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Quantum Monte Carlo determination of the lithium 2 S = 2 I' oscillator strength:
Higher precision
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We employ a quantum Monte Carlo method for the oscillator strength to the computation of the con-
troversial 2 S—+2 P transition of the Li atom. We use simple trial functions that are optimized for ac-
curacy in coordinate expectation values as we11 as the energy. We obtain an oscillator strength of
0.7431(6), in very good agreement with the experimental value of 0.7416(12) [A. Gaupp, P. Kuske, and
H. J. Andra, Phys. Rev. A 26, 3351 (1982)]. The precision obtained here, an order of magnitude greater
than that of our previous value [R. N. Barnett, P. J. Reynolds, and W. A. Lester, Jr. , Int. J. Quantum
Chem. 42, 837 (1992)] shows that the quantum Monte Carlo oscillator strength unambiguously supports
the experimental value over recent theoretical values.

PACS number(s): 32.70.Cs, 03.65.Ge, 02.70.Lq, 31.15.Ar

I. INTRODUCTION

Accurate calculation of the oscillator strength has
proved difficult because of the need for highly sophisti-
cated correlated wave functions [1]. Wave functions that
yield excellent energies typically yield oscillator strengths
of lower quality. This presents a special difficulty because
wave functions are generally obtained by optimizing the
energy expectation value. An excellent example of the
difficulty facing theoretical approaches is the computa-
tion of the oscillator strength of the 2 S~2 P transition
in lithium atom. A very precise experimental determina-
tion has been obtained [2], and recently a number of
highly correlated theoretical calculations have been per-
formed [3—6]. Despite these efforts, a sizable discrepancy
between recent theoretical and experimental values per-
sists. An exception to this disagreement can be found in
the quantum Monte Carlo (QMC) computation of the os-
cillator strength by Barnett, Reynolds, and Lester [7]. In
this study, excellent agreement between the mean of the
QMC oscillator strength and experiment was obtained.
The large statistical uncertainty of the computation, how-
ever, precluded critical comparison. A more precise
QMC value could contribute substantively to understand-
ing the requirements for the computation of accurate os-
cillator strengths.

The QMC method [8], in general, differs fundamentally
from the variational and perturbative expansion methods
referred to above. To obtain a transition dipole moment
or an oscillator strength, the QMC approach we intro-
duced to compute single-state expectation values of coor-
dinate operators [9] is modified to compute two-state ex-
pectation values [10]. One advantage of the QMC
method is that computed values, depending on1y on the
nodes of a trial wave function, are much less sensitive to
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the one- and X-particle expansions of the trial functions.
It is also significant that QMC solutions are eigenfunc-
tions of the Hamiltonian, a property that enforces local
accuracy. The QMC solution is accurate in regions that
can be of lesser importance for the determination of the
energy, but may be crucial for obtaining an oscillator
strength of high quality.

In our earlier study [7], agreement with the experimen-
tal value was suggested, but it was not conclusive. Here
we introduce a modified approach to the computation of
QMC oscillator strengths. This approach makes possible
higher precision in order to provide further insight into
this discrepancy between experiment and other recently
computed oscillator strengths of high accuracy for the
subject transition. Section II summarizes the method fol-
lowed for the calculations reported here. (A thorough
discussion of the approach is given in Ref. [10].) Section
III presents our results and compares them with experi-
mental and recent ab initio values. Section IV contains
our conclusions.

II. QMC COMPUTATION
OF THE OSCILLATOR STRENGTH

Energies are readily computed by QMC methods. (The
algorithm we employ for this purpose is given in detail by
Reynolds et al. [8b].) For the energy, only the distribu-
tion O'TP is needed; 'PT is a trial function describing the
desired state and P is the corresponding eigenfunction.
To compute a transition moment or oscillator strength
requires the distribution (b, (t 2. Here this is accomplished
by employing a variational Monte Carlo (VMC) walk
with QMC side walks [10]. The VMC walk samples the
distribution ~%'s ~, and the QMC walks, which begin with
points sampled from the VMC distribution, sample
values of P, /VT and (b2/VT . The result is that the

1 2

length form of the transition dipole moment can be com-
puted as an average over the guiding function

~
4 ~, and

takes the form
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(4i X' 6)
%r gr;%r

dR . (1)

The choice of the guiding function, 0, is dictated by the
need to sample values of P/%z for both states. An obvi-
ous (and useful) choice is

(2)

where we have set c& =c2 in the calculations described
below. Alternative choices of c, and c2 are useful when
one of the states is slowly convergent.

