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Exact exchange-correlation potential and approximate exchange potential
in terms of density matrices
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An exact expression in terms of density matrices (DMs) is derived for hF [n]/hn(r), the functional
derivative of the Hohenberg-Kohn functional. The derivation starts from the differential form of the
virial theorem, obtained here for an electron system with arbitrary interactions, and leads to an
expression taking the form of an integral over a path that can be chosen arbitrarily. After applying
this approach to the equivalent system of noninteracting electrons (Slater-Kohu-Sham scheme) and
combining the corresponding result with the previous one, an exact expression for the exchange-
correlation potential v„,(r) is obtained which is analogous in character to that for 6F[n]/bn(r),
but involving, besides the interacting-system DMs, also the noninteracting DMs. Equating the
former DMs to the latter ones, we reduce the result for the exact v„,(r) to that for an approximate
exchange-only potential v„(r). This leads naturally to the Harbola-Sahni exchange-only potential.

PACS number(s): 31.15.Ew, 71.10.+x, 31.25.—v, 71.45.Gm

I. INTRODUCTION

Starting with the Thomas-Fermi theory [1—3], ex-
tended later by Dirac [4], in which the ground-state en-
ergy E of a heavy atom of atomic number Z can be writ-
ten quite explicitly in terms of the electron density n(r)
and the nuclear potential energy v(r) = Z/r (we u—se
atomic units throughout), much attention has been de-
voted to the functional

E)n) = Fin) + jd'en(r)v(r),

hF [n]
)M = + v(r). (1.2)

following the formal existence theorem of Hohenberg and
Kohn [5]. In Eq. (1.1), v(r) denotes the external poten-
tial acting on an electron (e.g. , due to all nuclei of the
system). Exact knowledge of F[n] is clearly equivalent to
the complete solution of the many-body problem, which
still seems a long way off. But if we accept such (formal)
knowledge, then the ground-state density itself is to be
determined &om the minimization of E[n] with respect
to the electron density n(r) normalized to the total num-
ber N of electrons in the system under discussion, which
yields

F[n] = T, [n]+ E„[n]+E„.[n],

where T, [n] is the kinetic-energy functional of a
noninteracting-electron system, while E„[n] is the clas-
sical electrostatic energy of the electronic cloud of den-
sity n(r). What remains on the right-hand side of Eq.
(1.3) is the so-called exchange-correlation energy func-
tional E„,[n]. In this case, the single Eq. (1.2) is replaced
by a system of N single-particle Schrodinger equations:
the SKS equations

(1.4)

in which the effective one-body potential is

v, (r) = v(r) + v„(r) + v„,(r) . (1.5)

Here, the electrostatic potential is given by

bE„[n] s, n(r')
hn(r) ]

r —r'] ' (1 6)

and the exchange-correlation potential by

the Slater-Kohn-Sham (SKS) scheme is applied [7,8]. In.
essence then, F[n] is decomposed as

Though, as already stressed, F[n] is not presently
known, many approximations have been proposed: see,
for example, the book by Parr and Yang [6]. However,
the exact expression for hF[n]/hn(r) (or, at least, a good
approximation to it) rather than F[n] itself is necessary
to solve Eq. (1.2).

Usually, in order to provide a high accuracy for the
dominant contribution to F[n] —the kinetic energy—

(1.7)

Therefore, in this approach, one requires, ideally, exact
expressions for, or in practice good approximations to,
E„, and v„, (see, for instance, Parr and Yang [6]; Har-
bola and Sahni [9]). It is noteworthy in this context
that a number of exact relations concerning E, and v,
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have been established [10—12). These can be very useful
for testing approximations, and constructing refinements
where necessary, for these quantities E„and v„,.

In the present paper, which is also a contribution in the
field of the investigations referred to immediately above,
the following aims are realized:

(i) An exact expression for bE[n]/bn(r) is obtained in
terms of first- and second-order density matrices, by em-
ploying the di8'erential virial theorem for interacting elec-
trons (the derivation being given in Appendix A).

(ii) v„,(r) is then obtained in exact form by applying
the result (i) above together with the analogous result
for the equivalent noninteracting system (SKS scheine).

