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Enhanced selective reAection from a thin layer of a dilute gaseous medium
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A theory of selective reflection and transmission is developed for a system consisting of a thin layer of
a dilute atomic vapor sandwiched between two transparent solids with parallel interfaces. Strong effects
of spatial dispersion due to the atomic motion and electronic quenching on gas-solid interfaces are ac-
counted for. It is shown that both even and odd Doppler-free resonances may occur in selective
reflection, depending upon the thickness of the vapor layer. It is also found that the amplitude of selec-
tive reflection is a result of the interference between reflections from the two boundaries of the vapor-
solid interfaces and, hence, may be greatly enhanced under certain conditions.

PACS number(s): 32.70.Fw, 32.70.Jz, 42.25.Hz, 42.25.Gy

I. INTRODUCTION

The reAection of light within a transparent dielectric at
the interface between the dielectric and an atomic vapor
shows a sharp peak when the light frequency matches the
transition energy of the atom. This phenomenon is
known as the selective reflection (SR), and its study dates
back to early this century. The SR observed by Wood [1]
is accounted for by a conventional dispersion theory in
which one assumes a local relation between the electric
field and the induced polarization in a homogeneous
medium.

In the SR experiments from a glass-mercury vapor in-
terface, Cojan [2] observed evidence for spectral narrow-
ing of reflection spectra relative to the Doppler broaden-
ing, while the conventional dispersion theory predicted a
spectral width of the order of the Doppler width. There-
fore, the conventional dispersion theory fails to describe
the optical properties of rarefied atomic vapor when the
Doppler broadening exceeds the homogeneous width of a
resonant atomic transition. Similar spectral narrowing
phenomenon was also observed by Woerdman [3] in his
measurements of SR from a glass-sodium vapor interface
with various vapor densities.

These experiments suggest that the transient polariza-
tion of vapor atoms associated with wall collisions is re-
sponsible for the spectral narrowing. A theory along this
line of thought was then developed by Schuurmans [4]
which described explicitly the transient polarization
effects associated with collisions of atoms at the interface.
Predictions of this theory have been verified in a number
of experiments [5—7].

More recently, it is shown that Doppler-free selective
reAection spectroscopy can be a powerful tool for the in-
vestigation of long-range atom-wall interactions [8]. The
sub-Doppler resonance in selective reAection has also
promising nonlinear optical properties [9,11]. On the

other hand, the theory is far from complete even in the
linear regime. The purpose of this paper is to investigate
the linear optical properties of a resonant atomic vapor in
a layer of thickness l of the order of the wavelength A, of
the incident light. The boundaries of this layer of vapor
are surfaces of transparent dielectric materials. Since
both the selective reAection and ordinary nonselective
reflection can take place at these surfaces simultaneously,
the interference between them plays an important role in
the shape of the selective line proNe. As the reAectivity
at these surfaces can be changed by different coatings, it
is possible to simulate a condition that the vapor layer is
surrounded by vacuum. We start with this condition in
our calculation of selective reAection, and make necessary
corrections due to the presence of dielectrics to the re-
sults later.

II. REVIEW OF THEORY

and

P (x, t) =
—,'P (x)exp( i cot) +c.c—. , (2)

respectively, for a monochromatic electromagnetic plane
wave propagating along the positive x direction in the
gas. It is straightforward to show that the spatial parts of
E and P satisfy the equation

d E(x) +k E(x)= —4~k P(x) .
dx

(3)

Consider a thin layer of gas consisting of two-level
atoms with a transition frequency co2, between levels ~1)
and ~2). The gas is confined between two planes at x =0
and x =l. The space x &0 and x ) l is simulated vacu-
um. By neglecting the generation of harmonics, we can
write in standard notation the field and polarization in
the resonance region to)) ~co2,

—co~, as

E (x, t) = —,'E (x)exp( icot)+c c. — .

'Permanent address: State Optical Institute, St. Petersburg,
199034, Russia.

