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Relativistic coupled-cluster method: Intrashell excitations
in the f shells of Pr+s and U+4
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The relativistic Fock-space coupled-cluster method for the direct calculation of ionization poten-
tials and excitation energies (including fine structure) is applied to the 4f levels of Pr+ and the 5f
levels of U . The no-pair Dirac-Coulomb-Breit Hamiltonian is taken as the starting point. Cor-
relation is treated by the coupled-cluster singles-and-doubles approximation, which includes single
and double virtual excitations in a self-consistent manner, incorporating therefore the efkcts of the
Coulomb and Breit interactions to all orders in these excitations. Extensive basis sets of kinetically
balanced four-component Gaussian spinors are used to span the atomic orbitals. All levels appear
in correct order. The average error of the excitation energies with the best basis is 222 cm for
Pr+ and 114 cm for U+ . Fine-structure splittings are obtained with even better accuracy.

PACS number(s): 31.25.@m, 31.30.3v, 31.50.+w

I. INTRODUCTION

Experimental excitation energies of atoms and posi-
tive ions are known for many systems. This information
is less readily available for lanthanides [1],and even more
scarce for actinides [2—5]. The excitation energies of most
multiply charged ions of these elements have been derived
from absorption and Huorescence spectra of crystals con-
taining the ions as impurities. The f spectra obtained
this way may differ from those of the free ions because of
the crystal field effects, which change the relative posi-
tions of the terms and split energy levels into their Stark
components. Measuring the &ee-ion spectra of these el-
ements is technically di%cult. It is, therefore, desirable
to develop a reliable high-precision ab initio method for
the theoretical investigations of these systems.

Atomic systems with open-shell f configurations are
highly relativistic and many electron in character. Rel-
ativistic and correlation effects are strongly intertwined,
and the spectra of the f" systems are, therefore, rather
complicated. In particular, the fine-structure splittings
are often comparable to differences between LS terms;
not infrequently, fine-structure manifolds belonging to
different LS terms overlap. In the nonrelativistic ap-
proach, fine-structure effects are attributed to "spin-
orbit" interactions. While in many light elements these
effects may be qualitatively modeled by perturbation the-
ory or pseudopotential techniques, only computational
methods including on equal footing both relativistic and
correlation effects from the outset may be expected to
provide quantitatively accurate atomic spectra for the
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systems under consideration.
The past few years have seen an intensive develop-

ment of relativistic many-body techniques in quantum
chemistry, in particular the method of fully relativis-
tic (Dirac-equation based) coupled-cluster (RCC) the-
ory [6—15]. The coupled cluster is an all-order method,
and yields upon iteration the order-by-order many-body
perturbation theory (MBPT). Infinite subclasses of per-
turbation diagrams are summed, and size extensivity is
maintained. The latter feature is particularly important
for heavy elements, which are also elements where rela-
tivistic efFects are most significant. An additional advan-
tage of the CC approach is connected with the similarity
of CC and MBPT expansion terms. Using this property
one can, if necessary, improve the CC results by adding
the most important omitted diagrams with the aid of low-
order MBPT. The RCC method gives both electron cor-
relation and. relativistic effects with high accuracy, and is
a powerful and systematic method for calculating prop-
erties of heavy atomic and molecular systems.

The implementation of relativistic CC may be done
either nuinerically [7] or by using discrete basis sets,
which may be local [8,9] or global [10—15]. We have
recently developed and implemented a relativistic ver-
sion of the multireference valence-universal Fock-space
coupled-cluster method, using a discrete basis of four-
component Gaussian spinors (G spinors), which may also
be applied to molecular systems. The method is based
on the Dirac-Coulomb-Breit (DCB) Hamiltonian, and in-
corporates the instantaneous Coulomb and low-frequency
Breit interactions to all orders. Accurate ionization po-
tentials, excitation energies and fine-structure splittings
were obtained for Au [12], highly ionized atoms with two
to five electrons [13],and the alkali-metal atoms I i to Fr
[14]. More recently, pair correlation energies (both rel-
ativistic and nonrelativistic) were calculated for all the
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II. METHOD

