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Electric-field enhancement of dielectronic recombination from a continuum of finite bandwidth
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A small electric field is shown to increase the dielectronic recombination, via autoionizing Rydberg
states, of an electron from a continuum of finite bandwidth. The continuum of finite bandwidth is a
broad autoionizing state which is part of a series converging to a higher limit, and the field enhancement
of the rate occurs because the field converts the nl Rydberg states to nk Stark states, increasing the num-

ber of contributing recombination paths. The experimental results are in excellent agreement with the
predictions of an isolated resonance approximation treatment and show clearly both the positive effect of
Stark mixing and the negative effect of field ionization on dielectronic recombination.

PACS number(s): 34.80.Kw, 32.60.+ i

I. INTRODUCTION

Dielectronic recombination (DR), the recombination of
an ion and an electron via autoionizing states, proceeds
largely through autoionizing Rydberg states [1]. For ex-
ample, in zero-field the DR of Mg+ ground-state ions
and 4.5-eV electrons proceeds via the process

Mg+3s+e —+Mg 3pnl~Mg 3snl+hv .

Since the Rydberg states play such a crucial role in DR
and they are affected by small electric fields, the DR rate
can be substantially altered by small fields, as first pointed
out by Jacobs, Davis, and Kepple [2,3]. There are two
effects of a field. First, the field converts the zero-field nl
Rydberg states to nk Stark states and redistributes the
large autoionization rates of the low-l states over the
Stark states, raising the number of participating states
and the DR rate. Second, the field ionizes the high-n
Rydberg states, reducing the DR rate. The net effect of a
field on the DR rate can be either positive or negative de-
pending on the field.

The first mentioned effect of a field was largely ignored
until Belie et al. [4] measured DR in Mg, the process of
Eq. (1), using crossed Mg+ and e beams. They ob-
served a DR signal five times larger than expected from
prior calculations [5]. In their experiment the recom-
bination took place in a magnetic field which produced a
motional electric field of 24 V/cm and the product neu-
tral Mg atoms were separated from the primary Mg+
beam by a 36-V/cm separating field downstream from the
collision region. While the negative effect of the separat-
ing field, to remove high-lying Rydberg states from the
Dr product channel, had been taken into account, the
positive effect due to the motional field's altering the au-
toionization rates had not been considered. When it was
properly taken into account the measured and observed
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DR signals were in reasonably good agreement [6].
In later experiments three values of the motional field

in the collision region were used: 3.6, 7.2, and 23.5
V/cm, while keeping the separating field at 40 V/cm to
allow a more systematic check of the effect of the field in
the collision region on DR [7—9]. These experiments
showed that the DR signal increased as the field in the
collision region was increased. Since the negative effect
of a 40-V/cm field was always present, as long as the field
in the collision region was less than 40 V/cm, increasing
it should increase the DR signal. Both the magnitude of
the observed signals and the final product Mg state distri-
butions of these systematic experiments agreed reason-
ably well with calculations of several groups, suggesting
that the understanding of DR in fields was on firm
ground [10—12].

An interesting question which the experiments and
most of the calculations have not addressed is, at what
field is the DR rate maximized, irrespective of how the
DR is observed? Calculations for DR of Mg+ and Ca+
have addressed this issue, and they show maxima in the
DR rates at fields of 1 —2 V/cm, fields an order of magni-
tude lower than used in the Mg experiments [12,13]. At
1 —2 V/cm the calculated DR rates are three times larger
than the zero-field rates, and at fields of a few hundred
V/cm the rates have decreased to the zero-field rates.

