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Multiconfigurational-Dirac-Fock calculation of the 2s iSo—2a2p sPi spin-forbidden
transition for the Be-like isoelectronic sequence
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Accurate ab initio multiconfigurational Dirac-Fock (MCDF) calculations of the lifetimes of the
spin-forbidden 2s So—2s2p Pg transition and the spin-allowed 2s So—282p Pg transition in
Be-like ions have been performed. The importance of the inclusion of the Breit interaction to obtain
accurate fine-structure splittings and mixing coefficients is discussed and the noted discrepancy be-
tween the length and velocity gauges for the intercombination line in the lighter ions is addressed.
Different optimization procedures are evaluated. For C III the experimental intercombination tran-
sition rate has been measured to be 121.9 s with an accuracy of 6%. The current calculation gives
100.3+ 4.0 s, in agreement with other recent calculations.

PACS number(s): 32.70.Cs, 31.25.Eb, 31.25.Jf

I. INTRODUCTION

Intercombination lines are of great astronomical inter-
est since they constitute accurate diagnostic tools for stel-
lar atmospheres. The 1909-A. line in C 111 is such an ex-
ample. It corresponds to the transition 28 So—2s2p Pi,
and is fl. equently found in the spectra of a wide range of
astronomical objects. Recent experimental results for the
C 111 ion [1] have stimulated a number of theoretical in-
vestigations in this area [2,3]. Conditions similar to those
found in the astronomical objects can be produced in the
plasmas used in fusion research. In performing plasma
diagnostics and tracing impurities it is important to have
a detailed knowledge of the spectra of the elements in-
volved. Fe is one of these impurities and is &equently
used for diagnostic purposes. Both the resonance line
and the intercombination line in the Be-like Fe ion have
been observed in, for example, the Princeton Large Torus
tokamak plasma [4].

The isoelectronic sequence of the Be-like ions has been
the subject of several studies over the past two decades.
Most of these studies have employed nonrelativistic ap-
proaches and added on the effects of relativity pertur-
batively through a Breit-Pauli procedure. However, the
term dependence of the 2p orbital needs to be taken into
account before accurate results can be obtained. This
leads to an increased complexity of the calculations.

The spin-forbidden intercombination transition is in-
duced by a small configuration mixing of the 2s2p Pi
and the 282@ Pz states. This is a purely relativistic
effect. It is therefore expected that a Breit-Pauli-type
calculation will be valid only for ions with relatively low
values of the nuclear charge. The present calculation
is based on the fully relativistic Dirac Hamiltonian and

therefore will not suffer kom this limitation. The calcula-
tion is performed stepwise to ensure the convergence for
each of the employed models and also to facilitate accu-
rate error estimates. It is expected that the importance
of the electron-electron correlation will decrease for the
more highly charged ions, which will therefore exhibit a
faster convergence. In this paper we will present calcu-
lations for the following ions along the isoelectronic se-
quence: C III, N IV, 0 V, Si XI, Fe XXIII, amd Mo XXXIX.

II. THEORETICAL BACKGROUND

The multiconfigurational Dirac-Fock (MCDF) calcu-
lations were performed using the General Relativistic
Atomic Structure Package (GRAsP) [5], which has been
modified at Vanderbilt University [6] (referred to as
GRASP92) to facilitate large-scale computations through
the use of dynamic memory allocation and improved con-
vergence features. In a multiconfiguration calculation the
atomic state function (ASF) is expanded in terms of a set
of configuration state functions (CSF's)

The CSF s, in a relativistic calculation, are the antisym-
metrized sum of products of Dirac spinors. Both the
Dirac spinors and the expansion coeFicients, as described
in the literature [7,8], are optimized to self-consistency
for a stationary energy. In an extended optimal level cal-
culation the expression for this energy contains weighted
contributions from several levels that are to be investi-
gated.

A. Nonrelativistic approach

*Electronic address: ynnermanvuse. vanderbilt. edu
t Electronic address: cffOvuse. vanderbilt. edu

In a nonrelativistic calculation the CSF's are normally
coupled using the IS term scheme since the nonrelativis-
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B. Relativistic approach

In a relativistic calculation the spin and orbital an-
gular momenta for each individual electron are already
coupled. This means that the number of relativistic spin
orbitals is larger and the number of relativistic CSF's will
grow much more rapidly than in the nonrelativistic case.

In the following discussion of the mixing coeKcients
and the Breit interaction we will limit the expansion of
the excited states to the four CSF's that can be formed
&om the 1sz&22s~y22p~g2 and the 1s&&22s&y22psg2 config-
urations. We have, introducing shorthand notation,

1) I
1s 2s] /22py/2 ) J 0) )

I 2) =I 1s 2s, /22p, /2, J = 1),

I 3) =I ls'2s, /, 2ps/„J = 1),
4) =

I

18 2s1/22p3/2) J = 2) .

