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The now classic optimized-effective-potential (OEP) approach of Sharp and Horton, [Phys. Rev.
90, 317 (1953)] and Talman and Shadwick [Phys. Rev. A 14, 36 (1976)] seeks the local poten-
tial that is variationally optimized to best approximate the Hartree-Fock exchange operator. The
resulting OEP can be identified as the exchange potential of Kohn-Sham density-functional the-
ory. The present work generalizes this OEP approach to treat the correlated case, and shows that
the Kohn-Sham exchange-correlation potential is the variationally best local approximation to the
exchange-correlation self-energy. This provides a variational derivation of the equation for the exact
exchange-correlation potential that was derived by Sham and Schliiter using a density condition.
Implications for an approximate physical interpretation of the Kohn-Sham orbitals are discussed.
A correlated generalization of the Sharp-Horton —Krieger-Li-Iafrate [Phys. Lett. A 146, 256 (1990)]
approximation of the exchange potential is introduced in the quasiparticle limit.

PACS number(s): 31.15.Ew, 71.10.+x, 31.25.—v

I. INTRODUCTION

The exchange-correlation potential plays a central role
in Kohn-Sham density-functional theory (DFT). Thus
different formal approaches to the derivation of an ex-
act expression for the exchange-correlation potential,
v„„are useful for the insight they provide into the na-
ture and interpretation of v„,. The present work gen-
eralizes the Hartree-Fock optimized-effective-potential
(OEP) approach of Sharp and Horton [1] and Talman
and Shadwick [2] to treat the correlated case, and yields
a variational derivation of the Sham-Schluter equation
for the exact exchange-correlation potential.

Sham and Schliiter [3] derived an expression for the ex-
act exchange-correlation potential which is based directly
on the definition of the Kohn-Sham v, as the unique lo-
cal potential whose orbital charge densities sum to the
true total charge density. This translates into a density
condition which can be written in the many-body Green
function formalism as

0 = n(r) —nK, (r)
1= ) [G(ro, ro", u) —GKs(ro, ro", cu)] Chu, (1.1)2' X

a
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The reader is assumed to be familiar with the formalism

of density-functional theory and many-body Green functions.
Good reviews of density-functional theory can be found in
Refs. [4,5]. The Green function method is described in a
number of texts [6,7] and review articles [8—10] on many-body
theory; Refs. [11,12] provide a connection with wave function
theory.

where M denotes a counterclockwise contour about the
upper half complex plane, and all equations are expressed
in Hartree atomic units. Since the true Green function is
related to the Kohn-Sham Green function by the Dyson
equation

G(~) = GKs(~) + GKs(~) Z"'(~) —v„, G(~), (1.2)

Eq. (1.1) becomes what will be referred to as the Sham-
Schliiter equation,

GKs(~) = (~l —(hH[n]+ v„, [n])) (1 4)

where hH [n] is the Hartree Hamiltonian, the Sham-
Schliiter equation becomes a nonlinear equation for the
"exact" Kohn-Sham exchange-correlation potential cor-

In the notation used here, functionals are distinguished
from functions by the use of square brackets. Thus F[f] is
a functional of f, F(x) is a function of z, and F(x; f] is both
a function of x and a functional of f

1
0 = Kn(rg) = ) GKs(rxo& 2 ~)

27l Z
C71

x j[Z"'(2, 3;(u; G] —v„, (r2)b(2 —3))
&& G(3, ryo'y, (d) d283d(d, (1 3)

where the spin-orbital notation i:—(r, , lr;) has been in-
troduced and the notation has been chosen to emphasize
that the exchange-correlation self-energy Z"'(ur; G] may
be regarded as a functional of the true Green function.
Writing the Kohn-Sham Green function as
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responding to whatever exchange-correlation approxima-
tion is used in constructing the self-energy. Since the
complex pole structure of Green functions for interacting
systems makes the exact Sham-Schliiter equation (1.3)

very dificult to solve, it is generally approximated by
replacing the true Green function with the Kohn-Sham
Green function to obtain the "linear response Sham-
Schluter equation, "

0 —~n(rl) = ). . GKs(»ol& 2~ ~) (E"'(2,3; ~; GKs] —v„. (r2)b(2 —3)) Gscs(3, rioi; ~) d2d3d~,
27''L

~a

which is again a nonlinear equation for v„, . Note
that this equation states that the first-order response
of (rather than the total change in) the charge density
to the perturbation converting the Kohn-Sham equation
into Dyson's quasiparticle equation,

hH[nKs]+ v„, [nKs] m h~[nKs]+ Z (~;GKs], (1.6)

is zero, which appears to be an excellent approximation,
though a more detailed investigation of this approxima-
tion would be desirable.

