/F ),
whereas in Eq. (1.8) it is 0(1); we would conclude that
the WKB Green's function, which is a first-order expan-
sion, is just that for free propagation. [In either case the
gain term is 0(1/F) or 0(1/F„).] While the coefficient
of the term proportional to 1/F is also typically large (as
pointed out in Ref. [6]), it is more natural, in a strictly
formal sense, to obtain an asymptotic solution involving
the single parameter F„. This simple picture breaks
down, however, if the geometric angle 00 exceeds the re-
fraction angle 8„(i.e., L/L„& 1), in which case, as noted
above, the appropriate Fresnel number is the convention-
al one. These considerations are most relevant for field
calculations within and on the output face of the laser,
for which the geometric propagation outside the plasma
is not important. Indeed, for propagation within the
laser plasma, the validity of the large F„approximation is
independent of the radiation wavelength, provided parax-
iality remains valid. [Note that all the wavelength depen-
dence in Eq. (1.8) is through the propagation coordinate
z.]

Having now confirmed the relevance of the refractive
Fresnel number, we are motivated to seek a solution of
Eq. (1.8) for F„))1;this is the WKB solution. We will
now draw on standard results from nonstationary (z-
dependent) WKB theory, which we summarize here in
the context of x-ray lasers for completeness. The WKB
Green's function K(xp, x;z —zp) for a z-invariant medi-
um is just the ray optics scalar field at x created by a
point source at x0 in the paraxial approximation and has
the form [9—12]

n (x)=1+co (x)/c k

=1+8„h(x) . (1.17)

In the paraxial approximation we thus have

L(x,x )=1+—,'(x +O„h(x)] . (1.18)

The ray path of integration is understood to satisfy
x (0)=xp and x(z) =x. The term G(xp, x;z)
= J„@[X(z')]dz' is the gain length. As we will show

shortly, the prefactor R =(8 S/Bx Bxp
)'~ in Eq. (1.14) is

required to conserve rays. Finally, the Maslov index p in
Eq. (1.14) represents the phase shift due to focal points or
caustics along a family of the rays, i.e., where the prefac-
tor diverges.

It will be convenient in the following to use the Hamil-
tonian form of the ray equations. We therefore define, in
the usual way, the momentum (equivalent to angle of
propagation) 8= BL /Bx and the optical Hamiltonian

H(x, O) =Ox L—
=

—,
'

tO 8„[h—(x)+iri 'g(x)] j, (1.19)

where we have dropped the constant J which plays no
role in subsequent calculations. The ray trajectories are
then generated by Hamilton's equations

dx BH d 0 BH
dz 80 '

dz Bx
(1.20)

aS(x„x;z)
=8(xp x;z),

Bx
(1.21a)

While we do not prove it here, the function S(xp, x;z) in
Eq. (1.14) is then equal to Hamilton s principal function
[13],which has the important property of being the gen-
erating function for the dynamical canonical transforma-
tion taking x0 into x in the distance z, and therefore
satisfies the relations [13]

' 1/2'a S(x„x;z—z, )
'

IC (x,x,z —z )=
BxBxp

as(x„x;z) = —Op(xp, x;z) .
Bxp

(1.2 lb)

In light of Eqs. (1.21), we now see that the prefactor
R =(a'S/axaxp)'"=i(aop/Bx) ~ in Eq. (1.14) mani-
fests ray conservation: the rays penetrating a small seg-
ment dx at x originated from an angular range d00 at the
source.

The angle function 8=8(xp, x;z) on the right-hand
side of Eq. (1.21a) may be viewed as the surface in (x,z)
space specifying the angle for the family of rays with
fixed initial coordinate x0 but unrestricted initial angle 00
(point-source initial condition). On this surface ("La-
grangian manifold" ) the function S is in fact independent
of path; one need not integrate along a ray at all [12].
Hamilton's principal function S can now be written in
terms of the angle function and the Hamiltonian using a
path of integration particularly useful for later work:

~ ~
Xexp ~ iF„S(xp,x;z —zp) i p. ——

Xexp j —,
' G(xp, x;z —zp ) j . (1.14)