(2)

The interaction matrix between these CSF's will contain
off-diagonal contributions between the two J=l states:

tic Hamiltonian is diagonal in this representation and
consequently only CSF's with the same LS terms will
appear in the expansion in Eq. (1). When relativistic
effects are taken into account, as in a Breit-Pauli cal-
culation, the Hamiltonian is only diagonal in the total
angular momentum J and it is then common to couple
the LS terms to LSJ states. As long as the effects of
relativity are small, the addition of the J-dependent rel-
ativistic interactions cause only small mixings of states
&om different LS terms and the ASF has one dominat-
ing LSJ coupled CSF. In the calculation of the So —P&

transition it is the mixing between the Pi and Pz levels,
together with a smaller mixing of the 2p Po state and
the ground state, that gives rise to the observed E1 tran-
sition. As long as the mixing between the Pz and Pz
levels remains comparatively small, it can be assumed
that the Breit-Pauli approximation is valid and a reliable
value of the intercombination lifetime can be extracted
using a nonrelativistic formalism. This type of calcula-
tion has been performed for the C III ion, for example,
by Froese Fischer [2] and Fleming et al. [3]. One of the
main problems in these calculations is the necessity to
accurately represent the P term and splitting between
the Py and P~ levels . At the Har tree-Fo ck level, it is
well known that the 2p state of P term is much more
diffuse than the 2p state of the P term. Correlation
orbitals optimized on the P term will not constitute
a good basis for this diffuse behavior. In the previously
mentioned systematic Breit-Pauli calculation, one addi-
tional orbital of each symmetry was used to supplement
the P basis at each stage and capture this term de-
pendence. A similar technique was used for the 2p P
wave function expansion. This increased the complexity
of the calculation considerably. It was our hope that in
a relativistic calculation, the term dependence would not
appear, or at least not affect the calculation seriously, so
that a more simple optimization scheme could be applied.
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and we will thus get a mixing of the J=1 states. In
the case of C III the energy separation of the zeroth-
order energies for the states are of the order of 0.10 a.u. ,
while the off-diagonal value is 0.13 a.u. This indicates
a very strong interaction between the J=l levels. On
the left-hand side of Fig. 1, the energies of the zeroth-
order CSF's, i.e. , the diagonal elements of the matrix, are
shown. It should be noted that the energy scale in the
dotted box is enhanced by a factor of 600. The J=2 and
J=O states are very close and the two J=1 states are well
above in energy. The interaction between the two J=l
levels causes them to mix and produce two levels much
farther apart &om each other. One of them belongs to
the fine structure of the nonrelativistic P term and the
other one constitutes the P term. We can write this as

7) = c,
I 2) + c,

I 3)

I
'&7) = c~ I 3) —c. I 2).

To represent the fine structure of the P term it is nec-
essary for the lower of the two J=1 levels to end up in
between the J=O and J=2 levels. In the nonrelativistic
limit the mixing of the two levels is entirely due to the
angular coupling and the J=O and J=2 levels become
degenerate. The correction due to the relativistic effects
enters only through the difference in the shape of the ra-
dial parts of the 2p~y2 and 2p~y2 orbitals. The mixing
and splitting of the levels depend crucially on the shape
of these two radial functions. The accuracy of the 6ne-
structure splitting of the P term is thus a measure of the
accuracy of the mixing of the J=1 levels. The problem
of the accuracy of the mixing coeKcients is now appar-
ent. The interaction of the levels must be able to reBect a
Gne-structure splitting three orders of magnitude smaller
than the eigenenergies of the matrix. Very small relative
changes of the values in the matrix in Eq. (3) will affect
the fine-structure splitting and the mixing coeKcients.

In a MCDF calculation there is a choice of optimiza-
tion procedures. The most straightforward way would of
course be to optimize only on the states involved in the
transition in independent calculations. This would, how-
ever, produce two sets of nonorthogonal orbitals. The
current implementation of the GRAsp code does not ac-
commodate this and it is necessary to obtain both the
initial and final states of the transition using the same
set of orthogonal orbitals. The first choice would then be
to optimize the energies for either the initial or the final
state. A test run in which optimization was performed
only on the initial state was performed and the results
for the C III ion are shown in Table I. As can be seen,
the fine-structure splitting and the transition rate for the
intercombination line exhibit a nonconverging behavior
when the effects of core polarization are added. For a
discussion of the different computational models used,
see Sec. IV. Also, when only the outer correlation efFects
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Energy (a.u. )
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FIG. 1. The levels of the 18 282p config-
uration in C III. On the left-hand-side, the
energies of the JJ coupled CSF's are given.
On the right-hand side, the eigenenergies of
the Hamiltonian matrix in Eq. (3) are shown.
Inside the dotted box, the energy scale is mul-
tiplied by a factor of 600.

0,093

0.00035

J=2

J=O
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are used the convergence of the A factor is poor. A sim-
ilar behavior was found in the cases when optimization
was performed only on the final state and when both the
initial and final states were optimized upon simultane-
ously. It should be noted that all the term energies and
the oscillator strength for the resonance line are in good
agreement with the experimental values. When an opti-
mization procedure including all the components of the
P term is applied the problem is overcome and the fine-

structure exhibits a convergent behavior. As can be seen
in Table III, the fine-structure and the transition rate
for the intercombination line are now showing a conver-
gent behavior even when core polarization is taken into
account.

