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Solution to the Kohn-Sham equations using reference densities
from accurate, correlated wave functions for the neutral atoms helium through argon
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We solve the Kohn-Sham equations using the Zhao-Parr constraint potential within the Levy
constrained-search method. Accurate exchange-correlation potentials, orbital energies, and components
of the total energy including the Kohn-Sham kinetic energy T„the kinetic-energy contribution T, to the

exchange-correlation energy, and the exchange-correlation energy are calculated for the neutral atoms

He through Ar. Reference densities used in the Zhao-Parr constraint potential are calculated from accu-

rate, correlated, nonrelativistic wave functions. The exchange-correlation potentials exhibit characteris-
tic intershell peaks, one for the atoms Li through Ne and two for the atoms Na through Ar.

PACS number(s): 31.15.Ew

INTRQDUCTIQN

Density functional models based on the Kohn-Sham
equations are of great importance in producing approxi-
mate solutions to the problem of determining the struc-
ture of large molecular and solid-state systems. Much at-
tention has been devoted to developing ever more accu-
rate models for the exchange-correlation potential and
the associated density function als for calculating the
exchange-correlation energy. As models for the
exchange-correlation potential become more accurate
and become better able to model electron correlation, it
becomes necessary to have accurate numerical quantities
against which new models can be tested and judged.
Such accurate quantities have already been obtained for
Be and Ne [1], the He isoelectronic sequence [2], the Be
isoelectronic sequence [3], He and Ne [4], and He, Be,
Ne, and Ar [5]. In this paper, we report accurate calcula-
tions of effective exchange-correlation potentials and ac-
curate values of the Kohn-Sham kinetic energy T„ the
exchange-correlation energy E„,the kinetic-energy con-
tribution T, to E„,and the Kohn-Sham orbital energies
E; using electron densities obtained from accurate nonre-
lativistic, correlated wave functions for the neutral atoms
He through Ar.

A constrained-search [6,7] method for solving the ex-
act Kohn-Sham equations when the density po is known
has been previously outlined [5,8,9]. The Kohn-Sham
equations are expressed in the form

—
—,
'V' +vo(r)+ 1 ——vJ(r)+vc(r) N;(r)

potential due to the charge density p (r) =g,. ~4; (r) ~:

vJ(r) =f, dr' .
A, (rP )

[p (r') —po(r')][p (r) —pz(r)]
C(A, ) =—,

' dr dr'
/r —r'/

and the corresponding potential is

p (r') —po(r')
vc(r) =A,f, dr' .

(3)

The angular integration of Eq. (4) is performed analyti-
cally for spherically symmetric atomic systems and the
radial integral is evaluated numerically.

The exchange-correlation potential is

v„,(r) = lim vc(r) ——vt(r) (5)

The exchange-correlation potential should decay at large
r as —1/r [11] and the term —(1/N)vJ(r) provides this
correct long-range behavior. Numerical checks verify
that v„, calculated from Eq. (5) approach —1/r at large r.

THE REFERENCE DENSITIES

The Fermi-Amaldi self-interaction correction [10] is in-
cluded so that there will be less burden on vc and to give

v„, the correct long-range behavior. The potential v& is
the functional derivative of the constraint, which forces
p to approach po as the Lagrange multiplier A, ap-
proaches infinity. The constraint used is

ek(g) A,
( r )

where the desired solution is for X—+ ao. The potential vo
is the external potential. The potential v& is the classical

'Permanent address.

The reference densities po for Li and 8 through Ar
were obtained from configuration interaction (CI) wave
functions using basis sets of Slater type orbitals (STO's).
The Li calculations were performed using the STO basis
set from Jitrik and Bunge [12] and from Chakrovorty
et al. [13]. The STO basis sets from Chakrovorty et al.
[13]were combined with the STO's used by Clementi and
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p(r) =
—,'p+(r)+

3 p (r)+ 3 p (r), (6)

where p is the density obtained from a wave function
with ML = —1, etc. These spherically averaged, spin-
traced densities are used as the reference densities po in
the constraint potential vz.