An alternative approach, also based upon the charge
density condition, was given by Sham [13] who, after de-
riving a perturbative expression for the exact exchange-
correlation energy, used a functional derivative identity
to rederive the Sham-Schliiter equation [Eq. (1.3)] from
his expression for the exchange-correlation energy. It is
interesting to note that the functional derivative iden-
tity used by Sham is similar to one which will be used
here. However, the present work is based on a variational
approach whereas Sham uses the density condition and
does not variationally optimize the energy.

In the exchange-only case, the linear response Sham-
Schliiter equation has been derived variationally, via the
optimized-efFective-potential approach. In contrast to
the approaches of Sham and Schliiter [3] and of Sham
[13] which are aimed at constructing the exact v„, of
Kohn-Sham theory Rom the equality of the densities of
the interacting and noninteracting systems, the OEP ap-
proach traces its origin to Slater s initial concept [14] of v
as a local approximation to the nonlocal exchange opera-
tor in the Hartree-Fock approximation. Thus the classic
OEP problem of Sharp and Horton [1] and Talrnan and
Shadwick [2] seeks the energy-independent local potential
whose orbitals ruinimize the Hartree-Fock (HF) energy
expression. As is well known, the HF equations are the
result of applying the Rayleigh-Ritz variational princi-
ple with the constraint that the many-electron trial wave
function has the form of a single Slater determinant. The
HF OEP problem simply takes this one step further by in-
troducing the additional constraint that the orbitals used
to construct the Slater determinant are all eigenfunctions
of an orbital Hamiltonian with an energy-independent, lo-
ca/ potential. Lifting this constraint gives back the eigen-
functions of the true HF orbital Hamiltonian. Hence the
OEP (v„) constitutes the variationally best local ap-
proxixnation for the nonlocal HF exchange operator (E").
The density condition deBning the Kohn-Sham potential
is not used in this approach. So there is no a priori con-
nection between e„and the Kohn-Sham e . How-
ever, the HF OEP equation obtained &om this procedure
is identical to the linear response Sham —Schliiter equa-

I

tion for the exact Kohn-Sham exchange potential v

[13],so v P may be identified with the exact (exchange-
only) Kohn-Sham potential v . Thus vKs can be inter-
preted as the variationally best local approximation to
Z . This analysis has been limited to the exchange-only
case for lack of an OEP treatment capable of handling
the general correlated case.

A few extensions of the OEP approach have been made
which allow the treatment of correlation in a limited way.
Aashamar, Luke, and Talman [15,16] gave a partial OEP
treatment at the multiconBgurational self-consistent Beld
(MCSCF) level. Their method involves two steps which
must be iterated to self-consistency. The Brst step is a
small configuration-interaction. (CI) calculation used to
determine the coeKcients entering into the linear com-
bination of Slater determinants. The second step is an
orbital optimization at Bxed CI coefEcients. The treat-
ment of correlation becomes complete only in the limit
of a full CI expansion. Yet only the orbital optimization
step is amenable to the OEP procedure, and it yields
a CI-coefBcient-dependent local exchange-correlation po-
tential. Furthermore, it is difBcult to relate this MCSCF
OEP to Kohn and Sham's v „given the single determi-
nental nature of Kohn-Sham DFT. Aashamar, Luke, and
Talman have also introduced orbital angular-momentum-
dependent OEP's, but these are clearly distinct from the
Kohn-Sham v„„which is an orbital-independent poten-
tial. The second extension of the OEP approach to in-
clude some correlation is that of Norman and Koelling
[17] and Li, Krieger, Norman, and Iafrate [18] who ap-
plied the OEP approach to the energy expression for
the self-interaction corrected (SIC) local density approx-
imation (LDA). The SIC-LDA method improves on the
Kohn-Sham LDA method by removing self-interaction er-
rors, but in so doing departs &om Kohn-Sham theory by
introducing an orbital-dependent exchange-correlation
potential. The OEP approach corrects this "problem"
by Bnding the best corresponding orbital-independent
Kohn-Sham exchange-correlation potential. Exchange
and correlation are, of course, treated at no better than
the SIC-LDA level by this method. Thus neither the
MCSCF nor the SIC-LDA OEP approach is able to deal
with electron correlation eKects in a general fashion.

