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Cross sections for the multiphoton ionization of sodium in a linearly polarized radiation field
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A calculation of the N-photon ionization cross sections with N=2, 3,4, 5 in the frequency interval
0.098 & co &0. 165 (atomic units) for sodium has been performed using a procedure described by Pan [J.
Mod. Opt. 36, 877 (1989)]. The final-state wave function represents the Volkov-like continuum, distorted
by the atomic potential, while the initial state is described by the rotating-wave approximation with the
inclusion of the ground-state 3s and two excited p states. The cross sections were calculated for two
kinds of initial conditions: instantaneous and adiabatic switching of radiation. The results of the calcu-
lation with the distorted continuum wave functions representing the final state were compared to those
obtained from Coulomb and plane-wave functions.

PACS number(s): 32.80.Rm

I. INTRODUCTION

The development of intense ultra-short-pulse lasers has
provided a tool to probe atoms under conditions where
the electric-field strength associated with the laser pulse
can be comparable to atomic field strengths. Exposure to
such large time-dependent electric fields n"odifies both
atomic structure and atomic processes. One such process
of considerable importance and interest is multiphoton
ionization. A number of theoretical and experimental re-
sults [1,2] indicate the richness of the physics and the
diversity of the experimental observations, including
above-threshold ionization and harmonic generation.
Our interest is in the development of a simpler more ap-
plicable expression for the multiphoton ionization cross
section applied initially to siInple atomic systems but ex-
tended eventually to more complex atoms.

In the present treatment multiphoton ionization is re-
garded as a process in which the electron makes a transi-
tion between the initial bound state of a generally com-
plex atom and a final continuum state. The final state is
represented by an approximate solution of the
Schrodinger equation for a free electron in both the radi-
ation field and the field of the ionized atom. Our meth-
odology therefore belongs to a broad category of
Keldysh-like models. A majority of these models uses
plane-wave Volkov states for the description of the final
state. Several authors tried to improve the original Kel-
dysh procedure and replaced the plane-wave final state by
the Coulomb-Volkov waves. References are given in the
paper by Trombetta, Basile, and Ferrante [3], who dis-
cuss and compare the results for the ionization of hydro-
gen. In the short-wavelength region, the Keldysh ap-
proximation appears to overestimate the ionization cross
sections, while the results from the Coulomb-Volkov
waves are in good agreement with the perturbation
theory calculations. For larger wavelengths, both ap-
proximations severely underestimate the cross sections

due to the neglect of excited bound states. Using a
different approach, Pan [4] derived another form of the
Coulomb-Volkov waves based on the continuum-
continuum coupling. In the case of complex atoms, the
potential for the photoelectron should be further
modified by the screening effect of the bound electrons,
and this effect may be conveniently incorporated into
Pan's formalism.

The aim of this work is to develop a method for the
evaluation of photoionization cross sections using a pro-
cedure similar to Pan's but extended to include the effect
of excited states, and to assess the importance of screen-
ing by atomic electrons. In our approach, the final state is
described by a wave function that already includes the
effect of the non-Coulombic atomic potential. In addi-
tion, the initial-state wave function used for the calcula-
tion of the transition matrix element represents a time
evolution of the atom under the influence of the radiation
field and contains several bound states. As in all
Keldysh-type models, continuum states can be regarded
as dressed by photons and the resulting energy sidebands
can be excited by one-photon transitions from the lower
bound states.

We study the absorption of light by an electron outside
closed shells, and we shall assume that in the absence of a
radiation field both the bound and the free electron move
in the same central potential, and that the charge distri-
bution of core electrons remains unaffected when the ra-
diation field is applied. The electron spin will be ignored
in this paper.