The relativistic coupled-cluster method has been de-
scribed in our previous publications [12,14], and only
a brief review is given here. We start from the pro-
jected Dirac-Coulomb (or Dirac-Coulomb-Breit) Hamil-
tonian advocated by Sucher [20],

H+ ——Hp+ V,

where (in atomic units)

Ho ——) A+ hD (i)A+, (2)

hD(i) = ccx; p; + c (P; —1) + V„„,(i) + U(i),

electron pairs of the Xe atom [15].
The previous applications were limited to systems with

8, p, and d valence electrons. Here the method is em-
ployed to f shells, namely, the 4f configuration of
Pr+ and 5f 2 of U+ . These configurations yield complex
structures and present a challenge to theory. An addi-
tional motivation for studying these systems is that their
spectra are well characterized experimentally [1,5], while
extensive computational treatments are scarce. Several
ab initio calculations exist for Pr+ . Early work includes
nonrelativistic second-order MBPT [16] and nonrelativis-
tic configuration interaction (CI) [17]. More recently, Cai
et at. [18] carried out a large-scale multiconfigurational
Dirac-Fock (MCDF) study with several thousand config-
uration state functions, using the modified GRASP [19]
computer code. We are not aware of ab initio calcula-
tions on the U+ system.

where the frequency-independent Breit interaction is

1 2Bi2 — [~1 ci2 + (™1ri2) (~2 ' r12)/ri2]' ( )2r12

In q-number theory the Dirac-Coulomb-Breit Hamilto-
nian H+ is rewritten in terms of normal-ordered products
of the spinor operators, (r+s) and (r+s+ut) [20,21],

a = a+ —(oiII+io)

= ) f„(r+s) + —) (rs~~tu)(r+s+ut),
rstu

where f„, and (rs~~tu) are, respectively, elements of one-
electron Dirac-Fock and antisymmetrized two-electron
Coulomb-Breit interaction matrices over Dirac four-
component spinors. The effect of the projection oper-
ators A+ is now taken over by the normal ordering, de-
noted by the curly braces in the equation above, which
requires annihilation operators to be moved to the right
of creation operators as if all anticommutation relations
vanish. The Fermi level is set at the top of the highest
occupied positive energy state, and the negative energy
states are ignored.

The no-pair approximation leads to a natural and
straightforward extension of the nonrelativistic open-
shell CC theory. The multireference valence-universal
Fock space coupled-cluster approach is employed here,
which defines and calculates an effective Hamiltonian in
a low-dimensional model (or P) space, with eigenvalues
approximating some desirable eigenvalues of the physical
Hamiltonian. According to Lindgren's formulation of the
open shell CC method [22], the efFective Hamiltonian has
the form

V =) a+A+(V, ff);,A+A+ —) ~+U(i)~+. (4)

H g ——PHOP,

where 0 is the normal-ordered wave operator,

(8)

Ver = 1 + B»+ o(n ),3

T12

Here hD is the one-electron Dirac Hamiltonian. An
arbitrary potential U is included in the unperturbed
Hamiltonian Hp and subtracted &om the perturbation
V. This potential is chosen to approximate the effect
of the electron-electron interaction; in particular, it may
be the Dirac-Fock self-consistent-field potential. The nu-
clear potential V„„, includes the effect of finite nuclear
size. The A+ are projection operators onto the posi-
tive energy states of the Dirac Hamiltonian hD. Be-
cause of their presence, the Hamiltonian H+ has nor-
malizable, bound-state solutions. This approximation
is known as the no-(virtual)-pair approximation, since
virtual electron-positron pairs are not allowed in inter-
mediate states. The form of the effective potential Vg
depends on the gauge used. In Coulomb gauge it be-
comes (in atomic units, correct to second order in the
fine-structure constant a) [6]