The polarization can be expressed as

P (x)=2ND (p, (x, v) ), (4)
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where N is the number density of gas atoms, D the transi-
tion dipole moment, and v the x component of the atomic
velocity. The symbol ( ) means the average of the en-
closed quantity over a Maxwellian distribution of all ve-
locities. We have defined in Eq. (4} off-diagonal matrix
elements p2& of the density matrix which can be written
as

p2, (x, t, v) =pz, (x, u)exp( i cot—) .

If the intensity of light is not strong enough to saturate
the resonant transition, one finds that p2, satisfies the
equation

This means that only steady-state solutions are con-
sidered. In realistic cases, however, one has to consider
the transient solution of Eq. (6) as well.

In order to find a particular solution to Eq. (6), we have
to impose the boundary conditions. This is accomplished
by requiring that atoms are in their ground state (or un-
polarized} when they are at surfaces of dielectric materi-
al. As a matter of fact, we limit our discussion to the
case that atoms leaving the dielectric surface have zero
polarization. This choice has sound basis as has been ex-
perimentally demonstrated in the literature [10]. Thus,
we set

~p21 l
u +[y+i(co2i —co)]p2, = DE(x) .

Bx 2A and

p2, (x =O, v &0)=0 (8a)

For a very dense vapor, it may be assumed that the
homogeneous width y is much larger than the Doppler
width kv T where k is the wave number and v T the most
probable thermal velocity of atoms. Thus, the first term
in Eq. (6) can be neglected and we have

.DE(x) 1
ppi x, v —1

2R y+i (co~, —co)

Substituting Eq. (7) into Eq. (5) leads to the well-known
results that inspired the classical experiment on selective
reAection from mercury vapor as early as 1909.

For a dilute gas, the homogeneous width is small and
kuT )y. Hence the first term in Eq. (6) is important. In
the conventional dispersion theory, one still neglects the
first term but assumes that its effect can be accounted for
by»mply «placing o~» —~ in Eq. (7) by co» —~+kvT.

I

pz, (x =l, u (0)=0 (8b)

as our boundary conditions. We shall solve Eqs. (3), (4),
and (6) in the next section with boundary conditions (8).

III. PERTURBATION METHOD

In the limit of large Doppler broadening, or kvT »y,
the optical density of the atomic vapor may be so small
that we can apply the perturbation theory. We start with
the corresponding homogeneous equation of Eq. (3), and
find the unperturbed electric field as

E(x)=Eoexp(ikx) . (9)

Next, we insert Eq. (9) in Eq. (6) which is then solved
with boundary conditions (8). This yields

y+i (co2, —co)
exp(ikx ) —exp

DEo
p2, (x, u &0)=i

y+i (co2, —co+ku)
(10a)

for v & 0 or atoms moving to the right, and

y+i (co&i
—co+kv)

y+i (to2, —co)
exp( ikx ) exp ik—l — (x —l )

DEo . v

p2, (x, v (0)=i
2A

(lob)

for v & 0 or atoms moving to the left.
When these density matrix elements are averaged over

all velocities and substituted into Eq. (4), we can calculate
the polarization P(x). With the polarization known, the
electric field can then be obtained to the first-order
correction by solving the inhomogeneous equation (3). In
terms of the Green's function, this solution is formally
given by

Ei(x)=2~ik f P( x') exp(i k~ x—x'~)dx' .
0

E, (x (0)=E„exp( ikx), —

where we have defined

E„=2mik f e'" P(x. ')dx' .
0

For x & l, we have the transmitted field

E, (x ) l) =E,exp(ikx),

where

E, =2nik f e ' "'P(x')dx' .
'

0

(12)

(12a)

(13)

(13a)

This equation holds for all x but has different physical
meaning in different regions. For x (0, Eq. (11) gives the
rejected field

The field inside the vapor is not of our concern, and we
do not write down its explicit expression for the region
0&x &l.
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IV. SELECTIVE REFLECTION

We are now in the position to calculate the coeScient
of selective reAection due to the resonance interaction of
a thin vapor. This can be found in a straightforward
manner from Eqs. (4), (10), (12), and (13) and the result is

2&m.ND
A'kuz-

~ exp( —v )dv 2;& ~ exp( —v )dvX +e&

v d v exp[ —v' —(I —i&)P/v]
0 v'+(r —in)'

(14)

where we have introduced the dimensionless quantities
I

r =y /ku z, 0= ( co —
co@, ) /kur, P =kl, and v = u /ur.