S=f n(s)ds
ray

= f L [x (z),x(z)]dz,
ray

(1.15)

where we have identified the optical Lagrangian

L(x,x ) =n(x)+1+x

The term F„S(xp,x;z) is, to within a constant, the opti-
cal path length along a ray connecting the points (xp, zp)
and (x,z),

=n(x)(1+ —,'x )+0(x ), (1.16)

with x =dx /dz, and the refractive index n is defined by

S(xp, x;z)=Sp(xp)+ f 8(xp, q;z)dq
Xp

H[xp 8(xp xp'z )]dz'
0

(1.22)
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where we have integrated first from z'=0 to holding x
fixed at x =xo and then from x' =xo to x keeping z con-
stant. Note that for this path, the term involving 0 is in-
dependent of x.

The WKB coherence function now follows from Eqs.
(1.7) and (1.14):

aI9, ae,
r(x, x';z)= f f I(xo) (xo,x;z') (xo,x', )

X exp Iir„6S(xo,x,x';z')

evaluated approximately if we assume the rays giving a
significant contribution arise from a small range of initial
conditions (xo, 8o); small in the sense that the ray equa-
tions can be linearized about some reference ray. This in
turn will be the case if the coherence scale length x, is
much smaller than the transverse intensity scale length.
This condition is a good approximation for nearly all
cases considered in this paper. Stated mathematically,
we assume that the mutual intensity has the quasihomo-
geneous form [14]

+ —,
' [G(xo,x;z')+ G(xo, x';z') ] j Dx, x') =I(x )f(Ax ), (2.1)

X dxodz (1.23)

where we have used (1.21), set z' =z —zo, and have
defined the phase difference 5S using Eq. (1.22),

5S(xo,x,x', z) =S(xo,x;z)—S(xo,x';z)
= f 8(xo q;z)dq, (1.24)

and G(xo, x;z)= f g[x(z')]dz' is the gain length.
ray

where x =(x+x')/2 and bx =(x —x')/2. Here the
function I(x ) is slowly varying with respect to the coher-
ence length and f(b,x) is rapidly varying with respect to
the scale length for intensity variation. For a given
source point xo we are interested in the rays in the neigh-
borhood of the maximum gain-length ray ending at x.
This ray satisfies

x,„(go,z) =x, 8,„(go;z)=8, (2.2)
While we have noted that the optical path length S

is a path-independent quantity on the surface
[x,8(xo,x;z),z], the gain length G is not. However, for
the important special case where the gain is proportional
to electron density, there is a direct relation between the
gain along a ray and the optical path length S. Take
g =h in Eq. (1.8); we can then show that the gain along a
ray is given by the formula

G(xo, x;r)=G„z+ [zS(xo,x;z)]

AX0

moo
(2.3)

where go=(xo 8o) gives the initial position and angle of
the maximum gain-length ray and 0 is the exit angle of
the maximum gain-length ray. We now linearize about
this ray

=G„[z+f'S(xo, x;z)], (1.25)
where we have introduced the ABCD matrix of Gaussian
optics [8]

where f'=1 +z r}/zt}(see the Appendix for derivation).
This formula is useful because it gives a simple
differential relation between the functional quantities S
and 6; it shows that S serves as a "potential" function for
the gain. In practice, however, it may be no easier to
evaluate the gain length from Eq. (1.25) than by comput-
ing it directly along a ray, but this formula will be useful
for the analytical development of the following sections.

II. EXPANSION ABOUT THE MAXIMUM
GAIN-LENGTH RAY

Bxg ax
A (xo,x;z)=, 8(xo,x;z) =

aI9, at9,
C(xo, x;z)=, D(xo, x;z) =

aXO 0

(2.4)

and (&xo, 48o) signifies departure from the maximum
gain-length initial conditions. All partial derivatives in
Eq. (2.5) are evaluated at the fixed initial point of the
reference ray

For this section we will assume gain is proportional to
refractive index, so that g=h. Equation (1.24) can be o(xo x 'z) = (xo 8o(xo, X;z ) } (2.5)