In the presence of a radiation field the nonrelativistic
equation for the electron in the radiation gauge [without
the quadratic term —,'( A /c) in the Hamiltonian] is

—p ——A.p+ V(r)
1 2 1-

dt 2 c

All quantities in (1) and throughout the paper are given
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in atomic units (e =m = h /2m = 1) unless explicitly indi-
cated. A is the vector potential of the radiation field and
Vis the potential energy of the electron in the field of the
ion. We investigate the case of a monochromatic and
linearly polarized radiation field in the dipole approxima-
tion and set

A =0, A„=O, A, =A sincot . (2)

Two types of initial conditions at time t =0 will be inves-
tigated: an instantaneous radiation switch-on when the
atom is in the ground state (case A), and an adiabatic
switch-on condition corresponding to a quasistationary
state (case B}.

First we derive the expression for a generalized 1V-

photon ionization cross section based on a model of a
three-level atom with levels n &s, n2p, n3p. The calcula-
tions are then carried out for a sodium atom initially in
the 3s ground state for photon energies around the 4p and
5p resonances and for N =2, 3, 4, and 5.

II. WAVE FUNCTIONS FOR THE
FINAL AND INITIAL STATES

In the absence of the radiation field, the solution of (1)
for a free electron with kinetic energy E is

(r)e ' '=i 2lnr 'Fzl(r)Yl e

with

( fzl ~BIBZ ~itlz l+, ), which are singular at E'=E and may
be written as

(
=—1) [(2l) —l)(2l) +1)]

az 7T

I,
X fFzl + FE'iy[dr

dr r
(6)

X p' cos(iII+, —i}1)5(E' E)—
p +p

2 (E E)—

where l) =1+1 for the upper sign and I) =1 for the
lower sign, respectively. A general formula for this ma-
trix element was derived by Korol [5]. We use Korol's
equation 13 to evaluate the element (6}.There are three
types of singular terms in the expression for the dipole
matrix element: a term with the 5 function 5(E' —E), a
term proportional to (E' E},—and a term containing
ln~E' —E~. The contribution of the logarithmic singular
term is negligible in the narrow region around E' =E and
consequently, the matrix element in the limit E'~E may
be expressed in the form

g~(~,)=d.( [(2l —1)(21 +1)]
Bz

Fzl(r) —p
'~ sin pr—

f~QO

ml

2
+Zp 1n2pr+ g, (7)

2},=argI'(l +1 iZ/p—)+2), .

p =2E, (4)

Z is the asymptotic charge for the free electron and the
functions fzl are energy normalized. The phase shift &pl

is due to the short-range part of the potential V.
A general solution of (1) corresponding to a free elec-

tron may be written in terms of gzl in the form

+E g f az'l (r)QE'lpp)e (&)
Im

and coefficients az 1 may be found by substituting (5)
into (1) and perforining the integration over E'. A de-
tailed account of this procedure was provided by Pan [4].
Since the ground state is an s state with m =0, then for a
linearly polarized radiation field in the z direction, only
states with m =0 can be coupled to the ground state.
Therefore in (5) we may set m =0 without loss of general-
ity and omit the subscript m =0 in the remainder of the
paper. The radiation field causes mixing of gzl with
di8'erent l and E'. However, the dominant term is pro-
duce by "on shell" coupling and we will ignore contribu-
tions to +z corresponding to E'AE. Such contributions
may nevertheless become important near the ionization
threshold when E approaches zero, as pointed out by
Trombetta, Basile, and Ferrante [3].

In our procedure to find expansion coefficients a+I we
follow the method of Pan [4]. It requires the evaluation
of the free-free dipole matrix elements

where the phase shifts g&+, and gl are associated with the
asymptotic forms of Fz.l+, and Fzl according to (4).

The importance of the 5-function term in the free-free
dipole matrix element has only been realized in recent
years [6—8]. In Pan's [4] expression (B17),which is appli-
cable to continuum-continuum coupling of Coulomb par-
tial waves with Z =1, the 5-function term is missing and
the first term in her expression corresponds to the second
term of our Eq. (7).