The results (i) and (ii) are somewhat formal, but they
will become useful in practice if some controlled approx-
imations for the necessary density matrices can be in-
serted. We shall also employ the results (i) and (ii) to
obtain an approximation for the exchange-only poten-
tial, replacing density matrices of the interacting system
by the corresponding matrices of the equivalent nonin-
teracting system in the exact relation for the exchange-
correlation potential. This substitution not only simpli-
fies the theory significantly, but also removes difhculties
with matrices of higher than first order, since all other
matrices can then be expressed in terms of the first-order
density matrix. In this way an approximation to v„(r) is
obtained &om (ii).

The outline of the present paper is then as follows.
In Sec. II, immediately below, the aims (i) and (ii) are
realized and followed by approximations. In Sec. III some
properties of the approximate v„(r) and Harbola-Sahni
conjecture on v„,(r) are studied, while Sec. IV constitutes
a summary, together with proposals for possible future
studies. In Appendix A the derivation of the differential
virial theorem is given.

II. POTENTIALS VIA DIFFERENTIAL VIRIAL
THEOREM

In application to real atoms and molecules we have

u(r, r') = 1/) r —r'),

v(r) =)
(for a molecule characterized by M nuclei of charge Z~,
placed at fixed positions R~). But for all general consid-
erations we do not assume these narrowing specifications
(2.5) and (2.6).

Let 4(xi, . . . , xiv) be a normalized eigenfunction
(ground- or excited-state one) of the Schrodinger equa-
tion

(2.7)

where the notation x; = (r;, s;) for ith space and spin co-
ordinate is adopted. Then the Nth-order density matrix
(DM) generated by @ is just the following product:

C I
'Yiv (xi, . . . , Xiv, xi, . . . , Xiv )

= @(xi, . . . , xiv) 4'(x'„. . . , x'N ), (2.8)

while the pth-order reduced DM (for p ( N) is defined in
terms of p~ by integrating out the (N —p) coordinates
(see, e.g. , [6])

&Nb
'Yp(xi) ~ ~ ) xp) xi) ~ ~ ~ ) xp) l l dxp+i ' ' dxN 'YN ~

(&)
{2.9)

Here f dx; means integration f d r, and summation over
si together with the replacement of x,'. by xi in the inte-
grand. The corresponding spinless DM is

Ipp(ri). . . , 1'p', ri, . . . , rp)

A. Density matrices and the kinetic-energy ckensity
tensor 81 y ~ ~ i8p

Vp(xl& xp~ x1~ . .
~
x )p) (2.10)

We consider an N-electron system characterized by the
Hamiltonian

while the diagonal elements of spinless DMs are denoted

np(ri, . . . , r„) = pp(ri). . . , rp ii ip) & 0 (2.11)

(2.1)

with the kinetic energy, electron-electron (e-e) repulsion,
and electron-nucleus (e-n) attraction energy operators,
respectively, defined as

The subscript "1" can be omitted. The basic quantity—electron number density —is thus n(r) = ni (r) =
pi(r; r).

We define the kinetic-energy density tensor in terms of
the DM p as

N
f-=) (2.2)

t p(r; [p])

N —1 N

U = ) ) u(r, , r~), u(rz, r, ) = u(r;, r~), (2.3)
i =1 j=i+1

o' o'„+, „ I

S(r' r")
4 (BP~OTp OTp8f'~ )

(2.12)
N

V=) v(r). (2 4) This is a real, symmetric tensor, the trace of which is the
non-negative kinetic-energy density (scalar)
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t(r) =) t (r) &O,

leading to the global kinetic energy

T= d rtr

(2.13)

(2.14)

But p2 mentioned above can be obtained by reduction
[via Eqs. (2.9) and (2.10)] of the so-called ensemble-state
density matrix I'N, describing a system in a mixed state,
rather than by reduction of pN, Eq. (2.8), describing a
system in the pure state (see, e.g. , Parr and Yang [6]).
This I'N is defined by

l N = ) pi'YN
(i) (2.2o)

B. Exact expression for bE[n]/8n(r)

Exact ezpreeeion for the gradient of the external
potential

where pN corresponds to 4('l, according to Eq. (2.8).
To summarize the above, the exact relation (2.15)

holds not only for pure-state density matrices, but also
for ensemble-state matrices.