0 = (exp(S)). (9)

(1o)

The upper indices in the excitation amplitudes reBect
the partitioning of the Fock space into sectors, which
correspond to the different numbers of electrons in the
physical system. This partitioning allows for partial de-
coupling of the open-shell CC equations. The equations
for the (m, n) sector involve only S elements from sec-
tors (k, l) with A: ( m and l ( n, so that the very large
system of coupled nonlinear equations is separated into

The excitation operator S is defined in the Fock-space
coupled-cluster approach with respect to a closed-shell
reference determinant. In addition to the traditional de-
composition into terms with different total (l) number of
excited electrons, 8 is partitioned according to the num-
ber of valence holes (m) and valence particles (n) to be
excited with respect to the reference determinant,
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TABLE I. Basis sets for Pr and U. Members of the well-tempered s-basis series used in the
various l sectors are given.

Basis Reference
Pr 1 31s25p20d15 f11g [25](basis 1)

2 29s23p18d14flOg5h [25)(basis 2)
3 29s23p19d14 f10g6h4i [25](basis 2)

U 33s29p18d15flOg6h [26]

8 p
1-31 5-29
1—29 5-27
1—29 5—27

d f
8—27 13—27
8-25 13-26
8—26 13-26

g 6 z

16-26
16—25 19—23
16-25 19—24 21—24

1-33 4—32 13—30 16-30 21-30 24—29

smaller subsystems, which are solved consecutively: first,
the equations for S(o ) (corresponding to the reference
determinant) are iterated to convergence; the S(i' ) (or
S( 'i)) equations are then solved using the known S( ' ),
and so on. This separation, which does not involve any
approximation, reduces the computational effort signifi-
cantly. The eigenvalues of the efFective Hamiltonian (8)
in a sector give directly the correlated energies in that
sector with respect to the correlated (0,0) reference state.
These transition energies may be ionization potentials,
electron aKnities, or excitation energies, according to the
presence of valence holes and/or valence particles.

In the present application, we use the (0,0), (0,1), and
(0,2) sectors. The lower index t in (10) is truncated at
l=2. The resulting CCSD (coupled cluster with single
and double excitations) scheme involves the fully self-
consistent, iterative calculation of all one- and two-body
virtual excitation amplitudes, and sums all diagrams
with these excitations to infinite order. Negative energy
states are excluded from the Q space, and the diagram-
matic summations in the CC equations are carried out
only within the subspace of the positive energy branch of
the DF spectrum.

III. CALCULATIONS

The Fock-space relativistic coupled-cluster method was
applied to the fz configurations of Pr+s and U+4. The

Dirac-Fock-Coulomb or Dirac-Fock-Breit equations were
solved for the closed-shell systems Pr+ and U+, which
define the (0,0) sector. These systems were correlated by
CCSD, and two electrons were then added, one at a time,
to reach the f configuration in the (0,2) sector.

The Dirac-Fock [21] and RCC [12,14] programs are
both written for spherical symmetry, utilizing the angular
decomposition of the wave function and CC equations in
a central field. The energy integrals and CC amplitudes
which appear in the Goldstone-type diagrams defining
the CC equations are decomposed in terms of vector-
coupling coeKcients, expressed by angular-momentum
diagrams, and reduced Coulomb-Breit or S matrix el-
ements, respectively. The reduced equations for single
and double excitation amplitudes are derived using the
Jucys-Levinson-Vanagas theorem [22] and solved itera-
tively. This technique makes possible the use of larger
basis sets.

To avoid "variational collapse" [23], the Gaussian
spinors in the basis are made to satisfy kinetic balance
[24]. They also satisfy relativistic boundary conditions
associated with a finite nucleus, described here as a
sphere of uniform proton charge [21]. The atomic masses
used are 140.90 for Pr and 238.03 for U. The speed of
light c is 137.037 atomic units. Nonrelativistic results
were obtained with c = 10 a.u.