Taking the above into consideration, it is realized that
in any given truncation scheme or variational procedure
it is necessary to treat all the levels in the P term on
an equal basis to ensure that the fine-structure is well

TABLE I. The transition energies for the S0—P~, and S0—Pz transitions and the fine-structure splitting of the P
level in C III. Optimization was performed only on the PJ level. The last four columns give the transition rates for the
intercombination and resonance lines for the length and velocity gauges.

lg Spo Spo Spo
0 1

Energy (cm )
Spo Spo Spo Spo

1 2 0 2
1g 1po Spo lpo

1 1

Calculat ion

Spo 1S Spo 1g
Transition rate (s )

1po lg 1po 1g
Oscillator strength

Outer
n=2
n=3
n=4
n=5
n=6
n=7
n=8

correlation
53430.64
53393.00
52617.95
52702.84
52725.21
52731.97
52738.09

22.202
22.166
23.478
22.859
22.740
22.714
22.713

54.211
53.764
55.879
54.494
54.353
54.295
54.289

76.413
75.930
79.357
77.353
77.093
77.009
77.002

115286.3
113378.6
103957.5
103745.6
103682.7
103665.3
103644.9

61855.7
59985.6
51339.6
51042.8
50957.5
50933.3
50906.8

53.46
52.81
77.72
94.51
96.91
100.64
94.92

1.3
0.9

56.70
102.3
125.45
105.25
121.97

0.68120
0.68766
0.75940
0.76527
0.76667
0.76708
0.76803

0.68590
0.69237
0.83962
0.84514
0.84472
0.84469
0.84559

Core polarization
n=2 53497.37
n=3 52625.98
n=4 52089.22
n=5 52194.06

22.707
50.930
36.883
23.692

55.238
113.15
88.713
62.803

77.945
164.08
125.60
86.495

115202.4
111858.5
104043.0
103320.8

61705.0
59232.8
51953.8
51126.7

149.26
1522
1470

267.42

4341
13830
1915

239.64

0.67901
0.67436
0.72461
0.72309

0.65297
0.60188
0.71776
0.71825

52390.75 23.69 56.36 80.05
Experiment

102352.0 49961.3 120.9+7.0 0.754+0.014

Moore, Ref. [19].
Kwong; et al. , Ref. [i].

'Reistad and Martinson, Ref. [15].
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represented, thereby also obtaining physically correct 2p
orbitals. In a situation where an optimization would be
performed only on the J=l levels, the energy of the P1
term is overemphasized and the fine-structure splitting
will be poorly represented. This is reHected in nonphys-
ical 2p orbitals and mixing coefFicients.

As the value of the nuclear charge Z is increased the
fine-structure splitting will increase and the difference
between the two 2p orbitals will be more distinct, giving
a smaller mixing of the J=l levels. Thus the JJ coupled
zeroth-order CSF's will be a better representation of the
physical situation for high-Z ions. The concept of P
and P terms is then no longer applicable.

sion of the Breit interaction in calculations of intercom-
bination line strengths was noted, but not explained in
detail, in a recent calculation on P II by Fritzsche and
Grant [10]. Also previous Breit-Pauli calculations have
accomxnodated the major parts of the Breit interaction
through the inclusion of spin-spin and spin-other-orbit
terms [11,12]. For the lightest elements considered in this
paper it is even possible that higher orders of the Breit
interaction may have a nonvanishing effect, thereby set-
ting a limit to the accuracy of the present calculation for
these cases.

D. Gauge dependence

C. Breit interaction

In the variational relativistic procedure adopted here
the &equency-independent Breit interaction is not in-
cluded, even though the conceptual problems of such a
procedure must now be assumed overcome [9]. The ef-
fect of the transverse Breit interaction can thus only be
included in a configuration-interaction (CI) calculation
using the variationally obtained relativistic spin orbitals.
The effect of the Breit operator in a light ion such as
C III is very small indeed. The importance of a proper
account of this interaction can be found in the conclu-
sion of Sec. IIB Small relative changes of the elements of
the matrix in Eq. (3) will produce large relative changes
of the fine-structure, thereby also affecting the mixing
coefricients. The contribution of the Breit interaction
increases the energy of the diagonal elements and intro-
duces sxnall relative changes of the order 10 a.u. , which
is enough to have a dramatic ixnpact on the fine-structure
splitting. As an example of this effect, we show in Ta-
ble II calculations for C j:II with and without the Breit
interaction. As can be seen, the Breit interaction affects
the fine-structure splitting by almost 50% and the value
for the intercombination line transition rate is thus seri-
ously affected. The fine-structure splitting scales as Z,
whereas the Breit interaction shows a Z dependence.
The relative importance of this effect is therefore, counter
intuitively, decreasing with Z, making the inclusion of the
Breit interaction xnore important for the lighter elements,
a behavior that was confirmed during the calculation of
the isoelectronic sequence. The importance of the inclu-

In a calculation of an electric dipole transition it is
the matrix element of the electric dipole operator that
is sought. There are two difFerent choices of forms of
the dipole operator: the velocity form, which is based
on the expectation value of the gradient operator, and
the length form, in which the expectation value of v is
used. The two gauges are related through the difference
in energy LE between the initial and final state as

(+f I
V

I +;) = &&(+s
I
~

I +;)