To evaluate Eq. (1), we sample the ratio P(R)/0'z. (R)
by sampling the function

P ( R, t ) = exp [ t (E —Ez ) ] (—P ~
+z. )P( R) /+ r (R ), (3)

where t is the propagation time of the QMC side walk, E
is the QMC energy, and Ez is a reference energy chosen
close to E to minimize the time dependence of P. For
sufficiently large t, P (R, t ) is the number of walkers origi-
nating from the point R after propagation by a QMC al-
gorithm for imaginary time t. If one value of P is sam-
pled for each value of R, the time dependence and the
overlap integral must be explicitly computed during the
QMC side walk. Alternatively, if two values of P(R, t)
are sampled, the product of the time dependence and the
overlap integral can be computed from an average con-
taining products of each pair of values of P. We comput-
ed the transition dipole moment based on both single and
double samplings of P. This contrasts with our previous
study, in which only a single sampling was used [7]. (See
Ref. [10] for further discussion. ) In addition, the product
of two independent samplings of P yields an unbiased es-
timate of ~P/%r ~, while the square of a single sampling
does not. Therefore, this product can be used to compute
exact single-state expectation values, e.g. , (P~r ~P) [10].
Here we have used products of P to compute expectation
values of r and r over

~ P ~

for each state.
Trial and guiding functions have essential roles in this

approach. The trial functions +z- and II&- are chosen to
1 2

describe the desired eigenstates. For each state, we
choose %z =QS, where g is a Slater determinant and S is
a correlation function explicitly dependent on electron-
electron and electron-nucleus distances. We selected
Weiss's basis set of near-Hartree-Fock quality which, as
constructed, leads to 4 satisfying the electron-nucleus
cusp condition exactly [11]. This is highly desirable be-
cause it greatly reduces time-step bias in the QMC walks.
The correlation function S was chosen to have the form

ar;.
S=exp 1+br,"

where r;J and r, are electron-electron and electron-
nucleus separations, respectively; and a, b, A, , and v are
parameters. Since the electron-electron factor of Eq. (4),
first term, expands the density well beyond that of the

determinant alone, it is desirable to have a factor that
moderates this effect, a purpose served by the second,
electron-nucleus, term of Eq. (4). The latter term is quad-

ratic, as opposed to linear, so that the cusp condition, ex-

actly met by Weiss's basis set, remains satisfied.
The parameter a of Eq. (4) was set to 0.5 to satisfy the

electron-electron cusp condition (for electrons of opposite
spin). The remaining parameters were optimized, by
hand, to minimize the energy with the constraint that the
trial function expectation values ( r ) and ( r ) remain
close to our estimates of the exact values of these quanti-
ties. These estimates, or target values, were taken from
our previous calculation [7]. The parameter values deter-
mined were A, =0. 1 and v = 5 for both states, and
b( S ) =2 and b( P ) =2.2. In general, estimates of expec-
tation values over ~P~, for purposes of obtaining target
values, are readily obtained in single-state calculations.
In selecting the parameters, we found A, and v to have lit-
tle effect on the energy, but to play a crucial role in ob-
taining good values for ( r ) and ( r ).

The results of our previous calculations implied that
convergence of the transition dipole moment correlated
with convergence of ( r ) and ( r ) for each state. We
found that long QMC side walks were required to obtain
converged values of these quantities because the trial
functions, which lacked an electron-nucleus factor in S,
yielded VMC expectation values that were quite large.
We suspected that obtaining reasonable VMC values of
( r ) and ( r ) for each state would increase the conver-
gence rate of these quantities and the transition dipole
moment in the QMC side walks.

III. RKSUI.TS AND DISCUSSION

After optimizing trial function parameters with short
VMC runs, we then performed larger VMC calculations
for each state. Table I presents VMC results for the ener-

gy, ( r ), and ( r ), and compares these with our previous
calculation. For ( r ) and ( r ), Table I shows that
agreement with target values is now very good. In addi-
tion, the presence of the electron-nucleus correlation
function, while not greatly affecting the energy, allows
more ffexibility in choosing b [see Eq. (4)], which results
in a lower energy.