4Equation (1.23) is equivalent to a result obtained in Ref. [6]
using a conventional WKB expansion (in 1/F), coupled with es-
timates of the sizes of various terms in the wave equation. It is
worthwhile pointing out that if the angle function is single
valued or finitely multivalued, Eq. (1.23) is formally identical to
an integral over coherent wavelets from point sources of intensi-
ty xo. For the case of no refraction or gain, this is the essence of
the van Cittert —Zernike theorem.

where the initial angle 00 is considered to be a function of
the initial and exit positions and distance z. The ray or-
bits (2.4) may be viewed as arising from the quadratic z-
dependent Hamiltonian [15]

5Note that, for reasons which will become apparent, our
definition of hx is one-half the value used in Ref. [14].
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H(bx, h8;z)= —(b8) + n [x(z)](bx)
QX

(2.6)
S (Axokx;xo, x,z)

=S(xo,x;z)+ (Ahxo —2bxbxo+Dbx )
1

(2.7)
evaluated along the reference ray xg(z). The optical path
length in terms of the ABCD matrix elements is then
[8,11] and the gain length, from (1.25), is

G(bxo, bx;xo, z) =G(xo,x;z)+ j [ AB+z( A, B —AB, )]bxo —2[B—zB, ]bxhxo+ [BD+z(BD, B,D—)]Ex
2B

where the z subscripts denote partial derivatives and

(2.8)

G(xo, x;z) =G„z+ (zSo )
a
az

(2.9)

The source point for the maximum gain-length ray may be found by differentiating G (xo,x;z) with respect to xo. For
density profiles symmetric about and peaking at xo =0, the maximum gain-length ray will be that with xo =0, where the
density and gain are both Oat. For this important special case we have for the coherence function

exp[6(xo =0,x;z)]
I (x,x';z) =const X exp[ —

—,'G„c(z)bx +iF„(D/2B)xbx J

X f dbxoIo(bxo)exp j
—G„[—,'a(z)bxo —

—,'b(z)(x+x')bxo]+iF„(x —x')bxo],

where

a(z)= j[AB+z(A,B—AB, )]],2

b(z) =4[B zB,], —

c(z) =
j [BD+z(BD, B,D )]J, —= 2

B2

(2.10)

(2.1 la)

(2.11b)

(2.11c)

and we have made the large gain-length approximation exp[6 (xo =O,x;z)]/B »1, which allows us to replace a source
distributed in z with a line source situated at z =0, viz. ,

I(x,z) =I(x,0)5(z)

=Io(x)5(z) . (2.12)

(This approximation will be discussed further in Sec. III.) For parabolic profiles, which will be treated in Sec. III, Eq.
(2.10) is an exact result. If we now use q =F„/G„» 1, we obtain

p(x, x', z) = f dbxoIo(bxo)exp[ —
—,'G„a(z)hxo]exp[iF„(x —x')bxo/B]

f dhxoIo(bxo)exp[ —
—,'G.a(z)bxo]

(2.13)

The significance of this equation is that it has the form of
a normalized Fourier transform of a "gain narrowed"
source function I( b x o )exp [ ——,

' G„a(z)b x o ], with trans-
form variable a(z)=F, (x —x')/B. Note that (2.13) de-
pends only on the A and B matrix elements, that is, on
the first of Eq. (2.2). These derivatives may be easily eval-
uated numerically for a general profile or analytically if
the ray trajectory is also known analytically.

I

tant example of parabolic density and gain. We take

1 —8„(l i' ')(1 —x—), x~ & I
n (x)= . (3.1)

which could represent a quadratic expansion of the re-

III. PARABOLIC REFRACTION AND GAIN

As the simplest application of the results of the previ-
ous sections, we now consider the elementary but impor-

6In fact we assume here that g(x —x')/(x+x')»1, which is
violated if (2.10) is used to evaluate the intensity
I(x,z) =I (x,x;z), x&0. In this case the term proportional to
b (z) must be retained.
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where 8 is in units of refraction angle I9„; this well-known
result may be derived from Eqs. (1.17), (1.19), (1.20), and
(3.1). Thus in Eq. (2.4) we have A =D =coshz and
8 =C =sinhz. We ignore side rays (those which exit the
plasma, ~x ~

or ~xo ~

& 1) in this section, so our treatment is

valid only for calculation of coherence lengths I, (1 for
which side rays make no contribution to the integral in
(1.24). We can evaluate the degree of coherence from Eq.
(2.13) directly, but it is instructive to obtain the same re-
sults directly from (1.23). We first obtain the function
S (xo,x;z) from Eq. (1.15) or (2.7):