The differential virial theorem derived in Appendix A,
Eq. (A7), can be rewritten as g. Path integr-al form of the egternal potential v(r)

Vv(r) = —f(r; [u, n, p, n2]),

where

f(r; [u, n, p, nq])

(2.15) Equation (2.15) may be viewed as a differential equa-
tion for the potential v(r). Because f(r) = —Vv(r), the
force field f(r) is conservative. Therefore, it follows that
the potential at point ro, say, is the work done in bring-
ing an electron kom infinity to ro against the force Beld
f(r):

—4VV nr +zr; p
&0

v(rp) = — dr . f(r) . (2.21)

+2 dr' Vurr' n2rr' nr (2.16)

The vector field z introduced above, related to the
kinetic-energy density tensor via

0

p
'" (2.17)

(i)
p2 = g pip2 (2.is)

where the probabilities p; satisfy conditions

(2.i9)

is a combination of derivatives of DM p(r'; r") [see Eq.
(2.12)] evaluated at the diagonal r' = r" = r, so z can
be called a "local" functional of p.

Equation (2.15) represents an exact relation between
the gradient of the e npotenti-al v(r), the e-e interaction
potential u(r, r'), and the DMs n(r), p(r; r'), n2(r, r'),
generated by some eigenfunction 4' of the Hamiltonian
'R constructed of these potentials; see Eqs. (2.1)—(2.4).
It should be noted that no assumption concerning the
degeneracy of the system state 4 is involved in obtaining
Eq. (2.15). Also, the actual number of electrons N does
not appear explicitly in Eqs. (2.15) and (2.16). The
equation obtained &om Eq. (2.15) by multiplying both
sides by n(r), depends on DMs linearly. Therefore the
relation (2.15) reinains true if the DM p2 (from which
n, p, and n2 are derivable) is replaced by a "mixture" of
pure-state matrices p&

~ (i).

Since f(r) is conservative, the value of the line integral
in Eq. (2.21) does not depend on the path of integration
chosen. Note that Eq. (2.21) has been written such that
v(oo) = 0: a standard choice of gauge for the potential.

Finally, using the Euler-Lagrange equation (1.2) of the
density-functional theory, we can reinterpret Eq. (2.21)
as

= p, y dr . f(r; [u, n, p, n2]) .bE[n)
hn ro

(2.22)

C. Exact expression for v„(r)

In this section, in order to have the exchange-
correlation potential uniquely defined, we assume that:
(i) The original N-interacting electron system is in
its ground state. (ii) The electron density of this
state possesses the property that it is noninteracting v-
representable (see, e.g. , Ref. 6]). (iii) The ground state
of the equivalent SKS scheme [a system of N noninteract-
ing electrons moving in the external potential v, (r), Eq.

The presence of an arbitrary constant p is connected with
the fact that the functional derivative on the left-hand
side of Eq. (2.22) is defined only for variations conserving
the total number of electrons.

Equation (2.22) together with Eq. (2.16) represents
an exact expression for b'I" /bn in terms of the e-e inter-
action potential u(r, r') and three objects n, p, n2 deriv-
able Rom the DM p2. All remarks on the possible origin
of p2 or its construction, mad. e in the preceding section,
apply also to the relation (2.22).
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(1.5)], is nondegenerate and has the same density n(r)
as the system in (i). Then the wave function of equiva-
lent system in (iii), 4, (xi, . . . , xiv), is a Slater determi-
nant constructed of the % lowest-energy orbitals P;(x),
the eigenfunctions of the SKS Eq. (1.4). The DMs and
their diagonal elements, generated &om 4„will be dis-
tinguished (from DMs generated by 4) by a superscript

)) ~ 8 Ss; e.g. , n2, p, etc.
We can apply the result (2.15) to case (iii) and obtain

obviously

But, using an analogue of Eq. (1.6) in which the Coulom-
bic interaction, Eq. (2.5), is replaced by a general u, we
have

Wv„(r) = f d r' Vu(r, r')u(r') . (2.26)

subtract Eq. (2.15) from Eq. (2.23) to obtain

V'(v„(r) + v„,(r) ) = f(r; [u, n, p, n2]) —f, (r; [n, p']) .