In the present work, the OEP approach is extended
to treat the correlated case in a general way. This is
done by starting with an exact, variational energy ex-
pression [19,20], E[G; Go], which is a functional of the
fully dressed Green function G and of the reference Green
function Go, and whose associated variational principle
yields the Dyson equation. Such an energy expression
arises naturally when resummations are used in a self-
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consistent formulation of many-body perturbation the-
ory. This is the same energy expression that was used by
Sham [13]in his derivation of an exact expression for E„,.
However, the present work takes a variational approach,
based on the variational principle associated with Klein's
energy expression. This use of the Green function formal-
ism allows the development of the exchange-correlation
OEP, v„, , to parallel the exchange-only treatment in
a natural way. The exchange-correlation OEP problem
defined here simply seeks the potential which is local in
both space and time and whose Green function makes
the energy E[G; Gp] stationary. This is analogous to the
Sharp and Horton [1] and Talman and Shadwick [2] ap-
proach and equivalent to their classic OEP procedure
in the exchange-only case. However, in the exchange-
correlation case, the v„, so produced is now the vari-
ationally best local approximation to the full exchange-
correlation self-energy Z"'(u). It will be seen that this
OEP equation is identical to the linear response Sham-
Schluter equation for the exact vK . Thus v„, can now
be interpreted as the variationally best local approxi-
mation to the exchange-correlation self-energy, Z"'(u),
nicely analogous to the earlier statement about v . This
is done in Sec. II. The problem of a spatially nonlocal,
but temporally local, optimized effective potential is con-
sidered brie8y in the conclusion. The quasiparticle limit
and the average energy approximation are considered in
Sec. III, in order to give further insight into the relation
between v„, and v, and to give the correlated analogs of
the approximations of Slater [14] and of Krieger, Li, and
la&ate [21,22].

Finally, the present work, taken together with the
Sham-Schluter equation for the exact Kohn-Sham e„„
can be regarded (within the linear response approxima-
tion to the Sham-Schluter equation), as providing an al-
ternative derivation of the Kohn-Sham equation, as the

I

variationally best local approximation to Dyson's quasi-
particle equation. This is interesting &om the point of
view of an approximate physical interpretation of the
Kohn-Sham orbitals, and is discussed in the conclusion.

II. OPTIMIZED EFFECTIVE POTENTIAL

A. Energy functional

Klein [20] showed that a certain form of Green func-
tion self-energy expansion permits the formulation of a
variational energy functional of the Green function. Es-
sentially the same result was also given by I uttinger and
Ward within a finite temperature formalism [19]. When
the exact self-energy is cast in this form, the exact Green
function is recovered from this procedure. However, given
that the exact self-energies are known for very few sys-
tems, the fact that it is applicable to approximate forms
is also important. A brief summary of Klein's result is
given here since it is fundamental to the present work.

When the self-energy is expanded as a series in pow-
ers of the electron repulsion and zero-order Green func-
tion, many self-energy diagrams are seen to include "self-
energy insertions" which may be removed by a resum-
mation procedure which consists of replacing the zero-
order Green function by the true Green function in the
series expression for the self-energy. The result is a self-
consistent self-energy, M(~; G], which is a sum of "skele-
ton diagrams. " This procedure is quite general and may
be applied, for example, to a self-energy described by
Hedin's GW [Green function (G) times screened inter-
action (W) approximation] [23] as well as to the exact
self-energy. Klein [20] has used the special properties
of such a self-energy to show that the total (electronic)
energy can be written (in present notation) in the form

E[G; Gp] = 1
wtrGO(w) du+ ) tr(M~ ~(w;G)G(w)) dw)