(xo+x )coshz —2xxo
S(xo,x;z) =-

sinhz
(3.3)

fractive index about its minimum. Such a profile is ap-
propriate for, e.g. , an exploding-foil x-ray laser after
burnthrough of the optical pump laser and has been
adopted for this purpose in the literature [1]. As
remarked above, it is well known that for an untruncated
parabolic profile, the WKB Green's function is an exact
solution to the wave equation (1.8), so the results of this
section are expected to be very accurate for x (&1. The
ray trajectories for ~x ~, ~xo ~

( 1 are then just

x coshz sinhz xp

8 sinhz coshz Op

sinh(2z) —2z
a(z) =

sinh z
(3.5a)

b ( )
z cotllz —1

sinhz
(3.5b)

are identical to the functions defined in Eqs. (2.11). We
can then get the phase difference 5S in Eq. (1.23) using
5S=S (xo,x;z) —S (xo,x';z):

(x —x '
)coshz —2(x —x ' )xc

5S(xo,x,x', z) =-
sinhz

(3.6)

The prefractor R is easily obtained from Eq. (3.3): we
have

BS
BxBxp

1

sinhz
' (3.7)

which is equal to 1/8, consistent with Eq. (2.10).
Substituting Eqs. (3.4), (3.6), and (3.7) in Eq. (1.23), the

integral expression for the mutua1 intensity is found to be

Using Eq. (1.25) for the gain length, we find

G(xo, x;z) =G„[—,'(x +xo )a(z)+ ,'xx—ob(z)], (3.4)

where

exp(G z') x2 (x~)2I'(x, x', z)=constX dz' . , exp iF„,—
—,'G„a(z')[x +(x') ] .

p i sinhz' ' 2tanhz'

(x —x')xo
X f dxoI(xo, z')exp —G„[—,'a(z')xo —

—,'b(z')(x+x')xo]+iF„
oo sinhz'

(3.8)

The Maslov index does not enter this expression because the amplitude factor is monotonically decreasing with z: fami-
lies of rays do not focus. Equation (3.8) is equivalent to Eq. (2.10) if we note, from (3.4), that G(O, x;z) =G„a(z)x /4
and c (z) =a (z) for the parabolic profile.

Let us consider the degree of coherence with respect to distance from the optical axis, i.e., for x =0. For now, we
also approximate the distributed source by a line source is situated at z =0. This is justified if exp(G„z) »1 since, from
Eq. (3.8), the integral will then be dominated by values of z near z. If we also have sinhz »1, this condition should be
modified to exp[(G„—1)z]=exp[L(go —1/L, )]» 1 for a laser of length L. Thus we use (2.12), and from (3.8) we get

exp(G„z )
I (x, O;z) =constX . expI [iF„cothz ——', G„a(z)]x ] f dxoIo(xo)exp[ —

—,'G„a(z)xo —a(z)xxo],
1 S1nhz oo

(3.9)

where a.(z) = —[F„cschz+iG„b(z)]x = F„x cschz, and —the approximate equality occurs because F„/G„=t)»1. The
degree of mutual coherence now takes the simple form

)Lt(x, O;z) = f dxoIo(xo)exp[ —
—,'G„a (z)xo]exp[is(z)xo]

dx pI xp exp ——'G, a z x p

(3.10)

which is the normalized Fourier transform of a gain narrowed source of Eq. (2.13).
Let us now consider the evaluation of the coherence function for constant source intensity

If we did not need S to calculate the gain length (as in the case of constant gain), we could evaluate the phase using Eq. (1.25)
without computing the optical path length at all. We can solve Eq. (1.28) for 0(xo,x;z), giving 0(xo,x;z) =(x coshz —xo)/sinhz, and
do the integral in Eq. (1.24): 5S(xo,x,x';z) = f 8(xo, q;z)dq = [(x —x' )coshz —2(x —x')xo]/2sinhz, which is consistent
with Eq. (3.3).
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(3.11)