(2.25)

V'v, (r) = -f, (r; [n, p']), (2.23)

where

f, (r; [n, p']) = (—4V'V' n(r) + z(r; [p']) j/n(r) . (2.24)

Now, keeping in mind the decomposition (1.5) of v„we

V'v„, (r) = —f„,(r; [u, n, p', p, n2]), (2.27)

with

After subtracting Eq. (2.26) from Eq. (2.25) we arrive
finally at the result

f, (r;( u pu', puz]) = (z(r;(p']) —z(r;(p]) + f d r'(Wu(r r')](u(r)u(r') —2 (ruzr')]) u(r) (2.28)

[see Eq. (2.17) for the definition of z]. The force field
f„,(r) is conservative because it stems &om the potential
v„,(r), i.e. , f„,(r) = —Vv„,(r). Therefore, in complete
aiialogy with Eq. (2.21) we have

where

ro

v„,(rp) = — dr f„,(r; [u, n, p', p, n2]), (2.29)
(2.33)

where again the above line integral is independent of the
particular path chosen for integration.

Equation (2.29) represents an exact expression for
v„,(r) in terms of objects written explicitly as arguments
of f„,. Contrary to the results (2.21) and (2.22), the
expression for V„„Eq. (2.29), is not valid for ensemble-
state DMs (because the equation for nV'v„, is not linear
in DMs).

D. Approximate expression for v„(r)

Our further aim is to find, from the exact expression
for v„,(r) in Eq. (2.29), an approximate expression for
v„(r) alone. As a guide to this task let us analyze the
separation of the exchange energy

(2.34)

We see that, in order to obtain E„ from the expression
for E„„it is enough to neglect the differences between the
interacting-system DMs and corresponding SKS-system
DMs, i.e. , to neglect (p —p') in the expression for T„Eq.
(2.33), and (n2 —n2) in the expression for U„Eq. (2.34).

Now we adopt the above observation in order to split
the exact expression for v„, in Eq. (2.29) into the sum
of v„and v„ interpreting these terms as approximate ex-
change potential and approximate correlation potential,
respectively. Thus

E- = (4' I&l@ ) —E-[n]

Rom the exchange-correlation energy

(2.30)
v„,(rp) = v (rp) + v (i'p)

ro
dr . f„(r) — dr . f, (r), (2.35)

E- = (@I&l@)—(4'. I&l 4'. ) + (@I&I@)—E-[n] .

(2.31) where the force fields are given by

The above equations represent the standard definitions
(see, e.g. , Parr and Yang [6]). Therefore, combining Eqs.
(2.30) and (2.31) we have

f (r) = —f d r' (Wu(r, r')]( 2uz(r, r')

E„.= E„+(T. + U.), (2.32)
—nrnr' nr (2.36)



A. HOLAS AND N. H. MARCH

f, (r) = —(u(r']p p'])+2f d" I~u(r, r')I]u. (r, r')
III. STUDY OF THE APPROXIMATE

EXCHANGE POTENTIAL v„(r) AND VALIDITY
OF HARBOLA-SAHNI CONJECTURE ON v„(r)

(2.37) A. Path dependence of exchange-only potential

While we know that the total force field f„, is conser-
vative, we lack such knowledge concerning the separate
pieces f„or f, (examples of the nonconservative charac-

ter of f„can be constructed). Therefore some specific
path of integration must be chosen to complete the def-
inition (2.35). Seemingly the most natural path is along
the radius on which the point ro lies. As the center of the
coordinate system, a position of the nucleus is chosen in
the case of a single-ion system, the center of symmetry
for a symmetrical molecule, and some "inner" point for
a molecule or cluster with lower symmetry. Then

E„=— d mr r V'v r (3.1)

While in their pioneering work Harbola and Sahni [9]
did not discuss the issue of path dependence, this was
analyzed by Ou-Yang and Levy [13]. These authors give
an example of E„(r) which is not conservative; i.e. , for
which V' x f„(r) g 0. In their subsequent paper [14],
they demonstrate that v„(r), given by Eqs. (2.38) and
(2.42) [in their notation ho(r)], satisfies two necessary
conditions for v„ to be identical with v„, namely

v„(ro) = dr e . f„(re), e = ro/ro .
Pp

(2.38)
v„(r; [ng]) = Av„(Ar; [n]), (3.2)

n2(ri, r2) = 2n(ri)n(r2)(l + h2(ri, r2)), (2.39)

and noting that the combination

p (rl r2) = &z(ri, r2) n(r2) (2.4O)

The same path must be used for the calculation of v, in
order to leave the sum v, unchanged.