Table I also lists QMC energies (computed following
the single-state algorithm of Ref. [8b]), and coordinate
expectation values for each state (obtained following the
procedure of Ref. [10]). The earlier QMC results of Bar-
nett, Reynolds, and Lester [7] are in good accord with
those computed here. The current QMC energies have
been obtained by extrapolation to zero time step (r), and
all quantities now possess much greater precision. In ad-
dition to obtaining an unbiased estimate, extrapolation to
&=0 is useful in ascertaining bias for nonzero w. In
single-state calculations, we found that the time step used
in the QMC side walks (0.010 hartree ') gave very little
bias in the energy and no bias in the coordinate expecta-
tion values, even for the largest time step employed
(0.030 for the ground state and 0.025 hartree ' for the
excited state).

The extrapolated QMC energies are in excellent agree-
ment with estimated exact nonrelativistic Born-
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TABLE I. Single-state expectation values. QMC coordinate
expectation values are estimates of ( P ~

A
~ P ), A = r, or r .

—E(hartree ') (r) (bohr) (r ) (bohr )

TABLE II. Oscillator strengths for the 2 S—+2 P transition
of Li.

Recent ab initio

Previous VMC'
Current VMC
Target
Previous QMC'
Current QMC
Hylleraas [13]
CI [4]
Hylleraas [15]
Hylleraas-CI [5]
Hylleraas [12]
Estimated exact [12]

2 S
7.4506(10)
7.4608(01)

7.478 09(24)
7.478 00(10)
7.478 059
7.477 88
7.478 059 5
7.478 060 1

7.478 060 3
7.478 060 3

1.6811(18)
1.6670(05)
1.6610
1.6610(66)
1.6604(05)
1.6632

6.247(14)
6.087(04)
6.104
6.104(63)
6.083(04)
6.118

MBPT [3]
CI [4]
MCHF [6]
Hylleraas-Cl [5]
Previous VMC [7]
Previous QMC [7]

VMC
QMC t=2.04
QMC t=3.04
QMC t =2.04 Two P
QMC t =3.04 Two P

This work

0.7467
0.7478
0.7473
0.7470
0.780(4)
0.7419(69)

0.7488(6)
0.7433(7)
0.7431(7)
0.7436(6)
0.7431(6)

Previous VMC'
Current VMC
Target
Previous QMC'
Current QMC
CI [4]
Hylleraas-CI [5]
Estimated exact

2 P
7.3865(10)
7.3915(01)

7.410 31(22)
7.41001(10)
7.409 97
7.410 155 4

[14] 7.410 16

1.9980(40)
1.9499(08)
1.9510
1.951(10)
1.9468(8)

9.703(45)
9.141(12)
9.210
9.21(12)
9.170(12)

'Reference 7; for (r) and (r ), t=30 hartree ' values are em-
ployed.

Oppenheimer energies [12,14]. For the ground state,
99.9(2)% of the correlation energy is obtained (the num-
ber in parentheses is one standard deviation of the mean),
and for the excited state 99.7(2)% is recovered. While
the precision in the QMC energies is quite good, it is not
at the level of recent expansion approaches, cf. Table I;
we have uncertainty in the fourth decimal place. Howev-
er, these are very accurate energies. There are further
steps that can be taken to improve the precision of the
QMC energy. However, for computing a transition di-
pole moment of high quality, this is not necessary.

Because of the improved efficiency gained from these
trial functions, much higher precision in ( r ) and (r ) is
obtained. Interestingly, this large increase in precision
reveals values of ( r ) and ( r ) that are slightly smaller
than those estimated from large basis set expansion
methods. Unfortunately, estimates of (r) and (r ) have
not been reported in recent calculations of the excited
state. We also computed (z ) for the excited state and
obtained a QMC value for the quadrupole moment of
10.64(3) bohr, and note that it is slightly smaller than Pi-
pin and Bishop's 10.82 bohr [5].

Table II presents VMC and QMC oscillator strengths
computed using the estimated exact energy difference of
0.06790. The current VMC oscillator strength is seen to
be substantially improved over our previous VMC value,
even though the trial functions were not optimized for
this quantity. In addition, the current VMC is in good
agreement with the recent theoretical values in Table II.
Therefore, the trial functions used here give an excellent
starting point for shedding light on the discrepancy be-
tween theory and experiment.