(3.12)

The integral over xo in Eq. (3.9) can then be evaluated exactly in terms of error functions, but first we examine certain
limiting cases. If G„a(z) « 1, exp[ ——„' G„a(z)x o ]= 1 and we find

26„$ sin (F„g)+sinh [6„(zcothz —1)g ]
p, (x,o;z) =

sinh(26„$) g [F„+G„zcothz —1) ]

where g=x /sinhz is a scaled coordinate.
Note from Eq. (3.13) that for 6„—+0, we obtain the

coherence function for parabolic reaction and no gain
[16],p(x, o;z)=sine(F„x cschz), which gives a coherence
length x, =sinhz/F„. In the opposite limit G„a (z) ))1,
the integrand is effectively zero at ~xo ~

) 1, so the source
and hence limits of integration may be extended to +~
We then find

F„+G„(z cothz —1)
6„[sinh(2z) —2z]

(3.13)

This last form of the coherence function allows us to
solve explicitly for the coherence length x, as a function
of the three parameters F„G„,and z. We define the
coherence length by p(x„o;z}=sin(1)=0.84 as in Ref.
[2] and obtain, for ri &) 1,

x, =0.42[ 6„[sinh(2z) —2z) ]
'~ /F„. (3.14)

This result is in agreement with the ray optics model of
Refs. [3] and [5]. Note that for exp(z) ))1, we have the
scaling

x =0.30F '6'~2e'
c ' r r

0 30F—16 1/2 z —3 /2

=0.30(g FG) '~ exp(gG/F)' (3.15)

where the last two lines use the conventional gain length
and Fresnel number. Conversely, for the weakly refrac-
tive limit z «1 we obtain

x =0 48F '6' zc ' r r

=0.48F-'6'", (3.16)

which is valid for exp( —G/3) «1, since G„a(z)=6/3
for z «1. As we might expect, refractive variables pro-
vide a simpler description for the strongly refracting case,
while conventional variables produce a simpler formula
for the weakly refracting case.

Now we turn to the exact coherence function for this
model, which we have said can be expressed in terms of
error functions. Performing the integral in Eq. (3.9) we
find

exp(G„z )
I (x,o;z) =const X

QG„[sinh(2z) —2z ]

[6„(zcothz —1 ) +iF„]x F„
Xexp . +i cothz —

—,'G„a (z) .
G„sinh 2z —2z 2

6„(zcothz —1}+iF„,QG„[sinh(2z) —2z]
X g ( —1)'erf " "x+(—1)'

t =o QG„[sinh(2z) —2z) 2 sinhz
(3.17)

Using this result, we can witness the transition from
weakly to strongly gain guided behavior. In Fig. 1 we
show the coherence function for F„=500and z =5, as 6„
varies between 0.001 and 5.0. For 6„ less than about 2.0,
we see the characteristic sine oscillations due to the hard
edges of the laser [Eq. (3.12)]. As G„ is increased, these
edges are effectively softened by the falloff of gain off axis
(x =0), leading to weaker oscillations as the degree of
coherence approaches the Gaussian profile described by
Eq. (3.13).

In Fig. 2 we plot the coherence length as a function of
Fresnel number for two gain lengths (a) 6=10 and (b)
G =15. We have shown the result for the line source ap-
proximation I(x,z) =Io(x)5(z), as well as for a distribut-

ed source. The latter is obtained by numerically calculat-
ing

1(x,O;z) = —f 'r(x, O;z —z')dz
0

(3.18)

where I (x,o;z) is given by Eq. (3.17). The scaling law re-
sult [Eq. (3.14)] is also shown on these plots [also see the
line of Eq. (3.15)].The scaling law underestimates the line
source coherence length because it overestimates the
source size when exp[ —G„a(z)/4] is not sufficiently
small [see Eq. (3.10)]; this quantity decreases with in-
creasing Fresnel number so the scaling law becomes more
accurate. For example, at F=100 and 6=10, we have
exp[ —G„a(z)/4]=exp( —1.1)=0.32, but for F= 1000,
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O.S-

0.6

exp( G„z)[sinh(2z) —2z]
z»1~ 2 ' expI(G„—l)zI

=2 '~ exp[G V'—gG/F I, (3.19)