Using the separation of the pair-distribution function
n2 into its uncorrelated and correlated parts (see, e.g. ,
Parr and Yang [6])

where the scaled density is defined as np(r) = A n(Ar)
For the proof that v„(r) satisfies Eq. (3.1) it is essential
that the path, chosen for integration, is that adopted in
the definition Eq. (2.38); i.e. , along a radius. As Ou-
Yang and Levy [14] prove in order to have v„(r) = v„(r),
besides the two conditions (3.1) and (3.2), a third con-
dition must be satisfied by v„, namely that v„(r) be a
functional derivative of some functional of n. Unfortu-
nately, this last property has not been shown yet for v:
therefore there is no general proof that v„(r) is identical
to v„(r). Evidently, for systems in which the relation

Vxf (r) =0 (3.3)

f„(r) = —f d r' p„(r, r') Vu (r, r') . (2.41)

For the case of Coulombic u(r, r'), Eq. (2.5), Eq. (2.41)
leads to

is customarily called the exchange hole at r2 of an elec-
tron at ri, we rewrite Eq. (2.36) as

is violated in some region, we can conclude that the po-
tential v does not coincide with v . But, for systems
where Eq. (3.3) is satisfied everywhere, it is not sufficient
to claim that the field f„(r) is conservative (see discus-
sion in Wang et al [15]). As di.ctated by symmetry, v„de-
fined by Eq. (2.35) is path independent for closed-subshell
atoms, thus uniquely reducing to the form (2.38). Nu-
merical investigation by Li et al. [16] of these systems
carried out with the exchange-only Harbola-Sahni po-
tential (i.e. , v„) leads to results which demonstrate the
high accuracy of this approximate exchange potential

(r —r')
f„(r) = d r' ~„(r,r') (2.42) B. Large-v behavior of exchange-only potential

We recognize f„(r), given by Eq. (2.42), to be identical
with the force field E„(r) proposed by Harbola and Sahni

[9] (in their exchange-only version). This means that our
approximation v„(r) to the exact v„(r) coincides with the
Harbola-Sahni approximation v„(r). Since these two
approximations were derived by using completely difer-
ent reasonings, their coincidence strongly enhances the
expectation that this function is very close to the exact
" (r) .

In order to see the large-r behavior of v„(r), let us first
rewrite the force f„, Eq. (2.41), as

f (r) = —%f d r'u(r, r')p (r, r')

+ d r'u r, r' V'p r, r' (3.4)

For Coulombic interaction this means a separation into
the "Slater" and "non-Slater" contributions:
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f„(r) = —Vvsi(r) + f si(r),

with the Slater [7] potential defined as

( ) J gs P"(~ ~)
/r —r'/ '

(3.s)

(3.6)

connection [6). An alternative expression for E„„already
presented in Eqs. (2.31)—(2.34), is

E„,=T —T, +2 drdr', nrp„, rr'
r —r'

(3.i4)

and the non-Slater force (in the present approximation)
given by

(3 7)

where p„, is defined similarly as p„, in Eq. (3.12), but
with n2 replaced by n2 = n2.(~)

Using the notation of Eq. (3.11), the Harbola-Sahni [9]
conjecture concerning the exchange-correlation potential
means that it is given by

Thus the total approximate exchange potential can be
written as

ro

v„, (r()) = — dr f„, (r), (3.is)

v„(r) = vsi(r) + v„si(r), (3.8) where

with

v„si(rp) = dr e. f„si(re), e = rp/rp.
'Po

(3.9)

The above decomposition (3.8) for the Harbola-Sahni ex-
change potential was performed earlier by Ou-Yang and
Levy [14].

In the asymptotic large-r region the exchange hole can
be shown to behave as

p„(r, r') = p„(oo, r')(1+ O(e )), b ) 0. (3.10)

C. Degree of validity of the Harbola-Sahni
conjecture on v (r)

Under the assumptions stated in Sec. II C, it is known
that the exchange-correlation energy can be written (see,
e.g. , Parr and Yang [6]) as

Therefore the non-Slater components, f„si(r), Eq. (3.7),
of the force, and, subsequently, v„si(r), Eq. (3.9), of the
potential, are exponentially small, while the Slater poten-
tial vsi(r), Eq. (3.6), tends to 1/r. This prov—ides the
correct behavior of v„(r), Eq. (3.8) (see, e.g. , the figures
of vHs(r) in Li et al. [16]).

f„". (r) = E ,(r)
I

d r' p„,(r, r') V
~ r —r' )

(3.i6)