The reference densities satisfy the nuclear cusp condi-
tion relatively well. The densities should decay at long
range as [11,17—20]

p(r) —r ~exp( 2ar),— (7)

where a = (2 V,,„;,) '~, V,,„,, is the ionization potential,
and P=(Z N+ 1 ) /a——1. To check the long-range
behavior of our CI densities, we have computed the quan-
tity

d ln[p(r))
dr

2( 1/a —1) 2'

The value of ~b.
~

at a density of 10 is fairly representa-
tive of

~
6

~

in the rest of the tail of the density. The values

Roetti [14] for the atoms B through Ar. Configuration
interaction and self-consistent Geld calculations were per-
formed using the AToMcl [15] and ATQMscF [16] com-
puter programs, respectively, available in the MGTEcc-90
package of programs. Densities obtained from the CI
wave functions were scaled to satisfy the virial theorem
where needed. Virial scaling affected most calculated
quantities in the last one or two digits reported, except
the total energy E= —T, which remained unchanged for
all values reported except for the atoms Al and P.

The CI densities are spherically averaged and spin
traced. The spherically averaged densities for P states
correspond to ensemble averaged densities. For example,
the density of the P state for boron is

of ~h~ &0. 1 for atoms He, Li, Be, B, F, Na, Mg, Al, and
S; 0. 1& ~b,

~

&0.4 for N, Ne, and Si; and 0.4& ~h~ &0.6
for atoms C, 0, Cl, and Ar.

CALCULATIONS AND RESULTS

The Kohn-Sham effective potential is found by solving
Eq. (1) using either an extrapolation or iterative scheme.
In the extrapolation scheme, Eq. (1) is solved with
A, =100, 140, and 200, and extrapolating to A, = oc. A
quadratic extrapolation formula in 1/A, is used. In the
iterative scheme, the constraint potential from each itera-
tion step is incorporated as part of the known potential in
subsequent steps. At each iteration step, a new unknown

part of the constraint potential vz is found self-
consistently. Iteration continues until the constraint, Eq.
(3), is less than a specified tolerance, usually 10 . The
total constraint potential vz is the sum of the con-
straint potentials found at each step. The two schemes
produce about the same results, with the magnitude of
the difference less than 0.03 a.u. in T, for the heavier
atoms, except for Si where the magnitude of the
difference in T, was 0.06 a.u.

The radial parts of the Kohn-Sham orbitals are con-
structed from the orthogonal set

P„=e ""~ r L„'+ (pr ), n =0, 1. . .M —1,
where p is a scale factor chosen, where possible, to pro-
duce a calculated density p& that is within an order of
magnitude of the reference density po in the region
r =10—15 a.u. Two values of p were used for the heavier
atoms, one for s orbitals and another value for the p or-
bitals. The I.„+ are the Laguerre polynomials. The
larger atoms have exchange-correlation potentials, which

TABLE I. Kohn-Sham orbital energies and the negative of the ionization potentials in atomic units.
The exact ionization potentials V~,„;,are taken from Ref. [13].

Atom

He'
Li
Be'
B
C
N
0
F
Ne
Na
Mg
Al
Si
P
S
Cl
Ar

1$

—0.9039
—2.085
—4.21
—6.91

—10.34
—14.44
—19.20
—24.66
—30.82
—38.08
—46.38
—55.61
—65.64
—76.63
—88.32

—100.94
—114.43

2$

—0.1998
—0.338
—0.516
—0.726
—0.958
—1.141
—1.381
—1.654
—2.223
—3.080
—4.154
—5.406
—6.621
—7.995
—9.504

—11.12

—0.299
—0.410
—0.528
—0.586
—0.684
—0.797
—1.183
—1.853
—2.734
—3.800
—4.815
—5.990
—7.297
—8.704

3$

—0.182
—0.259
—0.396
—0.621
—0.684
—0.791
—0.932
—1.058

3p

—0.214
—0.357
—0.374
—0.416
—0.491
—0.547

VioniZ

—0.9037
—0.1981
—0.3424
—0.305
—0.4138
—0.5340
—0.5005
—0.6402
—0.7923
—0.189

0.281
—0.220
—0.300
—0.3855
—0.3807
—0.4766
—0.5792

'Reference [5].
The neon values are computed with a wave function that is slightly improved over the one used in Ref.