By integrating (7) over E' and taking only the residue
of the second integral of the right-hand side, we obtain

I (d~( +J,. gg, )dE'=d p) [(2l —1)(21 +) )]
BZ

X exp[ i (g ~i—[ r—il )] . (8)

If we define a real symmetric tridiagonal matrix R such
that

Rl l 1=Rl, 1
=l [(21—l)(21 +1)]

then from (8) and (1) we obtain a system of coupled equa-
tions for the coefficients a@I.

pA
El [ Rl, l —1 El —1 xp[ ( 91—1 91}]

+Rl, l+laEl+1 exp[ '('91+1 Il }]]»n~t
(9)

The solution may be written in the form
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pAakik=biki exp i rit — gkcoscot
COC

+Ek y aElkel(r )e
1=0

If the electric field associated with the incident radia-
tion is smaller than atomic field intensities, then the
time-dependent wave functions of the valence electron
may be conveniently expressed in terms of unperturbed
functions y . For atomic systems with one electron out-
side of a closed shell, we limit the expansion to three
states, namely the ground state n &s and two excited states
nzp and n3p with m =0, which directly couple to the
ground state by dipole interaction. Solutions of (1) with
A =0 are q (r ) exp( iE t), —and we set

—:n ~s, 02=—n2p, 0 3—=n3p (12)

The response of a three-level atom to the radiation field
was studied by several authors (see Shore, Ref. [9]).More
recently, Jonsson [10] presented a diagrammatic solution
to the three-level problem. We employ the rotating-wave
approximation to solve Eq. (1) for the bound electron.
The general solution then takes the form

3

C'( ) = & [Cikv i+(C2kV2+C3kf 3) xp( —~ )]
k=1

Xexp[ i (E, —ak—)t] .

The energy parameters ak satisfy the equation

(13)

ak

ak+E2 —E( —co

8', 0 ak+E3 —E) —m

=0, (14)

with 8', and 8', given by

A, =0, 1,2, . . . ,

where b&& are elements of matrix b such that b 'Rb is a
diagonal matrix with diagonal elements gk and g&b&z = 1.
R and b are infinite matrices and each A, corresponds to
an independent approximate solution of (1) for a free elec-
tron (with rn =0) in the form

III. CALCULATION OF THE
PHOTOIONIZATION CROSS SECTIONS

The total cross section for the photoionizing transition
from the initial state to the continuum states in which the
ejected electron is described by wave functions WE& is the
sum of partial cross sections corresponding to all values
of A, for a given energy E. In analogy to the first-order
perturbation theory, the transition-matrix element T&
connecting the initial and final states of the ionization
process is taken as

a
T& = VE& i sincot N t

c Bz
(16)

However, as the functions VE& and 4(t) already contain
the effects of the radiation field, there will be contribu-
tions to (16) corresponding to higher orders of the vector
potential A. For convenience we introduce the following
notation:

XN =2N( i) '(Gk—A ) 'JN(Gk 2 ),
where J& is the Bessel function,

(17)

in any of the three states is time independent; the atom
has adjusted to the radiation field. This situation corre-
sponds to the adiabatic switch-on condition. For each
value of the radiation intensity and frequency co we
choose ko such that it is associated with the largest prob-
ability of finding the atom in the ground state.

In this paper we have applied our method to the ion-
ization of an isolated sodium atom. The central potential
V(r) has been constructed using wave functions of
Clementi and Roetti [11] for the core electrons and a
Slater-type [12] exchange-correlation potential with an
adjustable factor F. The 3s radial wave function was then
self-consistently generated and F determined from the
condition that the eigenvalue E& =E3, agrees with the
observed ionization energy of sodium. The resulting po-
tential V was used to obtain all functions y and FE&. The
calculated values of the excitation energies for the 3p, 4p,
and 5p levels agree with the observgd values to within
1 0.

(15)

For a linearly polarized wave in the z direction, both S;
and 8', are real. The expansion coefBcients Cjk may be
written as Cjk =C~kKk. The ratio C', k.C2k.C3k for each k
is determined by the value of ak, and the coefBcients Kk
depend on specific boundary conditions.