Laser excitation [16]
Laser excitation [2]

Experimental
0.7435(55)
0.7416(12)

We performed two computations of the QMC transi-
tion dipole moment; the convergence times (t) were 2.04
and 3.04 hartree '. For each computation, the transition
dipole moment was evaluated at several I; values, and we
found rapid convergence of the transition dipole moment
with little change occurring after 1.64 hartree '. The
convergence times for each state were about 2 hartree
a factor of 5 less than previously necessary [7]. The
shorter convergence times increased efficiency in two
ways: first, the QMC side walks, where most of the
effort is concentrated, were much shorter; and, second,
the correlation between the VMC and QMC transition di-
pole moments, which were computed simultaneously, was
larger.

Table II gives oscillator strengths that resulted from
the two convergence times. For each convergence time,
the two entries are distinguished by whether an average
or a product of the two values of I' sampled for each
point is used in computing the time dependence and over-
lap integral that enter into P; see Eq. (3). The consisten-
cy among the computed values is excellent. In addition,
for the 3.04-hartree ' computation, the differences be-
tween VMC and QMC transition dipole moments were
unchanged after 2 hartree '. Of equal significance is the
large reduction in the statistical error. More than an
order-of-magnitude decrease, compared to the previous
statistical error of 0.0069, has been obtained without a
large increase in computational effort. Finally, the
present oscillator strength of 0.7431(6) unequivocally sup-
ports the experimental value of 0.7416(12).

While the agreement with experiment is excellent, the
present high precision precludes concordance with other
recent high accuracy theoretical values that are in very
good agreement with each other. Among these recent
theoretical studies, the calculations of Weiss [4] are in-
structive because he examined the dependence of the os-
cillator strength on basis set size and degree of correla-
tion. Three types of correlation were studied: single and
double excitations, to describe intershell and intrashell
correlations, and selected triple excitations. For each of
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these, basis sets of up to 1=6 were employed and appear
to be exhaustive since no significant differences were ob-
served beyond l=3. However, the effect of the type of
correlation is noticeable. Adding selected triple excita-
tions to the wave function yielded a decrease in the oscil-
lator strength of 0.0019 to 0.7478. Furthermore, the
discrepancy between the length and velocity forms of the
oscillator strength increased from 0.0008 to 0.0020. Note
that a change in the oscillator strength would have to be
four times larger than the decrease caused by the selected
triple excitations to give agreement with the upper bound
of the experiment. In addition, the triples that are in-
cluded bring the ionization energy to within 3 cm ' of
experiment. On this basis, better agreement with experi-
ment, or QMC, upon including more triple excitations
appears unlikely. However, such improvement cannot be
ruled out, especially if an energy, or energy difference, is
a poor indicator of the convergence of the oscillator
strength. It would be interesting to know the fraction of
triple excitations included by Weiss.

The results presented by Weiss are nearly conclusive in
isolating which improvements to the wave function are
required if better agreement with experiment and QMC is
possible. The other recent theoretical studies, sometimes
of impressive accuracy for single-state quantities [5], do
not present an analysis of the kind given by Weiss [4].
However, some comparison between QMC and the basis-
set-expansion approaches is useful. In the latter methods,
wave-function parameters are chosen dominantly on the
basis of energy optimization. Wave-function accuracy is
lower in regions where contributions to the energy are
less important. This holds regardless of basis set size. Fi-
nally, convergence of the energy, or other single-state
quantities, as a measure of such accuracy can be mislead-

ing. (Unfortunately, as noted by Weiss [4], even the con-
vergence behavior of computed oscillator strengths may
also be misleading. )

The QMC method precedes quite differently. The
QMC solution, an eigenfunction of the Hamiltonian, is
determined in the approach used here by the nodes of the
trial function employed. Within this constraint, a11 re-
gions of space are treated equally and exactly. This is in
contrast to expansion methods that approximate an
eigenfunction, albeit one not constrained by nodal bound-
ary conditions, to varying accuracy depending on the
contribution to the energy.

IV. CONCLUSIONS

Calculations of the oscillator strength for the
Li 2 S~2 I' transition have been performed. Faster con-
vergence in QMC side walks, achieved by improving
single-state coordinate expectation values through simple
improvements in the trial function, yields an oscillator
strength that agrees with, and is more precise than, ex-
periment. Statistical error has been reduced by an order
of magnitude with the result that, while agreement with
experiment is maintained, agreement with other recent ab
initio approaches is not found.
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