The uncontracted well-tempered basis sets of Huzinaga
and Klobukowski [25] were used for Pr, and the universal
basis set of Malli et al. [26) was selected for U. The basis

TABLE II. Ionization potential (IP) and excitation energies (EE) of Pr+ 4f levels (cm ).
MCDF —multiconfiguration Dirac-Fock [18]. DC I —relativistic coupled cluster with ba-
sis set I, starting from the Dirac-Coulomb Hamiltonian. DCB I —similar, starting from the
Dirac-Coulomb-Breit Hamiltonian. The experimental results are from Ref. [1].

Level
H4 (IP)
H5
H6

3Q

3Q

G4
1D
Po

11
P

'so
Average error

Expt.
314400

2152.09
4389.09
4996.61
6415.24
6854.75
9921.24

17334.39
21389.81
22007.46
22211.54
23160.61
50090.29

(EE's)

MCDF

2337
4733
4984
6517
6950

10207
18153
22776
23450
25854
24653
50517

853

DC 1
308636

2273
4645
4749
6266
6808

10019
16803
20802
21443
22267
22719
48448

394

DC 2

310925
2273
4641
4832
6345
6844

10014
16961
21109
21747
22061
23009
49072

245

DCB 2

311794
2081
4250
4842
6215
6680
9686

16867
21128
21713
21829
22803
49061

313

DC 3
311426

2270
4635
4843
6354
6843

10001
16998
21155
21791
22010
23051
49194

222
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TABLE III. Fine structure in Pr+ (cm ). The experi-
mental results are from Ref. [1].

H5 —H4
3 3H6 —H5

Expt. MCDF DC 1 DC 2 DCB 2 DC 3
2152 2337 2273 2273 2081 2270
2237 2396 2369 2368 2169 2365

3F 3F
3 3F4 —F3

1419
440

1533 1517 1513
433 542 499

1373 1511
465 489

'P, —'P, 618
P2 —P1 1153

Average error

674 631 638
1203 1276 1262

95 98 89

585 636
1090 1260

51 86

sets are summarized in Table I. They go up to i orbitals
(l = 6) for Pr and h orbitals (l = 5) for U. Atomic or-
bitals with the same l but different k number (e.g. , pi~2
and ps~2) are expanded in the same basis functions. The
correlated shells are 4spdf 5sp for Pr and 4f5spdf 6sp for
U. The virtual orbitals with high orbital energies have
been found to contribute very little to correlation effects
on excitation energies; orbitals higher than 100 a.u. are
therefore eliminated from the calculation, effecting con-
siderable savings in computational effort. All computa-
tions were carried out on the IBM RS6000/360 computer
workstation at Tel Aviv University.

IV. RESULTS AND DISCUSSION

A. Pr+

The ionization potential and excitation energies of
Pr+ are shown in Table II. The Dirac-Coulomb results
are given in the three bases of Table I, which go up to
l = 4, 5, and 6. The addition of i functions changes the
excitation energies by 50 cm or less, indicating con-
vergence with respect to l. The ionization potential, on
the other hand, changes by 500 cm, and higher l val-
ues may be needed for better convergence. The IP also
shows a larger effect of the Breit term than the excitation
energies.

The calculated transition energies are compared with
experiment [1] and with the extensive numerical MCDF
calculations of Cai et al. [18]. The excitation energies

are in very good agreement with experiment. All f2 lev-
els appear in the correct order; the average error for the
largest basis is 222 cm . A full third of the total er-
ror comes &om the very high So state, which is off by
900 cm; the next highest error is 335 cm, for the
D2 level. The RCC results are better than numerical

MCDF [18], which gives errors four times higher than
ours (up to 3600 cm for Is, average error 853 cm i)
and incorrect ordering of the I6 and P2 levels. Ap-
parently, the MCDF function does not include sufhcient
dynamical correlation, which has a significant effect on
the excitation energies. The effect of the Breit term on
the excitation energies is not very large. The computed
ionization potential is less accurate. As noted above, the
IP shows slower convergence with respect to the basis
and a larger effect of the Breit interaction.