[5].
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TABLE II. The CI energies, exact energies, and components of the energy (in a.u.). The exact ener-
gies are taken from Ref. [13]except for the He value, which is from Ref. [21].

Atom

He'
Li
Be'
B
C
N
0
F
Ne
Na
Mg
Al
Si
P
S
Cl
Ar

—2.9037
—7.4779

—14.6669
—24.6499
—37.8415
—54.5814
—75.0537
—99.7164

—128.926
—162.24
—200.024
—242.295
—289.276
—341.172
—397.991
—460.004
—527.388

Eexact

—2.9037
—7.4781

—14.6674
—24.654
—37.845
—54.589
—75.067
—99.734

—128.94
—162.25
—200.05
—242.35
—289.36
—341.26
—398.11
—460.15
—527.54

2.050
4.067
7.220

11.647
17.856
26.178
36.637
49.830
66.086
80.030
95.901

112.95
133.36
153.69
177.24
203.33
232.21

&
—z/r &

—6.753
—17.154
—33.708
—56.98
—88.21

—128.41
—178.12
—238.70
—311.15
—389.76
—479.18
—578.65
—690.70
—812.47
—947.21

—1094.74
—1255.86

2.867
7.44

14.59
24.56
37.72
54.43
74.86
99.47

128.63
161.92
199.69
241.94
288.92
340.76
397.60
459.59
527.17

0.037
0.038
0.074
0.095
0.12
0.15
0.19
0.24
0.30
0.31
0.34
0.35
0.36
0.41
0.39
0.41
0.21

Eexc

—1.068
—1.827
—2.772
—3.87
—5.21
—6.78
—8.43

—10.32
—12.49
—14.44
—16.43
—18.53
—20.86
—23.15
—25.62
—28.19
—30.91

pv„d r

—2.021
—2.787
—4.429
—6.028
—8.171

—10.68
—13.02
—15.94
—19.39
—20.08
—22.85
—26.12
—31.79
—33.59
—36.65
—40.46
—44.45

'Reference [5].
The neon values are computed with a wave function that is slightly improved over the one used in Ref.

[5].

are fairly deep near the nucleus where the density is high.
Higher values of p help the convergence of Eq. (1) for the
atoms with larger atomic number. Unfortunately, these
higher values of p sometimes result in p, which differ
from po at large r by more than an order of magnitude.

There are three possible sources of errors in these cal-
culations. First, there are the reference densities them-
selves. The densities for He, I.i, and Be are very nearly
the exact densities, but the others are not, even though
they are calculated from relatively accurate CI wave
functions. The error due to inexact densities is probably
the greatest source of error in these calculations. The
second source of error is in the choice of the basis sets

used for the Kohn-Sham orbitals. A basis set that has a
high p needed for convergence of Eq. (1) when the densi-
ty is high near the nucleus may not be the best one for
obtaining the correct long-range behavior. The third
possible source of error is in the extrapolation or iterative
procedures; we believe these are small.

The Kohn-Sham orbital energies are reported in Table
I. The orbital energy of the highest occupied orbital is
nearly equal to the negative of the exact ionization poten-
tial for the lighter atoms where the densities are more ac-
curate; they are relatively close even for the heavier
atoms where the densities are not quite as accurate. We
expect more accurate ionization potentials will be found
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FIG. 1. The exchange-correlation potentials (in a.u. ) for Li
using the JB basis is the solid line, and using the CCiDPF basis
is the dashed line.

FIG. 2. The exchange-correlation potential (in a.u. ) for
atoms Li through C. Li is the solid line; Be is the long dashed
line; B is the alternating long and short dashed line; C is the
short dashed line.