If we insert the expansion of the initial state Eq. (4),
into the expressions we get, using the shorthand notation
introduced in Eq. (2),

cl(@f I
V

I
2)+ 2c(@f

I
V

I 3)

= &&(ci(@x
I

&
I »+ c2(@f I

&
I »). (6)

In the case of C III the allowed transition, which is ob-
tained by exchanging the coefBcients c1 and c2, has an A
factor of the order 10 s, whereas the intercombination
line is of the order 10 s . This xneans that the individ-
ual matrix elements must be of the order 10 and in the
case of the intercombination line there must be a can-
cellation of at least three orders of magnitude between
the products of the matrix elements and the expansion
coeKcients. The numerical problems involved with these
calculations have been addressed by Ellis [13]. It is a
well-known fact that the inaccuracy in the velocity form
for a given truncation scheme is larger than that for the

TABLE II. Test of the importance of the Breit interaction in the calculation of the intercombination line transition rate for
C III. The n=4 limit for the core polarization in the full optimization scheme was used.

1g Spo
Energy (crn )

Spo Spo Spo Spo Spo Spo
0 1 1 2 0 2

Transition rate (s )
1g 1po Spo 1po Spo 1g Spo 1+

17

Calculation

Oscillator strength
1po lg lpo 1g

Core polarization
n=4 (no Breit) 52119.70
n=4 (Breit) 52120.35

32.710
21.458

70.168
56.867

102.88
78.325

102956.2 50836.5
102948.4 50828.1

131.5
99.90

121.7
188.2

0.75755
0.75767

0.76763
0.76810

52390.75 23.69 56.36 80.05
Experiment

102352.0 49961.3 120.9+7.0 0.754+0.014

Moore, Ref. [19].
Kwong et al. , Ref. [1].
Reistad and Martinson, Ref. [15].
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length form. This is due to the fact that the two forms
are sensitive to different regions of the wave function.
In a variational calculation the wave functions are opti-
mized on an energy expression. This will give a relatively
better representation of the outer part of the wave func-
tions and thus favor the length form. It is also clear &om
Eq. (6) that the velocity gauge iinplicitly contains a de-
pendence on the transition energy in the matrix element,
which may affect the accuracy of the evaluation. Due to
the above given reasons, a much slower convergence of
the velocity gauge is expected.

As the nuclear charge increases, the A factor for the
intercombination line will increase drastically as the sev-
enth power of the nuclear charge for the lighter ions. This
is due to the increased size of the relativistic effects and
the more pure representation in terms of JJ coupling.
The resonance line will exhibit a small linear Z depen-
dence. This means that the cancellation of the terms will
decrease and the demand on the accuracy is lowered. A
faster convergence is therefore anticipated for the heavier
ions in the isoelectronic sequence.

III. METHOD OF CALCULATION

The GRAsp code does not accommodate the use of
nonorthogonal orbitals. This means that the same set
of spin orbitals must be used in the expansion of both
the odd parity and even parity levels involved in the El
transition. There are in principle two different ways of
allowing the calculation to minimize the energy. The
average level type calculation uses the weighted sum of
the diagonal Hamiltonian matrix elements for the levels
specified. The optimal level (OL) scheme minimizes the
energy for one level. The OL scheme can be extended to
include several levels in an energy functional that con-
tains weights for the levels under consideration, this is
referred to as an extended optimal level (EOL) calcula-
tion.

The Grst and most straightforward way of performing
a calculation for the intercombination lifetime, given the
restriction of the GRAsp code, would be to use the EOL
procedure and optimize on the So, Pz, and P& levels.
As pointed out in Sec. IIB, this approach will produce
nonphysical 2p orbitals at a given truncation scheme and
consequently the results of the calculation can be orders
of magnitude oK The remedy is to include all the com-
ponents of the P term in the optimization procedure.

At the same time it is important to appreciate the fact
that the same spin orbitals are used to represent very
different states of the atom. It has been noticed [2] that
nonrelativistic orbitals may show a very strong term-
dependence; see Sec. IIA. For instance, the p orbital
of the P term is very different &om the p orbital ob-
tained when optimizing on the P term. Also the shapes
of the orbitals differ between the initial and Anal states
of the transition. To include the possible effects of this
dependence, a scheme was designed in which active set
expansions were used to generate the CSF's for cases
were the principal quantum number n was truncated at
a given value. For n=2, 3 the energy functional contained

only contributions &om the P term. The orbitals were
then 6xed and for n=4 the energy was optimized for the
P term and for the n=5 limit the spin orbitals were

optimized for the S term. Since node counting was
not enforced for any of the correlation spin orbitals, it
is assumed that the term dependence was represented
through this procedure. The scheme was then repeated
until reliable limiting values could be extracted.

Two different types of active set expansions were used.
The 6rst one including only the effect of the outer corre-
lation, i.e., constructing all the CSF's possible by substi-
tuting the two 2s electrons for the initial state and the
282p electrons for the final state. To include the effect
of core polarization, the second type of active set expan-
sion allowed also one of the 18 electrons to be replaced.
In this way, outer correlation and core polarization were
treated on the same footing. In all the active sets the or-
bital angular momentum of the individual electrons were
limited to s, p, d, and f symmetries.