1 1

27Ct 2m 2vri
m, =1

1
tr (Gp '(~)G(ur) + ln Gp(~)G '((d) ) d~,

27('E
(2.1)

where the trace denotes an integral over spatial co-
ordinates and a summation over spin coordinates and
M~ l(u; G] is the part of the self-energy involving m ex-
plicit electron repulsions (i.e., not counting electron re-
pulsion contributions which enter implicitly through G).
Then the functional derivative

skeleton diagrams used in constructing the self-energy.
Klein notes that his variational principle gives a station-
ary point but not necessarily a minimum. For complete-
ness, note also that in general there is no global station-
ary point for the double fuiictional, E[G; Gp], since

bE[G; Gp]

hG(1, 2; (u)
. (M (2, 1; (u; G] —Gp

' (2, 1; (u)

+ G '(2, 1;~)), (2.2)
+ Gp '(2, 1;(u)] (2.4)

. [(ub(2 —1)—(Gp 'GGp ')(2, 1;(u)
bE[G; G()] e'"

6Gp 1, 2;(d) 27(Z

where g = 0+, so the variational condition,

hE[G Gp]
bG(1, 2; (d)

(2.3)

gives Dyson's equation and hence the "true" Green func-
tion corresponding to the (possibly truncated) sum of

is not generally zero when bE[G; Gp]/hG = 0.
Sham [13] used this same energy expression (2.1) to

give an expression for the exact exchange-correlation en-
ergy, E „and its functional derivative, v„,. In the
present work, this energy expression is used in a difFer-
ent way, taking advantage of its associated variational
principle.
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B. Qptimized efFective potential 1
noEp(r) = ) GGEP(rcr, ro", (d) d(d

2%X Qo'

Consider now the problem of Ending the optimized ef-
fective exchange-correlation potential. By definition, the
OEP is a local potential vGEP(r), where "local" means
simultaneously local in time,

occupied
OEP ro- QEP~ r~ (2.8)

v„, (lt, 2t ) = v„, (1,2)b(t, —t, ), (2.5)

The quasiparticle equation corresponding to the OEP
Green function is

and local in space, [ ] + -OEP)@OEP OEP@OEP (2.9)

GEP(1 2) GEP( )g(1 2) (2 6)

which is optimized according to a given variational prin-
ciple. Klein s variational principle will be used, and the
constraints enter through the Green function.

In the exchange-only case, there is no nonlocality in
time to start with, so the only constraint is that of re-
placing the nonlocal Hartree-Fock exchange operator in
the HF Green function expression with a potential which
is local in space. In the correlated case, the constraint
that v„,EP(r) be local in time (equivalently, that it be
energy independent in the energy representation) makes
the OEP Green function an independent-particle Green
function,

(2.7)

Here, it should be recalled that h~[noEP] designates the
Hartree Hamiltonian constructed with the OEP charge
density, obtained Rom GQEp via

This serves to define the OEP orbitals and OEP orbital
energies.

Finding the OEP for Klein s variational principle con-
sists of finding the local potential voEP(r) whose Green
function GQEp makes Klein's energy expression station-
ary. That is,

~&GEp[GGEP; Go]
hvOEP(r)

(2.1O)

This is equivalent to finding the stationary point of the
energy with respect to variations in the Green function,
subject to the constraint that the Green function have
the form (2.7) (i.e. , that v„, be local).

The energy expression can be simplified somewhat
because the fact that the OEP Green function is an
independent-particle Green function means that it may
also be used as the reference Green function Gp in
E[GGEP Go], with the result that the last integral in Eq.
(2.1) vanishes. The OEP energy expression then takes
the form of a perturbative estimate E[GGEP, GGEp] of
the exact energy,

@OEP[GOEP ] = @[GO Ep I GOEP ]

1 1 1
(dtrGOEP((d) d(d + ) tr(M (w; GOEp]GoEp(w)) dw) .