To show explicitly the effects of small fields on DR we
have examined the effects of small electric fields on DR
from a continuum of finite bandwidth [14]. All the exper-
imental parameters, such as the energy of the incident
electron and the electric field, can be carefully controlled.
The field produces an increase in the recombination rate
which we show to be in good quantitative agreement with
the calculated rates. In the following sections of this pa-
per we first review the essential notions of DR and show
the similarity between true DR and DR from a continu-
um of finite bandwidth. We then describe our experimen-
tal method, present the results, and compare our results
to theoretical predictions and the results obtained in the
Mg DR calculations.
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II. DIELECTRONIC RECOMBINATION
FROM A CONTINUUM OF FINITE

BANDWIDTH IN AN ELECTRIC FIELD

Although DR can be treated more elegantly by
quantum-defect theory [15,16], the isolated resonance ap-
proach provides a more intuitive picture, and we use it
here. As shown by Eq. (1), DR of a singly charged ion
and an electron can be envisioned as a two step process.
First an electron excites an ion and is captured by it,
forming an autoionizing state of the neutral atom. Then
the autoionizing state radiatively decays to a bound state,
completing the process. For the Ba atom, which we have
studied, dielectronic recombination of a ground-state
Ba+ ion and an electron can occur via the autoionizing
6pnd Rydberg states by a process analogous to that of Eq.
(1). Explicitly,

Ba+6s+e —+Ba 6pnd ~Ba 6snd+hv . (2)

The contribution of a particular nl autoionizing state to
the DR rate is its rate of capture of free electrons from
the Ba+ 6s continuum multiplied by the branching ratio
for Auorescence. Here n and l are the principal and orbit-
al angular momentum quantum numbers of the Rydberg
electron. Since the capture rate is proportional to the au-
toionization rate to the 6s continuum, the contribution to
the total DR rate of the nl state is given by

PI, (n l ) A ( nl )
S(nl) =

I,(nl)+I d(nl)+ A (nl)
(3)

where P is a constant and I, (nl) and I d(nl) are the au-
toionization rates of the 6pnl state to the Ba+ 6s and 5d
continua. A (nl) is the 6pnd~6snd fluorescent decay
rate. Since it is the Ba 6p ~6s decay rate with a specta-
tor electron it is a constant: A ( nl ) = A and
A =3.88X10 a.u. [17]. The total DR rate is obtained
by multiplying S(nl) by the degeneracy factor (2l+1)
and summing over n and l.

To understand how a field enhances DR we need only
know the scalings of the rates of Eq. (3). To an excellent
approximation, I,(nl) =y, (l)n and I d(nl) =yd(l)n
where y, (1) and yd(l) both decrease rapidly with I. Mak-
ing these substitutions in Eq. (3) yields

y, (l)n A
S(nl) =P

y, (l)n +yd(l)n + A
(4)

For a given value of l there is typically a value of n, ni,
for which the autoionization and radiative decay rates are
equal, i.e., I,(nt)+ I d(nl) = A. For n less than
nI, S(nl)=py, (l)A/[y, (l)+yd(l)], a constant. For n

greater than n& the DR rate is given by
S(nl)=Py, (l)n . While individual states of n )ni con-
tribute relatively little to DR, in the limit of large nI, it is
easy to show that, together, states of n )ni contribute
half as much to the DR rate as the states of n & nI. Con-
sequently, a reasonable estimate of the total DR rate of
all n states of this l is obtained by counting the states for
which I,(n1)+I d(nl)) A and multiplying by —', . If we
sum over all values of l we obtain the total DR rate, given
by

R (nd) A (nd)
R (nd)+ I"(nd)+ A (nd)

(6)

where R (nd) is the rate of transitions from the 6p&&2nd
state to the 6p3&2lld state, I (nd) is the autoionization
rate of the 6p, &2nd state to the real continua, and A (nd)
is the fluorescent decay rate of the 6p, /2nd state to the
6s, &2nd state. As before A (nd)= A. R (nd) and I (nd)
are given by R (nd)=rn and I (nd)=yn [18,19].

3PXA
2

where X is the number of states for which
I,(nl)+I'd(nl)) A. Since autoionization rates decrease
with l, as l is increased nI decreases, and for some l the
autoionization rates are always smaller than the radiative
decay rate. For this and all higher values of l the contri-
bution to the total DR rate is negligibly small.