As shown in Sec. II C, the inclusion of the Breit inter-
action turned out to be one of the important steps for
the correct representation of the Gne-structure splitting,
thereby also of reliable mixing coefBcients. In GRAsp the
Breit interaction cannot be treated self-consistently. For
each active set a CI procedure, using the variationally
obtained spin orbitals, was used to evaluate the contribu-
tion &om the exchange of one transverse virtual photon.

The effect of some selected triple and quadruple ex-
citations was also evaluated in the CI calculation. All
possible excitations that can be formed within the n=3
limit were included. The n=4 quadruples turned out to
produce configuration lists that were not possible to in-
clude at this stage.

IV. RESULTS

Extensive investigations of the C III ion have taken
place over the past several years. Both experimental and
theoretical values have been produced with increasing ac-
curacy. For the isoelectronic sequence there is little or no
data available in the literature. The following discussion
therefore focuses the comparison of the results on the C
III case and gives a more general discussion of the iso-
electronic calculations.

A. C III

In Table III the transition energies and fine-structure
splittings are given for the C III ion. The scheme outlined
in Sec. III, was used to obtain the limiting values for the
three different models. For the outer correlation only the
limiting values of the transition energies, for both the res-
onance line and the intercombination line, lie within 1.5%%uo

of the experimental values. When core polarization is in-
cluded, the calculated value agrees with experiment to
the 0.01% level for the intercombination traiisition and
to 0.3%%uo for the resonance transition. The inclusion of
the triple and quadruple excitations makes the agree-
ment slightly worse, indicating the greater difBculty in
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TABLE III. The transition energies for the So- Pi, and So- Pz transitions and the fine-structure splitting of the P in
C III. The values for the transition rate for the intercombination line and the oscillator strength for the resonance transition
are given in the last four columns. The optimization was performed on all the components of the P, P, and S terms as
described in the text.

1g 3po 3po 3po
0 1

Energy (cm )
3po 3po 3po 3po

1 2 0 2

Transition rate (s )
1S lpo 3po 1po 3po 1g 3po lg

tP

CaIculat ion

Oscillator strength
1po lg 1po lg

Outer Correlation
n=2
n=3
n=4
n=5
n=6
n=7
n=8

53452.62
53443.83
52683.27
52723.98
52729.80
52732.91
52717.66

22.202
22.436
22.650
22.676
22.698
22.695
22.701

54.210
54.342
54.256
54.256
54.264
54.261
54.272

76.412
76.778
76.906
76.932
76.962
76.956
76.973

115285.5
114219.5
103818.0
103693.3
103657.8
103688.3
103633.1

61832.9
60775.7
51134.7
50969.3
50928.0
50955.4
50915.4

46.7
46.6
90.7
91.7
91.8
91.7
92.3

0.5
6.7

128.2
130.3
132.2
133.3
138.3

0.68122
0.68273
0.76746
0.76847
0.76838
0.76851
0.76889

0.68604
0.68635
0.84595
0.84670
0.84578
0.84643
0.84712

Core polarization
n=2
n=3
n=4
n=5
n=6
n=7
n=8
n=9

53507.85
52630.20
52120.35
52291.09
52349.00
52382.41
52370.09
52398.97

22.167
22.697
21.458
20.999
21.202
21.026
21.071
21.023

54.146
56.242
56.867
57.290
57.829
57.641
57.621
57.674

76.313
78.939
78.325
78.289
79.031
78.667
78.692
78.697

115215.0
111727.5
102948.4
102926.1
102870.8
102724.3
102765.0
102732.2

61707.2
. 59097.3
50828.1
50635.0
50521.8
50341.9
50394.9
50333.2

46.0
59.3
99.9
108.4
114.7
104.8
103.4
103.8

60.1
60.2
188.2
184.4
233.3
173.7
170.2
170.5

0.67924
0.67511
0.75767
0.75681
0.75724
0.76029
0.76023
0.76037

0.65717
0.60471
0.76810
0.76051
0.75536
0.75479
0.75503
0.75484

Selected triples and quadruples
n=.6 52327.96
n=7 52360.61
n=8 52372.19

21.654
21.483
21.490

57.216
57.036
57.067

78.870
78.519
78.557

102867.0
102723.1
102725.6

5G539.0
50362.5
5G353.4

111.2
101.7
100.3

236.4
178.1
174.3

0.75411
0.75699
0.75705

0.75408
0.75331
0.75330

52390.75 23.69 56.36 80.05
Experiment

102352.0 49961.3 120.9+7.0 0.754+0.014

Moore, Ref. [19].
Kwong et aL, Ref. [1].

'Reistad and Martinson, Ref. [15].

performing a systematic calculation involving triples and
quadruples. The fine-structure splitting exhibits a very
stable behavior as the calculation is expanded. The inclu-
sion of the core polarization and the triple and quadru-
ple excitations affect the splittings significantly and are
thus, as discussed in Sec. IIB, important to include in
order to represent the fine-structure. The converged val-
ues are, however, slightly below the experimental ones.
This was also the case in the Breit-Pauli calculations by
Froese Fischer [2] and Fleming et al [3]. In the latter
a fine tuning of the fine-structure splitting was used to
obtain better mixing coefBcients and thereby eliminate
the errors introduced. by the inaccuracy in the a,b initio
calculated values. It is our suspicion that this noted dis-
crepancy may be due to neglected higher orders of the
Breit interaction.