271 Z m=1
(2.11)

When the contour integrals are evaluated and explicit forms are used for the self-energy contributions, the OEP
energy expression differs &om the M@ller-Plesset [24] energy expression, familiar in molecular calculations, only in that
(1) OEP orbitals and orbital energies are used in the OEP energy expression instead of the Hartree-Fock orbitals and
energies used in M(|)lier-Plesset theory, and (2) in the M@ller-Plesset energy expression, terms of third and higher order
contain self-energy insertions which are absent in the OEP energy expression. These self-energy insertions disappear
naturally when in6nite-order resummations are carried out and the exact Dyson orbitals and orbital energies are
introduced as in Klein s expression. Writing terms explicitly to second order,

EGEP = ——) (vp iV' i@ ) + v(r)nGEp(r) dr+ — d d
2

"'" '' '+2
~12i=1

2
i,j)a,b j a b

(2.12)

obc . . fghi jklm opnq . . . zyz,
unoccupied occupied either

and the integral is between two-electron Slater determi-

where it is convenient here and throughout to use the
orbital index convention,

nants,

(d'@~ I'/»~ld-A) = J f d'i(')d'l(2)('/ »)
x [@ (1)gs(2) —@z(1)g (2)j dld2.

(2.14)
This makes it obvious that the present OEP energy
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expression reduces to the HF energy expression in the
absence of correlation, so the generalized OEP problem
treated here reduces to the classic OEP problem of Sharp
and Horton [1] and Talman and Shadwick [2] when cor-
relation is neglected.

C. OEP equation

Having carefully defined the optimized efFective
exchange-correlation potential, it remains to develop a
useful equation for finding this OEP.

This requires the solution of Eq. (2.10) which may be
expanded as

~EQEp [GOEp]
gvOEP (r)

bEQEP hGQEP(l, 2; u) dld2d(u.
h'GQEP (1,2; (u) bvpEP (r)

(2.15)

The first derivative under the integral signs can be eval-
uated with the help of Eqs. (2.2) and (2.4),

(2.17)

which implies that

6GQEP (1,2; (u) h'GQEP(3, 4; w)

x Gopp(4, 2; td) d3d4. (2.18)

Now, from Eqs. (2.6) and (2.7),

so

b GQEp) 1, 2; (u

gv QEP (r)
(2.19)

bGQEP(1, 2; u)
opp ) GQEP(l, ro", u)GQEP(rcr, 2; ur).bv~EP r

(2.2o)

Inserting Eqs. (2.16) and (2.20) into Eq. (2.15) gives

o=) GQEp (rcr, 2; cu) (Z"'(2, 1;~; GQEp]
271 2 Q

(M(2, 1;(u; Gopp] + urh(2 —1)] .
8GQEP(1, 2; ~) 27ri

(2.16)

The derivative bGQEP/6'v„, (r) can be derived begin-
ning &om the identity

has been used. (The factor of e'" has been absorbed in
forming the contour integral. ) Since the ub(2 —1) term
disappears when the contour integration is performed,
the final OEP equation is

o=) GQEp (ro, 2; ~)(Z"'(2, 1;~; GQEp]
2%x

—v„, (ri) b(2 —1)jGQEp (1,ro; ~) dld2d~ . (2.23)

Comparison with Eq. (1.5) shows that this is just the
linear response Sham-Schliiter equation and thus v„,
may be identified with the exact Kohn-Sham exchange-
correlation potential v„, (within the linear response ap-
proximation to the Sham-Schliiter equation). This iden-
tification means that v„, can now be interpreted as the
variationally best local approximation to the exchange-
correlation self-energy Z"'(u). Note that this confirms
previous conjectures that density-functional approxima-
tions for the self-energy intended to improve upon the
(exact) Kohn-Sham potential will have to be nonlocal in
time [25—27] and/or in space [28—30].

It is worth emphasizing that the fact that the (lin-
ear response) difference between the Kohn-Sham and the
true charge densities is zero has not been used in the
present derivation. Rather, here, it emerges as a conse-
quence of the impositiori of the locality constraint in a
variational many-body theory energy expression. This is
in contrast to the work of Sham et al. which is based
on the requirement that the Kohn-Sham and true charge
densities are equal. It is the fact that these two difer-
ent approaches yield the same equation for v„, (in the
linear response approximation) that allows v„, to be in-
terpreted as the variationally best local approximation
to the nonlocal (in space and time) exchange-correlation
self-energy operator Z"'(m).