SOLUTION TO THE KOHN-SHAM EQUATIONS USING. . . 1983

-4
L

5

-I/

/,
'

7 — I
li

I
I-8'

-10- (
I

12

-9
0.5

I

1.5
-16— I

0.5
I

1.5

FIG. 3. The exchange-correlation potential (in a.u. ) o.) for N
through Ne. N is the solid line; 0 is the long dashed line; is
the alternating long and short dashed line; Ne is the short
dashed line.

FIG. 5. The exchange-correlation potential (in a.u. ) for P
through Ar. P is the solid line; S is the long dashed line; Cl is
the alternating long and short dashed line; Ar is the short
dashed line.

when higher quality densities are used as the reference.
The constrained-search quantities of interest are in t e

energy expression

E = T, +E,„+J+E„, , (10)
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FIG. 4. The exchange-correlation potential (in a.u. ) for Na
through Si. Na is the solid line; Mg is the long dashed line; Al

~ ~

is the alternating long and short dashed hne; ~i is the short
dashed line.

where T, is the Kohn-Sham kinetic energy, E,„ is the
electron-nuclear attraction energy, J is the Coulomb en-
ergy, an d E is the exchange-correlation energy. n a-

~ ~ ~

dition we have computed T„ the kinetic-energy contri-
bution to E„„and the quantity p(r)v„, (r)dr The C.

c~

I
energy is used in the calculation of the exchange-
correlation energy E„,.

The energy components are reported in Tab . WTable II. We
believe the reported values of T„T„and „, ynd E are very
near the exact ones for the lighter atoms. These do not
have significant errors due to basis set selection for the

atoms i roug g.h h M Based on calculations using different
vaues o p an1 f d different numbers of basis functions, we

rou hestimate there are basis set errors for atoms Al t roug
Ar with the error increasing to around +0. 1 a.u. in, or
Cl and Ar. The quantity T, is computed as the relatively
small difference between two numbers that are two or
three orders of magnitude larger than it. Its values are
sensitive to asis set basis set selection and the density for t e
heavier atoms. Consequently, the values of T, reporte
for the heavier atoms are less accurate t ann for the
lighter atoms.

The Li CI calculations were performed using two
different basis sets: the STO basis set of Jitrik and Bunge
(JB) [12], and the STO basis set of Chakravorty et a .
(CGDPF) [13]. The JB basis set produced the best total
energy an prg d resumably the most accurate exc ange-
correlation potential. In Fig. 1, the two potentials are
shown near the nucleus. The exchange-correlation poten-

'
1

'
he CGDPF basis set exhibits an apparent anomaly

by plunging sharply at small r. This is diminished in t e
exchange-correlation potential using the more accurate
density obtained with the JB basis. The only differences
between the two calculations are the densities compute
from the two different CI wave functions. A simi ar
probably anomalous plunge is present in our previous He
results [5] and is not present in the He exchange-
correlation potential of Umrigar and Gonze [2]. Formal
analysis of the exchange-correlation potential for two-
electron systems indicates that it is finite near the nucleus
[20,22]. This has been verified by numerical calculations
[2,4,5]. The resent work and previous numerical calcu-
lations [3—5] suggest, though do not prove, that the
exchange-correlation potential is finite near the nucleus
for systems with more than two electrons.

The exchange-correlation potentials are shown in Fig.
2 for the atoms Li through C, in Fig. 3 for the atoms N
through Ne, in Fig. 4 for the atoms Na through Si, and in
Fig. 5 for the atoms P through Ar. The v„, ex i it
characteristic peaks in the intershell regions: one peak



1984 ROBERT C. MORRISON AND QINGSHENG ZHAO 51

for Li-Ne and two for Na-Ar. The maxima in v„, for Na
occur at r =0.31 and 2.53 a.u.

quantities will aid in the search for better exchange-
correlation potentials.

CONCLUSIONS ACKNOWLEDGMENTS

We have computed a number of total energy com-
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tional models. The exchange-correlation potentials and
the energy components for the lighter atoms are expected
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for the heavier atoms. It is our hope that these computed
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