In Table III the transition rate for the intercombination
line and the weighted oscillator strength for the resonance
line are given for the different models and truncation lim-
its. The value for the intercombination line, calculated
in the outer correlation only model, was assumed to have
converged at the n=8 limit at 92 s . Adding the core
polarization increased the value significantly and finally
the introduction of the triples and quadruples gave the
final value 100.3 + 4.0 s . The error was estimated by
a comparison of the convergence of the different mod-
els and by comparing the theoretical transition energies
and fine-structure splittings with the experimental val-
ues. There is a large difference in the values obtained
using the length and velocity forms of the dipole oper-
ator. As discussed in Sec. IID, this is due to the high

demand of the accuracy of the terms that contribute in
the cancellation between two allowed transition matrix
elements. Also the fact that the two forms are sensitive
to different regions of the wave function may explain the
difference. In our procedure the wave functions are opti-
mized on an energy expression. This will implicitly favor
the accuracy of the length form.

In Table IX experimental and other calculated val-
ues for the intercombination transition are given. The
only previous MCDF calculation is the one by Cheng
et al. [14], in which the calculation was limited to the
n=2 complex and clearly cannot compete with the much
more elaborate calculation presented here. The more re-
cent calculations, using the Breit-Pauli approximation,
give values very close to the one obtained here. It is
evident &om the convergence of the calculation (see Ta-
ble III) that the present calculation is one of the most
accurate to date and that the MCDF approach is able to
produce reliable results for intercombination lines even
in low-Z ions. The experimental value, obtained using a
radio-frequency ion trap [1], is significantly larger than
any of the theoretical values and well outside the esti-
mated errors. In this case, theory seems to agree and the
most probable cause of the discrepancy must lie on the
experimental side.

As discussed in Sec. IIB, the allowed transition be-
tween the 28 SG and 282p P1 states is spin allowed,
and therefore dominated by nonrelativistic effects, and
there is no need to add the Breit-Pauli terms to a non-
relativistic calculation to obtain a value for the oscillator
strength. There are a number of previous evaluations of
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the oscillator strength for this transition. A more com-
plete account for the theoretical history can be found in
Refs. [2,3]. The most recent values are, however, given
in Table X. In the present calculation all the effects of
relativity were implicitly taken into account, even though
they may not have any effect on the oscillator strength
for low-Z ions such as C III.

The present calculation is in very close agreement with
other recent theoretical values. The experimental value
given by Reistad and Martinson [15] is somewhat lower
than the theoretical ones, but with the estimated error
taken into account it lies within the theoretical range.

B. Isoelectronic sequence

The methods applied to the C III calculation were re-
peated for a number of selected ions along the isoelec-
tronic sequence. The selected ions were N Iv (Table IV),
0 v (Table V), Si XI (Table VI), Fe xxxIII (Table VII),
and Mo xxxxrx (Table VIII). The calculations were lim-
ited polarization models and the inclusion of the triple
and quadruple excitations in the n=3 limit, as described
above. Only for the Mo ion was the outer correlation
only model applied to investigate the importance of the
core polarization effects for the highly ionized ions.

As expected, the convergence of the transition rate for
the intercombination line is significantly improved as the
value of Z increases. As described in Sec. IIB, this is
due to the fact that the JJ coupling scheme is an in-
creasingly better description of the system and the rela-
tive importance of the Breit interaction decreases as the
fine-structure splitting increases. It was found that for
the Mo ion the convergence to two significant numbers
was achieved already at the n=5 level, whereas for the N
Iv ion the calculation had to be taken to the n=8 limit

to obtain the same level of accuracy. Also the effects
of core polarization and the triple and quadruple exci-
tations were found to be less important for the heavier
lons.

The noted difference between the length and velocity
forms of the dipole operator is also decreasing, as dis-
cussed in Sec. IID. The relative difference between the
gauges is 73'%%uo for the C ItI ion, 39% for 0 v, and only 2'
for Mo. For the lighter ions the A factor shows a clear
Z dependence. As the transition rate grows with Z,
the dependence changes. This is due to the fact that the
cancellation of the terms in Eq. (6) is now reduced and
the transition rate is approaching the actual values of the
individual matrix elements, i.e., the transition becomes
saturated. It is therefore expected that in the limit the
heavier ions will exhibit the Z dependence of an allowed
transition. To verify this behavior log~o(A) / log~o (Z) was
plotted as function of 1/Z and the data points were fit-
ted to splines; see Fig. 2. The intersection with the y-axis
would give the Z-dependence for a nucleus with infinite
charge. The results obtained by Cheng et al. [14] in a very
restricted MCDF calculation, including only the CSF's
obtained &om the n=2 limit, have been included as the
solid line in the plot.