It also seems worth mentioning the connection with the
widely used Mufller-Plesset form of many-body perturba-
tion theory. As was mentioned in Sec. IIA, the M@ller-
Plesset energy expression is the same as Klein's energy
expression up to second order. Thus it might seem that
the derivation could have been carried out directly start-
ing &om the Mpller-Plesset expression without recourse
to Green functions. Indeed, the result obtained here can
also be obtained, to second order, by taking the varia-
tion of the M@ller-Plesset energy expression with respect
to the orbitals of a local potential. However, in order
to see why the orbital energies do not enter into this
variation, a return to the Green function formalism, and
Eq. (2.15) in particular, is required. It is then seen that
the infinitesimals, ig, used in evaluating the contour inte-
grals cause terms arising &om variations over the orbital
energies to cancel out.

—v„, (ri)b(2 —1) + ub(2 —1))
x GQEp(l, ro", (u) dld2d(u, (2.21)

III. QUASIPARTICLE LIMIT
AND FURTHER APPROXIMATIONS

where the relation

M(2, 1; Gopp] = Z"'(2, 1;u; GQEp] —v„, (ri)h(2 —1)

(2.22)

One objective of OEP work, which has already been
touched upon in the present paper, is the use of the
OEP to obtain an improved conceptual understanding
of the exact exchange-correlation potential. In this sec-
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tion, the Sharp-Horton —Krieger-Li-Iafrate approximation
to v„, (itself a correction to Slater's original concept)
is generalized to include correlation in the quasiparticle
limit. This involves the use of certain approximations
which are invoked for the insight they provide, rather

than their quantitative accuracy.
The Grst step in this direction is to carry out the con-

tour integrations axid rewrite the OEP equation (2.23)
as an exact matrix equation in the orthonormal basis of
OEP orbitals. This gives

OEPA
OEP OEP+ Vxc Jia ~ ~ OEP OEP+ ia + ia(Ca J + ia4Ci )

E —Eo ia ia
ZP &OEP ZIP OEP

i(j '2

gh (~OEP ) yh (~OEP )
+) ) yOEP( )qOEPe( )

ab( b ) ab( a ) +
Ea(b

(3 1)

where c.c. denotes the complex conjugate of the previous
term, the exchange-correlation self-energy

Z"'((u) = Z*+ Z'((u) (3.2)

Z'(~) = Zb((u) + Z"(~). (3.3)

Specifically, provided that Z (u) has only simple poles,

has been divided into its energy-independent exchange
part and its energy-dependent correlation part, and the
correlation part has been divided into two parts which
correspond roughly to "hole" and "particle" parts,

I

spans the entire range of occupied orbital energies. Thus,
here, it is probably best to think of this approximation
being applied to somewhat more artificial systems such
as molecular calculations which are restricted to an ac-
tive space of outer valence orbitals (presumably through
the use of effective core potentials) or calculations us-
ing certain simpli6ed self-energy approximations such as
the Coulomb hole and screened exchange (COHSEX) ap-
proximation [23,29]. Assuming that the hole and particle
parts of the self-energy are individually slowly varying,
and adding and subtracting Z," (e, ) (or its complex
conjugate) to the numerators of the coefficients in the
first line of the right hand side of Eq. (3.1), gives

and

(3.4) OEPq

ia i a

Z"(1,2;(u) = Z (1,2;(u) —Z"(1,2;(u), (3 5)

(gZxc ) Zxc( OEP) Zxc( OEP)
OEP ~0EP) ~=(c&&&+c&&&)/g ~r 8

(3.6)

are negligible. For present purposes, it is assumed that;
this approximation is valid over the entire energy range.
Realistically, however, the quasiparticle regime rarely

where ul and RI denote the poles and corresponding
residues in the upper half complex u plane.

In the absence of correlation, Eq. (3.1) for the
exchange-correlation potential v„, reduces to the cor-
responding equation for the exchange potential familiar
from HF OEP work. However, the e8'ect of including cor-
relation is not simply to replace Z* with Z"'(u) in the HF
OEP equation, but rather yields an exchange-correlation
OEP equation with a more complicated structure. This
is hardly surprising. Nevertheless, in the limit of a self-
energy which is a slowly varying function of w (quasipar-
ticle limit), Eq. (3.1) for v„, does reduce to a simpler
equation analogous to that for the exchange-only case.
In this regime, terxns involving derivatives of Z"'(u),

yxc(&OEP )

xa a

This is the simple analog of the HF OEP equation,
with the exchange self-energy replaced by the exchange-
correlation self-energy. Note that the correlation eKects
that remain in the quasiparticle limit come from the
particle-hole cross terms, while the particle-particle and
hole-hole contributions are negligible in this approxima-
tion.