We investigate two possibilities: in case A, the atom at
t =0 is in the ground state so that N(t =0)=y&(r) and
the radiation field is switched on instantaneously. In this
case, generally none of the Kk values is zero. In case B
the sum over k in (13) has only one term with k =ko and
@(t=0)=Q~Ciky~. The probability of finding the atom

(18)

OkNk — [CikMlkXN+(C2kM2A, +C3kM3k)XN i]2c

(19)

Bg,~=E —E) —Nco+ak

In evaluating (16) we use the relationship

(20)

exp(ix cosP) = g i "J„(x)exp(i') .
p — 00

Then T& is reduced to a sum of terms with factors
exp[(E E& —pto+ak)t] correspon—ding to diff'erent p.
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For each value of the exponent there are two terms in the
expansion with p =

p& and p =p2 such that
p, +1=@2—1=N, and the matrix element (16) can be
cast in the form

s 8~~ t
Ti =QQJ~ie

kN
(21)

The probability P of ejection of the bound electron into
any of the %E~ states during the time from t =0 to t&

with kinetic energy in the interval dE is

t) 2P=g f ddt dE .
0

(22)

In (22) there are terms with factors 8&~, and for high
values of t, their contributions are sharply peaked
around the values of E:—Ek for which 8&N =0. The con-
tributions of other terms with factors 8&&8z.& for which
kN&k'N' are small and may be neglected. If the radia-
tion pulse is long enough, the contributions from different
values of N and k are well separated in energy and each
contribution may be calculated by taking the limit
t& —+ Do. N can be interpreted as the number of photons
absorbed by the bound electron in the ionization process.

The rate of absorption of N photons with energy co is
then

1 ti 2
$V~= lim —Q f f Tidt dE=2m+ISg~il

0
kA,

(23)

and the corresponding generalized ionization cross sec-
tion [13]is given by

N ~N+co (24)

(25)

If the intensity of radiation is small, so that
(Gi A ) /4(N+1)((1, only the first term in the power
expansion of Bessel functions in(17) may be taken into ac-
count and from (24) we obtain the generalized ionization
cross section in the form

where F„ is the photon fiux. All quantities in (23) de-
pending on E should be evaluated for valuesE:—Ek =Ei+Na) —ak.

If Nco is close to the ionization energy of the atom, it
may happen that the condition E —E& —Nco+ak=0 is
satisfied by negative values of E for certain values of co.
In this case the ionization channel Nk is closed, but it
may open by increasing co.

For very short radiation pulses the formula (23) may
not be generally applicable, because if t, is small, the con-
tributions corresponding to each k and N are not limited
to a very narrow interval of energies and they may over-
lap. This may happen if t& is comparable to the period of
the radiation field, or at very low radiation intensity be-
cause then the difference of ak values is small. If t, is the
duration of the pulse and hak the difference of two adja-
cent ak values, the approximate condition of validity of
(23) is

2m) +'co c [(N —1)!]
XQIGP [ —iGiM, iC, g

kA,

+2(N —1)A '(M2i Cii,

+M3i. C3f ) ]I'

Values of G& and M & depend on energy E and should be
taken at E =Ek. The term with C&k represents a direct
transition from the ground state n&s to the continuum
due to absorption of N photons. The terms with C2k and
C3k correspond to the absorption of one photon accom-
panied by a transition to the n2p or n3p state, respective-
ly, and to the subsequent absorption of N —1 photons
and transition to the continuum. Contributions from the
excited states n2p and n3p exhibit resonance behavior and
are sharply peaked at photon energies co equal or close to
E2-E, and E3-E, . In the region between the two reso-
nances the cross section may be strongly affected by in-
terference effects, as can be seen from (26). The widths of
individual resonances in the cross section are determined
by parameters W, and W, defined by (15). For A ap-
proaching zero and co far away from any resonance, C&k
approaches unity and both C2k and C3k become propor-
tional to A so that o.N becomes independent of the field
intensity and the N-photon absorption rate follows the
power law 8'N ~F . Near the resonance, oN behaves
like A . When the field strength is so large that the
Bessel function in (17) can no longer be approximated by
the first term of the series expansion, deviations from the
power law for the absorption rate will occur. Expression
(26) is valid even if the radiation field is given by
2, = 2 sin(cot +s) with arbitrary phase s.