[compare Eqs. (1), (4), and (5) of Harbola and Sahni [9]].
Below we shall demonstrate that vHs(r) is not identical

to the exact v„,(r), by employing reductio ad absurdum.
Let us assume that v„, is a legitimate potential. Then
Eq. (3.1S) implies that the gradient of this potential is
given by

V-HS( ) fHS( (3.i7)

Now calculate the following energy [in analogy with Eq.
(3 1)]

Egg —— d rn r r V'v„, r —V'v, r

d r n(r) r (f„,(r) —f„, (r)}, (3.18)

showing an (eventual) difFerence between the Harbola-
Sahni expression (3.17) and the exact one, Eq. (2.27),
for the gradient of the potential. Using Eqs. (2.28) and
(3.16) we evaluate E~;f to be

E„,= — d r d r', n(r) p„,(r, r'),
2 r —r'

where

(3.11)

where

T U&~.~ = Ea;r+ Ea;f (3.i9)

p„,(r, r') = h (r, 2r') n(r')
= j2n2 (r, r') —n(r) n(r') )/n(r) (3.12)

[compare Eqs. (2.40) and (2.39)]. Here the bar over a
quantity denotes the coupling-constant averaged value

(3.20)

Eg.f = d 7'r z r p —z r p

= 2) f d'~~. (~.,o(r) —t, o(r)).
cxP

Bpp

= 2(T —T, )
1

n2(r, r') = dAn2 (r, r'),
0

(3.13)

when the original system (A = 1) and the equivalent
SKS system (A = 0) are related by means of adiabatic

[see Eq. (2.17) and compare with Eqs. (2.13) and (2.14)],
and
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I

/

d T d T 2 'I?2 r r —62 r rr —r'3
(3.21)

Using symmetry of n2 and n2 we transform Eq. (3.21)
to obtain

(3.22)

Eg;g ——T —T, . (3.23)

But, as it is known (Levy and Perdew [10]),

(3.24)

where Eqs. (3.14) and (3.11) were used in the last step.
So we get finally &om Eq. (3.19)

Assumption (a) above is equivalent to the neglect
of correlation and hence leads to approximation to the
exchange-only potential v„(r) [given in Eqs. (2.38) and
(2.41)]. For Coulombic e-e interaction this potential
is then found to coincide with the Harbola-Sahni (HS)
exchange-only potential. Existing numerical calculations
on the latter potential are very encouraging and appear
to approximate very accurately (except in the region be-
tween atomic shells) the correct exchange potential of the
closed-shell atoms. For such atoms, the HS approxima-
tion has no path arbitrariness, but for other systems like
molecules and clusters, path dependence of their formula
will need careful study.

To conclude, we wish to stress a direction which looks
promising for future work. It is important to have a care-
ful approximation to the interacting second-order density
matrix entering the theory, in the presence of electron
correlations (ultimately, as a functional of electron den-
sity). In this general context, the pioneering work of
Gutzwiller [18] should be referred to. With his corre-
lated wave function, and by judicious approximation, he
was able to construct low-order density matrices tran-
scending these from a single Slater determinant.

Thus we have arrived at a contradiction and therefore
vHs(r) g v„,(r). The values of the correlation kinetic
energy T„Eq. (3.24), are known to be rather small com-
pared with E„, (see, e.g. , Zhao et al. [17]);so, on average,
vH, (r) may be quite close to v„,(r). But one has also to
bear in mind that there is no proof that the definition
of v„, (r) in Eq. (3.15) is path independent. Therefore
some particular path must be chosen to make this defini-
tion complete. It seems to us that the path used in Eq.
(2.38) is the best choice, because it proved to be essential
for satisfying the requirement Eq. (3.1) by v„= vHs.
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APPENDIX: DIFFERENTIAL VIRIAL
THEOREM

IV. SUMMARY AND DISCUSSION

The major result of the present study is the path in-
tegral formula (2.29) together with Eq. (2.28) for the
exchange-correlation potential v„,(r) in terms of quanti-
ties directly derivable &om the second-order density ma-
trix of the interacting system, of the first-order density
matrix of the noninteracting (SKS) system, and of the
electron-electron interaction potential.

The simplest possible practical result to obtain from
the exact formula (2.29) can be summarized in terms of
the following steps:

(a) Replace any interacting density matrix entering the
theory by the independent-particle SKS equivalent.

(b) Write the second-order density matrix in terms of
the SKS first-order density matrix according to the rules
given, e.g. , in Parr and Yang [6] for DMs generated from
determinantal wave function.