In Table IX a comparison with experimental values and
other calculations is given. Experimental data are only
available for C III and Fe XXIII. Alas the error associated
with the Fe XXIII ion is too large to facilitate any critical
evaluation of the accuracy of the value obtained in the
present calculation. For C III there are many other calcu-
lations. We have, however, concentrated here on the iso-
electronic sequence calculations and chosen to give only
the most recent values for the lighter elements. A full
presentation of the C III case can be found in Refs. [2,3].
It is clear that the accuracy of the present calculation is
higher even for the low-Z ions. It would be interesting

TABLE IV. The transition rate for the Sq- P& transition and the weighted oscillator strength
for the So- Pz transition in N IV. The quadruple excitations were limited to the n ( 4 orbitals.

1S 3Po

A (s-')
S-P

Length Velocity
Calculation

Length Velocity

Core polarization
n=2
n=3
n=4
n=5
n=6
n=7
n=8

68481.1
67506.8
66981.8
67161.3
67224.9
67275.2
67287.5

313.4
373.8
552.6
569.2
568.4
574.4
576.8

15.5
289.8
890.7
810.5
834.4
825.9
826.6

144080
140217
131375
131345
131294
131135
131142

0.56484
0.56033
0.60732
0.60773
0.60857
0.61193
0.61196

0.53546
0.49323
0.61207
0.60795
0.60588
0.60778
0.60782

Selected triples and quadruples
n=6 67202.2
n=8 67263.9

556.3
564.3

849.4
841.3

131273
131122

0.60662
0.60992

0.60586
0.60763

67272.3
Experiment

130693

Moore, Ref. [20].



MULTICONFIGURATIONAL-DIRAC-FOCK CALCULATION OF. . . 2027

TABLE V. The transition rate for the Sp- P1 transition and the weighted oscillator strength
for the Sp- P1 transition in 0 v. The quadruple excitations were limited to the n ( 4 orbitals.

1S 3po

A(s x10)
Length Velocity

Calculation

1S 1po

Length Velocity

Core polarization
n=2
n=3
n=4
n=5
n=6

83335.1
82299.4
81797.0
81975.9
82038.0

146.0
160.2
218.0
224.2
224.4

18.2
111.4
322.4
298.6
301.9

172547
168432
159566
159519
159456

0.482459
0.478341
0.507286
0.508495
0.509447

0.451732
0.416932
0.508193
0.506942
0.506202

Selected triples and quadruples
n=6 82015.4 220.7 306.2 159427 0.508090 0.506565

Moore, Ref. [21].

82078.6
Experiment

158798

TABLE VI ~ The transition rate for the Sp- P1 transition and the weighted oscillator strength
for the Sp- P1 transition in Si xI.

1S Spo

A(s x10 )
Length Velocity AE

Calculation

1S 1po

Length Velocity

Core polarization
n=2
n=3
n=4
n=5
n=6

173692
172507
172239
172372
172453

286.4
303.7
350.7
353.9
358.6

105.9
190.4
387.4
384.5
401.8

344605
339870
331035
330930
330714

0.259499
0.257695
0.262697
0.263342
0.265045

0.237216
0.221463
0.259428
0.260806
0.264616

172144
Experiment

329679

Martin and Zalubas, Ref. [22].

TABLE VII. The transition rate for the Sp- P1 transition and the weighted oscillator strength
for the Sp- P1 transition in Fe XXIII

Sp- P
A(s x10 )

Length Velocity AE
Calculation

'S -'P1

Length Velocity

Core polarization
n=2
n=3
n=4
n=5

384052
382627
382434
382591

475.6
486.5
516.7
518.6

264.4
331.8
519.9
522.5

770419
765474
756942
756825

0.153735
0.153025
0.153969
0.154153

0.141384
0.133495
0.149805
0.150555

Shira, Ref. [23].

Experiment
752840
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TABLE VIII. The transition rate for the So- Pz transition and the weighted oscillator strength
for the So- P& transition in Mo XXXIX.

1S 3po

X (s-' x 10')
Length Velocity

Calculation

S P

Length Velocity

Outer correlation
n=2
n=3
n=4
n=5

748879
750104
747240
747319

913.7
912.6
936.0
937.2

713.8
897.4
1184
1189

2035280
2036287
2025452
2025350

0.140233
0.140092
0.140310
0.140429

0.141671
0.148455
0.149795
0.150115

Core polarization
n=2
n=3
n=4
n=5

749001
746685
745693
745924

913.5
918.3
934.9
936.6

601.7
692.6
902.0
920.3

2035072
2030700
2023570
2023642

0.140053
0.139559
0.139689
0.139794

0.135010
0.129433
0.135986
0.136416

U Mo Fe Si 0

5.5—

4.5—
N

CO

c60

C)

3.5—

2.5—

2
0

I I I I

0.02 0.04 0.06 0.08
1/2

I

0.1

I I I

0.12 0.14 0.16 0.18

FIG. 2. The log~o of the transition rate
divided by log~o(Z) along the isoelectronic
sequence plotted as functions of 1jZ. The
dotted and dashed lines are the fitted results
from the velocity and length forms of the
dipole operator, respectively. The markers
show the actual values from the calculation.
The solid line represents the results obtained
by Cheng et al. [14] in a limited MCDF cal-
culation. The limiting value of the Z depen-
dence for large-Z values is obtained as the
intersection with the y axis. As discussed in
the text, the limiting value should be that of
an allowed E1 transition, i.e., a Z depen-
dence.