It is interesting to remark that the wave number k is in
general complex. The factor exp(iP) then vanishes in
the limit of large 1 due to the imaginary part of k. Conse-
quently, the last two terms in Eq. (14) disappear in the
case of a thick layer of gases [4,8]. The factor of 2 in Eq.
(14) has its origin in the fact that the integrals are equal
whether they are taken from —~ to 0 or from 0 to ~.
This symmetry implies that atoms moving in opposite
directions in the vapor make identical contributions to
the coef6cient of selective reAection just as in the case of
thick vapor layer. On the other hand, both the redshifted
and blueshifted denominators appear in Eq. (14). This is
in contrast to the thick layer case in which only redshift-
ed denominators make contributions.

The region we are interested in is Q-I «1 and
1 «P « I '. In this region, we evaluate approximately
all three integrals involved in the Appendix. The result-
ing E„ is given by

Re(E„) 2~ ND
(cosP —1)[ln(I +0 )cosP+2tan '(0/I )sing]

0 Akuz-

+—sin2$ —2 cosP in'+ ( 1+cos2$ —6 cosP )
VE

2 2
(15)

Im(E„)
Ep

2&7TND
(cosP —1)[ln(I +0 )sing —2tan (Q/r)cosP]

fikuz-

+—( 1 —cos2$ ) —2 sing in/+ (sin2$ —6 sing )
~E

2 2
(16)

where no is the refractive index of the dielectric in ques-
tion. To calculate the intensity of the rejected beam,
both the selective and nonselective reAection parts must
be included. Thus, we have

I„~~E„O+E„=Eo+2E„ORe(E„)+ E„~ (18)

where E„ is the selective reAection. Usually, E,o is much
larger than E„so that the last term in Eq. (18) may be
neglected, and the spectral line profile of the selective
re6ection is solely determined by Re(E„). We discuss in
this paper mainly this case.

The most interesting feature of Eq. (15) is that the
spectral profile of the reAected field depends strongly on

where ye=0. 577. . . is Euler's constant. Both the real
and imaginary parts of E„may contribute to the selective
reAection, depending on the properties of the surround-
ing media. As an example, we consider one of the most
interesting cases, that is, the first boundary is uncoated
and the second boundary has an antireAection coating.
The ordinary nonselective reflection on the first boundary
then gives rise to the reQected wave with an amplitude

alp 1

ro +1 Ep

the thickness of the vapor layer. As can be seen from Eq.
(15), the sub-Doppler structure of the selective re(lection
is characterized by the term involving ln(I +0 ), which
vanishes when $=2nm, where .n is an integer. Hence the
selective reAection would not show any sub-Doppler
feature when l =nk, namely, w,hen the thickness of the
vapor layer is a multiple of the incident wave length. It is
also worth noting that the spectral shape of reAectivity as
given by Eq. (15) is dominated by the even term
ln(I +0 ) when P=(2n + l)m, and the odd term
tan '(A/r) dominates when P=(n+1/2)m. We em-
phasize that even in the former case, P=(2n + 1)m, when
the spectral line shape is similar to the refiectivity of a
thick layer, the amplitude of rejected light as given by
Eq. (15) is four times larger. Therefore, the present result
cannot be obtained by simply adding contributions from
the two boundaries.