This local relation between the density, potentials,
and the kinetic-energy density tensor can be obtained
by a procedure similar to that we employed earlier [19]
for noninteracting electrons. The starting point is the
Schrodinger equation (2.7). Because R is real, this equa-
tion is satisfied separately by the real and imaginary part
of the wave function 4 = 4' +i@™,i.e. ,

~@Re ~@Im
@Re @Im (A1)

Using the definitions (2.1)—(2.4) we first transform (Al)
into

@Rcv+0-E =— T@Im
@Im (A2)

and next, by difFerentiating both sides of the left part of
Eq. (A2) with respect to ri, we obtain

i=1 Pj=2

N N N

(ri) + ).»gi (ri, rg) = 2(@ ') ) ).@yg g,p];p —2(@ ') @yg ) .) .@y py;p. (A3)
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Here the notation for partial derivatives f~, = Of/Or, is adopted. After multiplying both sides of Eq. (A3) by
(@R')~ we arrive at the result

N

& v(») + ) .u(» r. ) &

N

(@ ) = ).) .(v@ ''2)~-i'W'p v@t~-@t Wp)
i=1 P

).(p(
'

)Sv-S'W'p —( iv- i*pal'p)
i=1 P

(A4)

An equation, analogous to Eq. (A4), with ilJR' replaced by 4i, can also be obtained &om Eq. (A2). After adding
two such equations we And

N

& v(»)+).~(» r~) & I@l'=) ) {v(l@l')n-i'wip (@&i-@y*p+@i~i-@g'p)t'p). (A5)

Next, we multiply both sides by N, sum over 81, and integrate over dx2 - .dxN to obtain

N

v(, (vv)v(v, )+) X) f dxv. . dxpv), (v„v, )(@l~

/=2 81

4+vvSv ( ) —2) +) f d ~ ~ d p v(@yx @)xp+ @(L2'yvp)
P s1 /1P

N

+).) ~) f d*v" dxp(-,'(l@l')rv-r~p —(ptv. p'i, 'p+ @(~i.p'gvp)) . («)
j=2 P s1 /je

The last integral on the right-hand side of Eq. (A6) van-
ishes after integration over droop (because, being a solution
of the Schrodinger equation, the wave function 4 and its
derivatives vanish for ~r~

~

—+ oo). The expression in the
curly brackets in the other integral can be recognized as
the kinetic-energy density tensor t p(ri) defined in Eq.
(2.12). The term involving u~i can be rewritten [using
the symmetry of @ and the definition of nz, Eqs. (2.8)—
(2.11)] as

N(2P —2) ) f dxv. . . dxpv/v (vv vv)l2il
81

order DMs, n(r) and nq(r, r'), and the first-order DM
)()(ri,. rq) "close to diagonal" see the definition (2.12)
of t p. When Eq. (A7) is written for the system with
Coulomb potentials [i.e. , definitions (2.5) and (2.6) are
used] and difFerentiations of these potentials are per-
formed, the equation obtained turns out to be equivalent
to the balance equation between the momentum Aux and
the force density for the electron system, obtained by
Ziesche et aL [20] in a quite difFerent way.

The reason for calling Eq. (A7) the difFerential virial
theorem is connected with the fact that the (global) virial
theorem can be derived Rom it by applying the operation
Jdsr g r to both sides of Eq. (A7), so it gives

= 2 d r2 tL/1~ rlq r2 n2 rl~ r2
2T= drnr rpVvr

+2 d rd r'n2r r' r Vur r' (A8)

Finally, Eq. (A6) is reduced to the equation

vg (r)v(r) + 2 f d v'v~ (r, v')vv (r, v')

= 4V' ng (r) —2) t pgp(r), (A7)
f3

which will be termed the differential virial theorem. This
is an exact, local (at space point r) relation involving
the external potential v(r), the e-e interaction potential
u(r, r'), the diagonal elements of the first- and second-

2T+E = d mr r.Vv r, (A9)

the familiar virial theorem for a Coulombically interact-
ing system.

[Eqs. (2.13) and (2.14) have been used]. Equation (A8)
represents the virial theorem in its most general form
(see, e.g. , in Levy and Perdew [10]). In the case of
Coulombic u(r, r'), Eq. (2.5), the second integral in Eq.
(A8) can be evaluated, using the symmetry of nz, to be
E„.So, in this ca—se, Eq. (A8) gives
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