There is a certain arbitrariness in going &om Eq. (3.1)
to Eq. (3.7), in that one could just as well have added
and subtracted Z", (eOEP), instead of Z,". (e, ), in which
case Z", ' in Eq. (3.7) would be evaluated at e instead
of at e, Of course the difference between these two
equations is again a derivative of Z", which is negligible
in the quasiparticle approximation. However, the choice
of e, is appealing from the point of view of 6nding an
(approximate) form for the exchange-correlation poten-
tial which depends, like the density, only on occupied or-
bitals. Such an approximation will be given in Eq. (3.14).

First, however, note that the dependence on occupied
orbital energies arises naturally in an alternative deriva-
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tion of Eq. (3.7) within the quasiparticle approximation,
where Dyson's equation becomes

[~ ] + &GEP ~ [gxc( GEP) GEP])@

0 = bnQEP(r) = ) ) @; (ro)h'@;(ro.) + c.c.

(3 9)

(3.8)

As was shown in Sec. IIC, the OEP equation (2.23)
(equivalently the linear response Sham-Schliiter equa-
tion) is equivalent to the statement that the linear
response of the charge density to the perturbation
[Z"'(~) —vQEP] is zero. Here it is convenient to use
the density condition

The sum over i is, of course, only over occupied orbitals
and

(@OEPI gxc (eOEP) OEP I@QEP)
(1) ) @OEP(1)

v' i +xc i

r

(3.10)
After rearrangement, Eq. (3.9) becomes

(vOEP) gxc (&OEP )).).0, (ro)4. '(ro) O'Ep' 'QEp +c.c. = ) ) @, (ro)q. *(ro) QEp"' QEp +c.c.
ia ia

gxc (&OEP) yxc (&OEP )

cr i(j
(3.11)

Since this is in the quasiparticle regime, the last line, which involves only derivatives of the exchange-correlation sel
energy, can be neglected and Eq. (3.7) results. Of course, in the exchange-only case this involves no approximation
at all, since E* is energy independent.

In a footnote, Sharp and Horton(SH) [1] proposed an approximation to their OEP equation that was subsequently
elaborated by Krieger, Li, and Iafrate (KLI) [21,22]. This SH-KLI approximation was found to work surprisingly
well in the exchange-only case and can now easily be applied to the exchange-correlation case in the quasiparticle
approximation. It simply consists of approximating the denominators in Eq. (3.7) by an average orbital energy
di8'erence, which then cancels out, leaving

) ) @, (ro.)@ '(ro)(v„, ); + c.c. = ) ) @, (ro)@ '(ro)Z,"'(e, ) + c.c.
ia

(3.12)

Using the orbital completeness relation,

) @OEP(1)M ) QOEP(1)(qOEPIMI@OEP)

i —) g "(1)(g "I MI@

= M@; (1) —) Q (l)M;, (3.13)

where M is vQEP or Z"', then allows Eq. (3.12) to be rewritten as

OEP
) ) Re(@, '(ro )E"'(e, )@; (ro.))

CJ ):).I@, "(ro)I'
Z

) ) (yOEP I+xc(&OEP) gOEP I@OEP) I@OEP (ro ) I2

):).I@, "(ro)l' (3.14)

The first term on the right hand side is simply the
exchange-correlation version of Slater's original local ex-
change potential [14] while the second term includes the
6rst-order orbital energy correction,

eQEP + (@QEPIgxc(eQEP)

whose importance has been well illustrated in Refs.
[21,22] for the exchange-only case.
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0 G~ENp 1 ) 3) cc)

x (Z" (3, 4;~;G „]—v„.'NP(3, 4))
X GoENp(4, 2; 4)) d3d4dCO

or equivalently

bq(1, 2) = 0

(4.1)