The fine-structure splittings are very close to experi-
ment (see Table III). Convergence with respect to basis
(or to the l expansion) is even better than for the excita-
tion energies. The relatively large effect of the Breit in-
teraction, which improves the results significantly, should
be noted. A similar phenomenon has been observed for
other systems [12,14]. The distortion of MCDF fine-
structure splittings by "spurious correlation, " observed
by Huang et al. [27], does not occur in the RCC method.
This distortion leads to artificial splittings in the nonrel-
ativistic limit, when c goes to infinity. Exact degeneracy
is obtained in our calculations at this limit.

Comparison with nonrelativistic results can be made
only for the LS term averages (Table IV). The errors
in the nonrelativistic CI [17] and perturbation [16] cal-
culations are largely due to the size of the basis used.
Comparison of relativistic and nonrelativistic CC com-
putations with the same basis reveals a very large change
()3 eV) in the ionization potential, with a much smaller
effect on the term energy differences. The insufhcient in-
clusion of dynamical correlation in the MCDF function
leads again to significant errors.

B. U+4

The basis used (Table I) included functions with l up
to 5, which proved adequate for Pr+ . The ionization
potential and excitation energies in the 5f configuration

TABLE IV. LS term averages in Pr+: Relativistic vs nonrelativistic (cm ). The experimental
results are from Ref. [1]. The configuration-interaction (CI) results are from Ref. [17], and the
second-order perturbation theory results (PT-2) are from Ref. [16].

Term Expt.

H (IP) 316846
3F 3819
1G 7457
1D 14888
1I 19765
P 20133
S 47644

A~erage error (EE's)

MCDF

3696
7566

15511
23212
21402
47875

965

Relativistic
DC 2

313511
3613
7428

14375
19745
19677
46486

442

DCB 2

314162
3719
7300

14481
19461
19868
46693

364

Nonrelativistic
NRCC 2 CI

341725
4373
6454

15563
20686
20867.
49719

994

PT-2

5115
6623

18419
26725
25789
54794

4238
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are shown and compared with experiment [5] in Table V.
Agreement with experiment is again very good. , with an
average error of 206 cm without and 114 cm with the
Breit interaction, and a maximum error of 330 cm . All
levels appear in correct order. The agreement is better
than for Pr+, partly because no experimental value is
known for the So level, which contributes heavily to the
average error in the lighter atom. Possible sources of the
remaining errors are high-order @ED eff'ects, deficiencies
in the basis, and the truncation of the coupled, -cluster
expansion.

V. SUMMARY AND CONCLUSION

The relativistic open-shell coupled-cluster method was
applied to the direct calculation of ionization potentials
and excitation energies in the fz configuration of Pr+
and U+ . Sizable basis sets of four-component Gaussian
spinors were used, with highly satisfactory excitation en-
ergies and Gne-structure splittings in both atoms. The
ionization potential of Pr+ is less accurate and requires
further investigation. Inclusion of the Breit interaction
to all orders leads to significant improvement in the 6ne-
structure splittings of the two atoms and in the excitation
energies of U+ .

TABLE V. Excitation energies of U+ 5f levels (cm ).
The experimental results are from Ref. [5].

Level
II4 (IP)

3Q

H5
3Q
3Q

H6
'D2
1G
3P

Pg
1I
2P
'so
Average error

Expt.

4160.65
6136.88
8983.53
9433.76

11513.58
16465.30
16655.73
17128.16
19818.58
22276.05
24652.91

DC
380485

4084
6233
9025
9585

11711
16554
16929
17471
20145
22581
24979
46230

206

DCB
381336

4090
6029
8848
9399

11354
16407
16544
17460
20016
22319
24648
46059

114
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