TABLE IX. Comparison of present results for the 2s So—2s2p Pq intercombination line in the
Be-like isoelectronic sequence with experiment and other theoretical results.

Experiment
Theory
Present
Other
MCHF
CI~
MCDF

C III

( ')
120.9+7.0

N IV Ov Si XI Fe XXIII Mo XXXIX

100.3+4.0 564.3+4.0 220.7+4.0 358.6+8.0 518.6+4.0 936.6+4.0

103+3
104+4
79.5

495
471

199
193

348
336 491 841

(s ' x 10) (s
' x 10') (s

' x 10s) (s
—' x 10II)

770+ 300

Kmong et aL, Ref. [1].
Dietrich et al , Ref. [24]. .

'Froese Fischer, Ref. [2].
Fleming et aL, Ref. [3], obtained using experimental fine-structure splittings; Glass, and Hibbert,

Ref. [25]; and Hibbert, Ref. [17].
'Cheng et al. , Ref. [14].
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TABLE X. Comparison of present results for the 2s So-2s2p Pi resonance line in the Be-like
isoelectronic sequence with experiment and other theoretical results.

C III N IV Ov Si XI Fe XXIII Mo XXXIX

Experiment
Theory
Present
Other
MCHF'
CI'
Model potential
MCDF"

0.754(14) 0.619(22) 0.53(2) 0.276(24)' 0.150

0.7566(20)
0.7556
0.764
0.7942

0.618
0.614
0.6343

0.517
0.513
0.5290 0.2705 0.1552 0.1390

0.7571(20) 0.6099(20) 0.5081(20) 0.2650(20) 0.1542(10) 0.1398(5)

Reistad and Martinson, Ref. [15], and Trabert, Ref. [26].
Engstom et al. , Ref. [27].

'Trabert and Heckmann, Ref. [28].
Buchet et al. , Ref. [29].

'Froese Fischer, Ref. [2].
Fleming et al. , Ref. [3], and Glass, Ref. [16].

sLaughlin et al. , Ref. [18]
"Cheng et al. , Ref. [14).

to have data &om Breit-Pauli type calculations to com-
pare with for the more highly ionized atoms, and thereby
verify the limitations of the Breit-Pauli procedure.

Also the oscillator strengths for the allowed transition
were calculated for the isoelectronic sequence and com-
pared to available experimental and theoretical data; see
Table X. Apart from the MCDF calculation by Cheng et
aL [14], there are no available results for the high-Z ions.
It is striking how well the simple n=2 MCDF calculation
agrees with the present values for Fe and MO, showing
the decreasing importance of the electron-electron cor-
relation as the nuclear charge increases. In Fig. 3 the
oscillator strength has been plotted as a function of 1/Z

for the two forms of the dipole operator. The agree-
ment is, as expected, excellent for the high-Z ions. The
relativistic effects become increasingly important as Z
increases and show up as a dramatic increase of the os-
cillator strength. In the case of C III there are, as dis-
cussed above, several independent accurate calculations.
For N and 0, the calculations by Glass [16] and Hib-
bert [17] have been combined to produce the CI entry in
Table X. Also the model potential calculation by Laugh-
lin et al. [18]has been included as a separate entry. There
is fair agreement between the present calculation and the
other available results. The accuracy of the previous cal-
culations can, however, be questioned.

0.8
U Mo Fe Si

0.7—

0.6—

I 0.5-
(0
L0
t5.=- 0.4-
O

0

0.3—

FIG. 3. The oscillator strength for the al-
lowed transition as a function of 1/Z. The
solid line shows the results obtained by
Cheng et aL [14] in a limited MCDF calcula-
tion. The dramatic increase of the oscillator
strength for the high-Z ions is due to the in-
creasingly important relativistic eKects.

0.2—

0.1
0

I I I I

0.02 0.04 0.06 0.08
1/Z

I

0.1

I I

0.12 0.14 0.16 0.18
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V. CONCLUSION

Systematic MCDF calculations of the intercombina-
tion line strength 18 28 «50 —18 282@ P« in the Be-
like isoelectronic sequence have been performed. The res-
onance transition 18 282 «So —18 282@ P«has been
evaluated. The systematic approach leads to estimates
of the convergence for the properties calculated and re-
liable error estimates have been possible to determine.
The transition energies have also been tabulated and the
C III fine-structure splitting has been investigated in some
detail.

A theoretical discussion of the problems involved in a
relativistic calculation of intercombination line strengths
showed the importance of an accurate fine-structure split-
ting to obtain reliable values of the mixing between the
relativistic CSF's. The inclusion of the Breit interaction
played an important role in the achievement of the de-
sired accuracy of the fine-structure, especially for the ions
with lower nuclear charge. Also the problems involved
when using the velocity form of the dipole operator have
been addressed.

It is clear that the MCDF approach is able to produce
competitive results even for the lighter elements consid-
ered in this study. The advantage over the nonrelativistic
methods lies, however, in the facilitation of the calcula-
tions on the heavier ions, for which the Breit-Pauli ap-
proximation used in the nonrelativistic calculations no
longer is valid.
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