An electric field increases the DR rate in the following
way. For many n states it is the case that low-l states
have autoionization rates far in excess of the fluorescence
rate while for high-l states the situation is reversed. In
this case the high-l states contribute little to DR. In the
presence of an electric field l is no longer a good quantum
number, although m is. The nl states of a given m are
converted to nk Stark states of the same m and the rapid
autoionization rates of the low-l states are spread more or
less evenly over all the Stark states, producing autoioni-
zation rates in excess of the fluorescent decay rates in all
the Stark states. The increased number of states with au-
toionization rates exceeding the radiative rate leads to an
increased DR rate. No states with high m have low l and
they do not contribute significantly to DR with or
without a field. In zero-field states of high l but low m do
not contribute to DR, but in a field they are converted to
Stark states and contribute to DR. The contribution of a
field to the DR rate is not entirely positive. Field ioniza-
tion cuts off the contribution of high-lying Rydberg
states. For low values of m, the quantum number cutoff
occurs at the classical ionization limit, at principal quan-
tum number n, =1/(2E'~ ).

We have investigated the electric-field enhancement of
dielectronic recombination from a continuum of finite
bandwidth, which is a broad autoionizing state degen-
erate with a Rydberg series of autoionizing states con-
verging to a lower excited state of the ion [4]. Before
considering electric-field effects we wish to show the simi-
larity of DR from a continuum of finite bandwidth to
true DR. The system we have chosen to study is shown
in Fig. 1. The broad Ba 6p3/211d state is degenerate with
the high-lying Ba 6p, /hand states and the Ba 6p&/2ed con-
tinua just above the Ba+ 6p &/2 limit. The broad
6p3/211d state plays the role of a continuum of finite
bandwidth. Ba atoms are excited to the 6p3/211d state
and electrons from this continuum of finite bandwidth in-
duce the Ba+ 6p3/2~6p»2 transition and are captured
into the 6p, /2nd states. They can then decay radiatively
to the 6s»2nd states or decay back to the 6p3/211d state
or the real 6sel or 5del' continua. The rate of radiative
decay via a 6p&/2nd state, the recombination rate, is given
by
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r
SE(nk) =

rn +yEn + A
(10)

PrA
rn +yEn + 3

PrA
4r8 +58' + A

(12)

Equation (12) is similar to Eq. (11), but there are several
important differences. First, the number of m =0 Stark
states per unit energy is n, not n . As
n~ao, dSE/dW=Pr, the same value as in zero field.
However, for lower n, where R (nk) and I (nk) exceed
A, dSE/dW in the field exceeds dS/dW in zero field, as
shown by the smooth solid line of Fig. 2. To evaluate
dSE/d W we use the measured value of yz =0.53 [21].

III. EXPERIMENTAI. APPROACH
AND OBSERVATIONS

The experiment was done by exciting Ba atoms in a
beam to the broad 6p3/211d state and measuring the
number of atoms which underwent radiative stabilization
and were left in bound 6snd Rydberg states. The number
of stabilized atoms was measured as a function of both
the precise excitation energy within the 6@3/211d state
and the applied electric field.

Using the isolated core excitation approach shown in
Fig. 1 we excited the Ba atoms using three 5-ns dye lasers
which were pumped by the third harmonic of a 9-ns Q-
switched Nd:YAG laser. The bandwidth of the third
laser, which drove the Ba+ 6s&/2 to 6p3/2 transition, was
0.38 cm '. The relative frequency of the third laser was
measured using an etalon and the absolute frequency was
measured by matching the low-n data, where the 6p, /2nd
Rdyberg states could be clearly resolved, to the known
positions of the 6p, /2nd states, which have a quantum de-

fect of 2.75. The three lasers used in the excitation were
overlapped and crossed an effusive beam of Ba atoms in
the interaction region between two capacitor plates

To compare our experimental results to the DR rates
per state of Eqs. (7) and (10) we first convert them to DR
rates per unit energy. Explicitly, Eq. (7) becomes

dS dn 13rA

rn '+yn '+ A

where we have used for the number of states per unit en-
ergy dn /d W = n . Using these scalings, as
n ~ ao, dS/d W~I3r and this sets the experimental
scale. For small n, dS/dW =13m /[r +y(d)]
=Pr(2W) ~ . To evaluate Eq. (11) we use the experi-
mentally determined values r =0.05 and
y=0.05 [18,19,22] and in Fig. 2 we show plots of
dS/niW as broken lines.