Our calculation of the multiphoton ionization has been
done for photon energies co from 0.098 to 0.165 (2.67 to
4.49 eV) and the generalized cross section o& for neutral
sodium has been evaluated according to formula (26) for
N=2, 3,4, 5 and for three values of the field strength
E, =0.002, 0.01, and 0.03. (E,= Aco/c and the atomic
unit of E, corresponds to the field strength 5. 14X10
V/cm and to the intensity of 3.5 X 10' W/cm .) Values
of Ig&l in our calculation are sinaller than 1.0, and the
inaccuracy caused by the replacement of Bessel functions
by the first term of the expansion is less than 10% at
co =0.098 and E, =0.03, when it has its maximum value.

The coem. cients Cjk depend only on m and A, the phase
shifts g& and the dipole radial integrals connecting the
bound states and continuum states are smoothly varying
functions of E, and for each N they were calculated for
five different energies E of the ejected electron and then
interpolated for values of E associated with any given cu

by the condition E =E&+Neo —ak. The summation over
l in (5) was truncated at I,„=34. No significant
difference was found by comparing the result with calcu-
lations using l,„=20.

In the interval of photon energies studied in this paper,
there are two low levels that may be excited directly from
the 3s ground state by dipole interaction with the radia-
tion field, namely the 4p and 5p states. The excitation en-
ergy of the 3p level in sodium at 0.077 lies outside this in-
terval, but the effect of the 3p excited state in this interval
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is not negligible due to the large value of the parameter
W, defined by (15) with y2 =—3p, and near the 5p reso-
nance it is even larger than the effect of the 4p level.
Therefore, in order to account for resonances in the cross
sections due to both the 4p and 5p levels using formula
(26), which contains only two p levels, we performed two
sets of calculations, one with nzp =3p, n3p =4p for
co &0.155, and the other one with n2p=—3p, n3p —=Sp for
co) 0. 155. In the narrow region between the 4p and 5p
resonances, the effects of all three levels 3p, 4p, and 5p are
of the same order of magnitude and (26) is not applicable.

The energy difference of the 3p and 3d levels in sodium
is equal to 0.0556 and consequently for co&0.098 the
efFect of the 3d level which is not included in (26) be-
comes important. Therefore, the present calculation has
not been extended to lower frequencies.

IV. NUMERICAL RESULTS AND DISCUSSION

The generalized cross section o.& for the absorption of
photons calculated from the expression (26) for

X =2, 3,4, 5 and for three values of electric-field intensity
Ez of radiation is shown in Fig. 1 for case A (instantane-
ous switch-on} and in Fig. 2 for case B (adiabatic switch-
on). In the narrow interval of frequencies between the 4p
and Sp resonances, where the three-level formula (26) is
not applicable, values of o.& are not shown. For low
values of Ez, and co not close to resonance, the cross sec-
tions become independent of the field strength.

In case A (Fig. 1), the widths of individual resonances
increase with increasing field strength, the values of o.&
decrease, and eventually individual resonances merge into
a continuous background. There is also a small redshift
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FIG. 1. Generalized X-photon ionization cross section o & (in cm s ') for sodium. Linearly polarized field, E,=0.002 (radiation
intensity =1.4X10"W/cm, curve A), E,=0.01 (curve 8), E,=0.03 (curve Q. co= photon energy (atomic units). Instantaneous
switch-on condition (case A). The peaks of the curve A at co=0. 138 and 0.159 coincide with the excitation energies of the 4p and Sp
levels. Curve D represents the contribution from the direct 3s-Ep transition at E, =0.002. (For 2V =2, D = 10X this contribution. )
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in the position of the peak value of each resonance associ-
ated with the increasing radiation intensity. A similar
behavior at low intensities was found by Chu and
Reinhardt [14] for hydrogen. The increase of oz to-
wards small co for all X is caused by the presence of the
3p resonance at co=0.077. According to (26), the total
ionization cross section o.& may be written as a sum of
partial contributions o.