0.4-

0.2-

0 0.'4 O.S
x/a

1.2 1.'6

FIG. 1. WKB coherence function for F„=500, z=5, and
four values of G„.

exp[ —G„a(z)/4]=exp( —3.5)=0.029. We also see the
importance of including the distribution of the source for
lower gains and smaller Fresnel number, the latter be-
cause refraction leads to smaller effective gain as I' be-
comes smaller: the prefactor in Eq. (3.17) becomes, for
exp(z) &) 1,

which shows explicitly that the gain length is effectively
smaller for smaller F. Figure 2(b) also shows calculations
using the wave optics code wAvE [4], at two Fresnel
numbers I= 10 and 50. The wAVE calculations were per-
formed using a parabolic distribution of both density and
gain which were cut off at x =+2. Also, the source was
taken proportional to the gain. At I' =50 the WAVE re-
sult is —15% larger than our result, probably because the
parabolic source function is effectively smaller than the
constant source employed in our calculation. At F= 10,
the WAVE result is a factor of 2 smaller than our calcula-
tion; at this coherence length, the differences in cutoff of
density profiles is likely an important factor. In Fig. 3 we
show the evolution of the coherence function itself with
Fresnel number for the case 6 =15.

IV. HYPERBOLIC SECANT PROFILE

We now apply the method to a somewhat more realis-
tic model for an x-ray laser, the refractive profile

n (x)=1—(b„(1 i g ')sech—(x), (4.1)

0.1-

0.01-

0.00] 100
Fresnel number

G =10

1000

which goes smoothly to zero for x ))1 and reduces to the
parabolic case above for x «1. Our approach will be to
evaluate the quantities in Eq. (1.23) directly, since the
gain and optical path length can be obtained analytically.
The ray trajectories in this case are

sinhx =sinhx 0cosh(PQz ) + ( 8Q/PQ)coshx Qsinh(PQz),
(4.2)0= [qQsinhxQsinh(PQz)+ OQcoshxQcosh(PQz) ]sechx,

where pQ= QOQ+sech xQ is the ray invariant.
The gain along a ray in this case can be evaluated to

yield

10

0 1

0.01-

0.00t 0 100 1000
Fresnel number

FIG. 2. WKB coherence length against Fresnel number,
comparing a distributed source, line source, and scaling law, for
g=50 and (a) G=10 and (b) G=15. The solid circles in (b) are
the results from the wAvE code.

Q.s I,

0 0.2 0.4 ''''0
x/a

0.6--

0.4—

0.2--

F =20

F=
30
40

F =80
-F=100

OS ~

G =15
q =50

'\

v i J ~ it.6" '''''0. 'S'' '''
J.

FIG. 3. WKB coherence functions for parabolic profiles, for
G=15, g=50, and Fresnel numbers of 20, 30, 40, 50, 80, and
100.
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G(xp, 8p', z) =G„arctanht [Pp
—(8p/Pp)cosh xp]

Xtanh(Ppz) —
—,'8psinh(2xp) j

+G„arctanh [—,
'

8psinh( 2x p ) ] .

(4.3)

2
8pcoshxp —1
Ppcosha

1/2

1/2R=
I

'8 coshx +I
ppsinha

The optical path length is then

(4.5)

The optical path length can be expressed in terms of the
gain and a function R =R (xp, 8p), which we define as fol-
lows: if we set o =qptanhxp/8p and

S„(xp,8p, z) =
—,
' [(1+Pp)z —

( I+PpR )G(xp, 8p, z)/G„] .

(4.6)

arctanh(o. ), o. ( 1

arctanh(1/a ), o. ~ 1,

then we have

(4.4)

In each of the expressions (4.3)—(4.6), we are to interpret
the initial angle Oo as a function of x, xo, and z, arising
from the inversion of the first of Eq. (4.2). Unlike the
parabolic case, this inversion is not tractable analytically
and must be carried out numerically. Explicitly, we need
to evaluate

Bo BOO1(x,x';z)= f dxpg(xp) (x„8,(x„x,z),z) (x„8,(x„x',z), z)
1/2

X exp I iF„[S(xp,8p(xp, x,z),z )—S(xp, 8p(xp, x ', z),z ) ] J

Xexpt-,'[G(xp, 8p(xp x z) z)+G(xp 8p(xp x', z),z)]] (4.7)

where we have taken the source proportional to the gain
and assumed a large gain-length approximation
I(xp, zp) ~g(xp)5(zp). The integral can then be easily
computed numerically, using a Newton-Raphson root-
finding method to do the inversion.