We need to develop the analog of Eq. (11) for the case
in which there is a field present. We assume complete
Stark mixing of all levels of a given m and ignore field
ionization. With these approximations we can write the
electric-field analog of Eq. (11) for m =0 as

dSE
=S(nk)

spaced by 1.1 cm. Typically the lasers were polarized
parallel to the electric field, but we observed no effect
upon rotating the polarizations, suggesting that for m ~ 2
the results are independent of m, as suggested in the
preceding section. Approximately 100 ns after the laser
pulses a 95-V pulse was applied to the capacitor plates to
field ionize any high Rydberg states produced by the sta-
bilization process. A screen mesh in the top plate al-
lowed the passage of electrons which were then detected
by a pair of microchannel plates. The data were taken by
recording the field ionization signal as the wavelength of
the third laser was swept with the static field held con-
stant.

The data shown in Fig. 2 were obtained by scanning
the third laser over that part of the 6p3/211d state which
overlaps in energy the high-lying 6p&/2nd states for nomi-
nal static fields of 0, 2.73, 4.55, and 9.1 V/cm. In the
figure, the stabilization signals are plotted versus the
binding energy of the 6p, /znd states. All of the experi-
mental signals of Fig. 2 are normalized to the same scale,
with the normalization point being the 4.55-V/cm trace
between binding energies of 15 and 25 cm '. We use the
convention that binding energies are positive. Note that
the vertical scales are expanded for higher electric fields
and that there is more stabilization signal at low fields
than at high fields.

The broken line is the stabilization per unit energy in
zero field calculated using Eq. (11). The smooth solid line
is the stabilization per unit energy, assuming complete
Stark mixing and ignoring field ionization, calculated
from Eq. (12). The arrows are at the binding energy
W~=(3E) /2, the Inglis-Teller limit, where the m =0
Stark manifolds of adjacent n overlap and Stark mixing
of low-l states with large quantum defects should be com-
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FIG. 3. The field ionization signal versus tuning of the third
laser relative to the 6p&/z ionization limit is shown for (a) 0, (b)
2.73, (c) 9.1 V/cm. In (a), the zero-field case, the positions of
the nd states are evident. In (b), with 2.73 V/cm, the positions
of the resonances are shifted, with the amount of shift depen-
dent on n. In (c), with 9.1 V/cm, the broad structures are the
Stark manifolds. The upper smooth curve ( ) is the calcu-
lated Stark mixed recombination signal and the lower smooth
curve ( ———) is the calculated zero-field recombination sig-
nal.



2160 J. G. STORY, B.J. LYONS, AND T. F. GALLAGHER 51

piete. For all nonzero applied fields and binding energies
less than the classical field ionization limit 8'c=2&E,
there are no stable Rydberg states due to field ionization
and there is no stabilization signal. For binding energies
greater than 8'c but less than 8'~, the stabilization signal
falls on the calculated Stark mixed curve, and as the
binding energy is further increased the signal drops to the
calculated zero-field stabilization curve. The nominal
zero-field signal does not fall on the calculated zero-field
curve. Between the binding energies of 5 and 15 cm ' it
lies on the Stark mixed curve, due to stray fields. At
smaller binding energies it is cut off, due to field ioniza-
tion, and at a binding energy of 18 cm ' it has fallen
halfway to the zero-field curve. These energies are con-
sistent with a stray field of 0.7 V/cm.