(4.2)

states that the linear response of the one-particle density
matrix to the perturbation [Z"'(w; G+ENP) —voENP] is
zero, as compared to a corresponding statement about
the density in the OEP equation (2.23). One might ex-
pect that there would be no solution of this equation
for v„, , except if correlation were neglected [in which
case Z"'(u) = Z" = v„, ], because the eigenvalues
(natural orbital occupation numbers) of correlated and
independent-particle density matrices are very difFerent.
Nevertheless, a first-order variation does vanish in some
cases. The OENP analog of Eq. (3.1) involves direct
product functions rather than simple products, with the
result that no solution v„, exists unless the particle-
particle and hole-hole terms vanish. This is the case for
the homogeneous electron gas, and is also true in the
quasiparticle limit, where the self-energy is a slowly vary-
ing function of energy. However, unlike the spatially local
case, no solution for the OENP exists in the general cor-
related case.

Returning now to the fully local case, the present
derivation of the OEP, taken together with the Sham-
Schluter equation for the exact Kohn-Sham v „can be
regarded as an alternative derivation of the Kohn-Sham
equation, as the variationally best local approximation
to the Dyson quasiparticle equation. This derivation is

In the present paper, the HF OEP model of Sharp and
Horton and of Talman and Shadwick has been general-
ized to treat the correlated case, through the use of a
variational energy expression which is a functional of the
Green function. This variational approach is complemen-
tary to the approach of Sham and Schliiter [3] and Sham
[13] who used the fact that the Kohn-Sham orbitals must
yield the true charge density to give an equation for the
exact Kohn-Sham exchange-correlation potential. The
fact that these two di6'erent approaches yield the same
equation for the potential (in the linear response approxi-
mation) then allows the Kohn-Shain v„, to be interpreted
as the variationally best local approximation to Z"'(a).

One consequence of this is that attempts to improve on
v„, as an approximation to Z"'(cg) should involve nonlo-
cality either in space or in time. Since energy dependence
of the potential is more difBcult to handle computation-
ally than is spatial nonlocality, it is interesting to con-
sider the possibility of lifting the constraint of locality
in space, while still requiring locality in time, to obtain
an optimized effective nonlocal potential (OENP). The
resulting OENP equation

approximate, insofar as it involves the linear response
approximation to the Sham-Schliiter equation. Never-
theless, it is interesting kom the point of view of in-
terpretation. In the Kohn-Sham derivation, the orbitals
are introduced as a physically fictitious, mathematical
device. Here, on the other hand, it is natural to con-
sider the Kohn-Sham orbitals and orbital energies as ap-
proximations to the Dyson orbitals and orbital energies.
%whether this approximation is good enough to be useful
is another question, and one which can really only be an-
swered computationally. The infamous band-gap prob-
lem is not very encouraging with regard to the quality of
the Kohn-Sham orbital energies themselves, as approx-
imate Dyson orbital energies. Because of the problem
of derivative discontinuities pointed out by Perdew and
Levy [31], it is to be expected that some correction be-
yond a local potential is needed in order to obtain a good
approximation to the Dyson orbital energies. Indeed,
first-order corrections to the Kohn-Sham orbital energies
have been found to yield a considerable improvement
[32]. However, this difficulty with the orbital energies
does not imply that the Kohn-Sham orbitals are necessar-
ily poor approximations to the Dyson orbitals. Indeed,
even if every Dyson orbital were identical to some Kohn-
Sham orbital, the corresponding orbital energies could
still difFer by an orbital-dependent constant, as is easily
seen by subtracting the Kohn-Sham equation &om the
Dyson equation. [In this context, it is interesting to note
that the energy expression (2.12) depends more heav-
ily on the orbitals than on the orbital energies. ] In the
correlated case, both the number and normalization of
Kohn-Sham orbitals dier kom that for Dyson orbitals,
so the approximation of Dyson orbitals by Kohn-Sham
orbitals means a many-to-one correspondence in which
each Dyson orbital is proportional to some Kohn-Sham
orbital, with the proportionality constant given by the
spectroscopic factor. This is analogous to the "target
Hartree-Fock approximation, " commonly used in analyz-
ing spectra [33], where Hartree-Fock orbitals are used as
approximate Dyson orbitals. This "target Kohn-Sham
approximation" is presented in detail in Ref. [34], where
the practical utility of Kohn-Sham orbitals as approxi-
mate Dyson orbitals, for calculating electron momentum
spectroscopy triple difFerential cross sections, is investi-
gated.
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