In Fig. 4 we depict the WKB coherence function for
the sech x profile for a gain length 6=10 and Fresnel
numbers F=50 and 100. Also shown on this plot are the
coherence functions obtained in the parabolic approxima-
tion to the sech x profiles, as well as the scaling law of
Eq. (3.15). We note that the sech x profile gives a smaller
coherence length, as expected from the wider gain distri-
bution (and effective source size) and weaker refractive
spatial filtering away from the x-ray laser axis (x =0). In
addition, the sech x coherence function approaches zero
monotonically with x, while the parabolic coherence

ng

0.1

0.01-

p.pp3-

q =50

100 1000
Fresnel number

ip
I

0.8-

o 0.6 0.1-

0.4- 0.01-

0.2-

0 0.1 0!2 0.3 0.4' 0.5

p.ppi 100
Fresnel number

1000

x/a
FICx. 4. Comparison of parabolic and sech x pro61es for

G = 10, g =50, and Fresnel numbers F=50 and 100.

FIG. 5. WKB coherence length against Fresnel number,
comparing parabolic and sech x profiles for q=50 and (a)
G = 10 and (b) G = 15. A line source was used in all cases.
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function has weak oscillations. These oscillations are due
to the sharply defined spatial localization of the parabolic
profile in contrast to the broader sech x distribution.

Figure 5 shows the variation of coherence length for
the sech x profile as the Fresnel number varies between
10 and 1000. Two gain lengths are depicted: (a) G =10
and (b) G =15. The coherence length for the sech x
profile approaches that of the parabolic profile in the lirn-
it of large Fresnel number (small coherence length) for
both cases, because in the regime only rays with
x &x, «1 are important.

under the auspices of the U. S. Department of Energy by
the Lawrence Livermore National Laboratory under
Contract No. W-7405-ENG-48.

APPENDIX: DERIVATION OF EQ. (1.25)

In this appendix we derive Eq. (1.25), which relates the
gain length along a ray to the optical path length, for the
case where gain is proportional to electron density. First
we note that the optical Lagrangian can be written in
terms of O=dx/dz and the normalized gain length g as

CONCLUSION L =
—,'8 —O„g(x), (A 1)

We have shown, using WKB methods, that the coher-
ence function in the presence of spatially varying refrac-
tion and gain may be expressed in the form of a Fourier
transform of a Gaussian modulated source. The derived
formula is valid for large values of refractive Fresnel
number I', =ka /L„and for spatial points restricted
transversely to the laser cross section. This formula al-
lows for the simple calculation of the coherence length
for approximately parabolic refractive and gain profiles
and confirms previous experience that refractive defocus-
ing leads to exponential scaling of the coherence length
with length and that gain guiding leads to effective nar-
rowing of the source. The more general formula can be
applied to ray trajectories obtained either analytically or
from numerical integration of the ray equations through
density profiles obtained from hydrodynamic simulations
or experiment. We also applied the method to a sech x
density and gain profile, which gave a coherence length
which approached that of the parabolic profile for large
Fresnel number.

where we have used g =h in Eq. (1.8). Similarly, the opti-
cal Hamiltonian can be expressed as

H= —,'[0 +6)„g(x)] . (A2)

aS(x„x;z) = —H(xo, x;z),
az

which gives

aS(x„x;z)
G(xo, x;z)=G„z+S(xo,x;z)+z

Bz

(A4)

Since G =go j„I 1+g [x (z) ] ]dz, we have

G /G„=z +I [L (x (z), g(z) ) H(x (z)—, 8(z) ) ]dz
ray

=z+S(xo,x;z) H(xo, x—;z)z, (A3)

where we have used the fact that H is constant along a
ray. We now note that Hamilton's principal function S
satisfies
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