The data of Fig. 2 show clearly that, as predicted
[2,12], even small fields significantly increase the DR rate.
Recording the data with higher resolution shows that it is
the conversion of the zero-field nl states to nk Stark states
which is responsible for the increase. In Fig. 3 we show
high-resolution scans of the third laser over the range of
binding energy from 34 to 46 cm ', which corresponds
to n =52 to 60, for applied fields of 0.0, 2.73, and 9.1

V/cm. Over this range the zero-field data are virtually
unaffected by stray electric fields. In Fig. 3(a) the zero-
field 6p»2nd states are clearly visible and the data lie
near the calculated zero-field curve. With a field of 2.73
V/cm at high binding energies the spectral features are
still near the zero-field 6p, &2nd features of Fig. 3(a), but
at low binding energy the observed structure shows the
evolution to Stark manifolds and the data lie significantly
above the calculated zero-field curve. Finally, at 9.1

V/cm the spectrum has evolved into a Stark spectrum, in
which only outlines of the entire manifolds can be dis-
cerned and the signal level approaches the calculated
Stark mixed curve.

In Fig. 2 all the experimental traces but the zero-field
one, which is affected by stray fields, are in excellent
agreement with the calculated curves. By integrating the
calculated curves we can determine the total DR rate vs
field. We integrate Eq. (12) from the classical ionization

2.5

2.0

1.5
C3

1.0

0.5—

limit 8'c to the Inglis-Teller limit 8~ where the experi-
mental signals fall halfway between the Stark mixed and
zero-field curves. For larger binding energies we in-
tegrate Eq. (11), the zero-field rate. Explicitly,

PrWZW Prod&
E ~w ~4

E
~4~c rn +@En +A ~i rn +yn +A

(13)

For E=0 only the second integral contributes. Figure 4
is a plot of Sz/So which shows explicitly the enhance-
ment of the total DR rate by the field. The maximum
enhancement is a factor of 2.2 and occurs at 0.3 V/cm.
The experimental values, obtained by integrating the sig-
nals, are also plotted. The normalization point is the
4.55-V/cm field data as in Fig. 2. The nominal zero-field
point is plotted at 0.7 V/cm, the stray field inferred from
Fig. 2. As shown, the data are in good agreement with
the calculated values.

IV. DISCUSSIQN AND CQNCLUSIQN

It is useful to compare our results to those previously
obtained for Mg, where theory and experiment are in
reasonably good accord in their region of overlap. Un-
fortunately, we cannot compare our results directly to the
experimental results because of the large separating field.
We can, however, compare them to the Mg calculations.
The enhancement factors calculated for Mg at 1, 5, 20,
and 100 V/cm are 2.9, 2.4, 2.1, and 1.5 [12]. Although
the field values are too far apart to locate accurately the
maximum in the calculated enhancement factor, it is
clear that the maximum value is approximately 3 and
occurs at a field of approximately 1 V/cm. These results
are quite close to ours, a maximum enhancement factor
of 2.2 at 0.3 V/cm. Considering that the calculations are
done for Mg, not Ba, and that in the Mg calculation the
incoming electron is not constrained to be a d wave, we
feel the argument is excellent. There is a significant
difference though; the calculated Mg enhancement factor
falls much more slowly with field than the values we have
measured in Ba. Since lower-n states contribute more
heavily at higher fields, we suspect that at least some of
the discrepancy between our results and the Mg calcula-
tion is due to the finite bandwidth of our continuum,
which excludes low-lying states.

The experimental results presented here show clearly
both of the anticipated effects of electric fields on DR, the
suppression of DR at high n by field ionization, and the
enhancement of DR at low n due to stark mixing. Due to
the competition between these two e8'ects there exists a
nonzero field at which there is a maximum DR rate. Fur-
ther, the analysis of these experiments demonstrates that
isolated resonance theories of DR in fields give quantita-
tively useful predictions.

0 0 i 1 I I I I I I I i I I I i I I i i

0 2 4 6 8 'I 0
Electric Field (V/cm)

FIG. 4. Calculated and observed enhancement ratio SE/So
vs applied field. The nominal zero-field point is plotted at 0.7
V/cm to account for the presence of stray fields.
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