&k corresponding to different roots
ak of Eq. (14) as described above. uk and cr3k for
Ez =0.03 are displayed in Fig. 3. In the energy spectrum
of photoelectrons, each N is associated with three peaks
whose position is given by E =E, +Neo —ak. For low
field strength one of the ak values is always close to zero.
The sudden increase of the total two-photon cross section
at small values of ro (Fig. 1) is a consequence of the open-
ing of a new ionization channel corresponding to o.z, .
The sharp minimum of o.

z3 at co=0. 126 for Ez=O 03
[Fig. 3(b)] is caused by zeros of the expression
C33M33 + C33M3$ in formula (26) near this frequency.
They appear at slightly different positions depending on

Curve D (Fig. 1) illustrates the relative importance of
the term with C,k in (26), which corresponds to the tran-
sition 3s-Ep. The values of o.& represented by curve D
were obtained from (26) by ignoring terms with C3k and

C3k. The minimum near co=0. 113 for X =2 is caused by
zero of the dipole matrix element connecting the 3s and
Ep states, and a dip at ~=0.1376 is a consequence of the
decreased 3s population at the 4p resonance.

In case 8 (Fig. 2), the wave function (13) of the bound
electron has only one term with k =ko corresponding to
a particular value ak, and in the energy spectrum of pho-
toelectrons each X is associated with only one peak. The
behavior of the total cross section o.& is very similar to
the behavior of the partial cross section o.&3 in case A for
co&m', and to o.&z for co&co'. The frequency co' corre-
sponds to the situation when the probability of finding
the atom in the ground state is the same for both k =2
and 3. At small values of Ez, m' practically coincides
with the peak of a resonance and o.zz=o z3 at ~'. How-
ever, with increasing Ez this equality is no longer valid

N=2
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FICx. 2. Same as Fig. l. Adiabatic switch-on condition (case B). Crosses: Miznno [15) (limit of low radiation intensity).
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FIG. 3. Parameters ak and partial cross sections o.&k (in cm s ') for W =2, E,=0.03, case A (instantaneous switch-on).

and there is a discontinuity in the total o.z in case 8 at
co'. This can be seen by comparing o.

22 and o.
23 in Fig. 3

with o 2 for Ez =0.03 from Fig. 2 where ct) =0.133~ The
discontinuity is a consequence of our choice of initial
conditions in case B, which applies to the idealized case
of an isolated atom and coherent excitation. The deep
minimum for X =2 near co=0.013 becomes shallower as
X increases because of the larger spread of 6& values so
that zeros of the expression M2&Cz3+M3&C33 in (26) ap-
pear at different values of co for different A, .

The adiabatic switch-on condition has been used by
several authors for the calculation of o.

2 for sodium in
linearly polarized light using various methods. Some of
the values obtained by Mizuno [15] based on the pertur-
bation theory are shown in Fig. 2. They should be com-
pared to our curve A. There is an overall agreement be-
tween the two results. Similar results were found by
McGuire [16], Bebb [17], and Manakov et al. [18], al-
though the position of the minimum of ~2 near m=0. 13
does not always agree. This may be due to different elec-
tron wave functions used in the calculations. Conse-
quently the uncertainty of the cross-section value for a
particular photon energy in the region of steep increase
with co may be 1arge, as is demonstrated in Table I.

As stated in Sec. I, in our procedure it was assumed
that both the bound and the free electrons move in the
same potential V(r). For comparison we performed addi-
tional calculations in which the distorted wave functions
I'zI were replaced either by corresponding Coulomb wave
functions or by functions representing plane waves. In
both cases we used formula (26). For Coulomb wave
functions we have g& =argI (l +1 iZp ') and—for plane
waves qI =O. The comparison is shown in Fig. 4 for cases
A and 8 of initial conditions and for X =2, E, =0.002.
The value of o.

2 is only slightly increased by using
Coulomb wave functions, except in the region of the
minimum near co=0. 13 in case B, but there is a large in-

TABLE I. Values of log&oo. 2 (o.z in cm s) for co=0. 13125
(second harmonic of the ruby laser).

Present result
(case B)

Bebb
[17]

Mizuno
[15]

Manakov
et al. [18]

McGuire

—52.05 —52.22 —51.44 —51.26 —50.62

crease of o.
2 at large co if plane waves are used for the

description of the ejected electron (curve C). Note also a
large contribution of the term, with Cik in (26) represent-
ing the direct transition 3s-Ep in the plane-wave calcula-
tions (curve D). In the region below to=0. 125, the con-
tributions of the 3s-Ep and 3p-El transitions have the ten-
dency to mutually cancel, and the result is a sharp de-
crease of the total cross section (C). The difference be-
tween values of o.& from distorted waves, Coulomb
waves, and plane waves is expected to decrease with in-
creasing X as the energy of the ejected electron increases.

There are several conditions that restrict the applica-
bility of expression (26). First, the strength E, of the ra-
diation field should be small compared to atomic field
strengths. Second Ez should be small enough that the
omission of the —,'( A /c) term in the Hamiltonian may be
justified. Third, the field strength Ez should satisfy the
condition (G~ A ) !4(N+1)((1, so that the Bessel func-
tions in (17) may be replaced by the first term of the
power-series expansion. For higher fields the cross sec-
tion may be obtained again from (17), (18), (19), (23), and
(24), keeping the expression for X& in its original form
(17). Fourth, the frequency co should be such that the ra-
tio l(E~ E, +co)l(EJ E—, co)l for j——=2, 3 is much
larger than 1, otherwise the rotating-wave approximation
may not be valid. In our case, the m.inimum value of this
ratio is 2.74 for Ej E3p and co=0. 165. Fifth, the dura-
tion ti of the radiation pulse has to be long enough, i.e.,
t, ) sr/co and t, )mllhak I so that a pole approximation
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FIG. 4. Comparison of two-photon ionization cross sections calculated from distorted-wave functions (curve A), from Coulomb
wave functions (curve B), and from plane-wave functions (curve C). The contributions from the direct 3s-Ep transition corresponding
to calculations with plane-wave functions are shown as D. E =0.002. Case A: instantaneous switch-on. Case B: adiabatic switch-
on.

may be used in evaluating separately individual contribu-
tions from difFerent N and k in expression (22). For ex-
ample, the smallest value of ~a2-as~ for Ez =0.002, near
the vicinity of the 4p resonance at co =0. 1376, is
3.4X10,which leads to the condition t& &0.22 ps. For
higher fields the values

~
b,ak ~

increase and condition (25)
becomes valid even for shorter pulses.

In summary, the present method represents a relatively
simple way to calculate the multiphoton ionization, even
in the frequency region where the ionization process is
strongly influenced by the presence of excited levels. The
procedure has been applied to sodium and it may be easi-
ly generalized to be applicable to complex atomic sys-
tems. The motion of the photoelectron in a non-
Coulomb atomic potential is taken into account by
representing the continuum wave functions in terms of
distorted waves. The time evolution of the initial state is
described by the rotating-wave approximation, including
two excited levels, and the cross sections a z given by (26)

also contain higher than ¹ rder contributions. Two
kinds of initial conditions have been investigated, and the
results are compared with calculations performed with
Coulomb waves and plane waves. Cross sections ob-
tained from distorted-wave functions are generally lower
than those from the other two methods. The application
of the present method is limited by the validity of the
rotating-wave approximation, intensity of radiation, and
by the duration of the pulse. For larger values of field in-
tensity Ez, when (26) may no longer be valid, a more gen-
eral expression (24) together with (23) and (19) should be
used.
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