To study the spectral line profile outside the region
~Q~ &&1, numerical integration of Eq. (14) is necessary.
We take I =0.01 in our computation, bearing in mind of
alkali-metal atomic gases under normal experimental
conditions. The Doppler broadening in such cases is
about two orders of magnitude larger than the natural
width. For the thickness of the gas layer, we choose
/=3m, 3.5m, 4m. , and 4.5m. Results are displayed in Fig.
1 for all the four cases. The narrow structure in the cen-
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tral part of each curve illustrates clearly the sub-Doppler
feature of selective reAection resonances predicted by
Eqs. (15) and (16). As we have discussed above, the
profile of Doppler wings also depends on the layer thick-
ness, but this dependence can be accounted for by the or-
dinary interference effects.

V. THE TRANSMITTED FIELD

We now turn our attention to the transmitted field.
Following the same procedure with Eqs. (12) replaced by
(13), we find within the framework of the first-order per-
turbation theory

2&~ND ~ exp( —v )dv o vexp( v)d—v ~ vexp( v)d—v+E AkUT —- F' —(&— ) — [r—i(n — )]' o [r—(n — )]'

v exp[ —v +(I i 0—)glv]d v + .
y f v exp[ —v —(r i 0—)$ /v] dv

[r—i(n —v)]' [r—i(n —v)]' (19)

In constrast with the rejected field, it is found that con-
tributions to the transmitted field from atoms moving in
opposite directions are no longer equal. They are sepa-
rately represented in Eq. (19) by integrals with difFerent
integration limits except for the first term which is in-
tegrated over the whole range of velocity distribution.

An estimate of these integrals can be made in a similar
fashion as what is outlined in the Appendix. We find that

i6kV T

3/2~D 2 (20)

It is of interest to mention that the conventional disper-

in the region 0—I «1 and 1 «P « I ', the first term
in (19) dominates the others, and it is equal to P~. This
implies that our perturbation approach is justified for

12 (b)

10
1.5

0 c

(c)
1.5

0.5

-3 -2

FIG. 1. Reflectivity (in arbitrary units) of a thin layer of resonant vapor vs the dimensionless detuning for four choices of the va-
por thickness. (a) l =3k, /2, (b) I =7k, /4, (c) l =2k, and (d) l =9k, /4. The vapor layer is confined between two interface boundaries,
with the first interface uncoated and the second antireAection coated. The detuning is normalized to Doppler width which is chosen
to be 100 times larger than the homogeneous width.
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sion theory yields exactly the first term in Eq. (19) ap-
pears to be correct for calculations of the transmitted
field in this particular case, as has been already pointed
out in Ref. [4].

VI. DISCUSSION AND CONCLUSION

We have seen from the above that selective reflection
from interfaces between a dielectric and a thin layer of di-
lute vapor exhibits unexpected optical properties due to
the spatial dispersion and atom-wa11 collisions. When the
Doppler width is larger than the homogeneous width of
an optical transition which is the sum of the natural and
collisional widths, the mean free path of the atom be-
comes larger than the wavelength. As a consequence, the
vapor response on the external field becomes nonlocal.
An atom desorbing from the wall in its ground state can-
not adopt the external field before it travels a distance of
many wavelengths.

From this point of view, it is not difficult to understand
the main feature of the Doppler-free selective reflection
from a thick layer. Indeed, when light is in resonance
with desorbing atoms, and the detuning is positive, both
the transient and steady-state solutions of Eq. (7) have al-
most the same spatial dependence. This means that the
polarization of desorbing atoms remains to be zero for a
very large distance from the wall. Therefore, these atoms
do not contribute to the reflected field on their own reso-
nance frequency despite of the fact that amplitudes of
both the transient and steady-state solutions are large.

On the other hand, when light is in resonance with
atoms traveling towards the surface with a velocity U, not
only these atoms contribute but those moving with the
velocity u in the opposite direction will also make reso-
nant contribution to reflection as well. To understand
this unexpected phenomenon, one has to notice the fact
that the spatial dependence of the transient and steady-
state solutions are very different in this case according to
Eq. (14). The net polarization of desorbing atoms be-
comes nonzero already in the immediate proximity of the
surface. On the other hand, we note from Eq. (10a) that
the spatial dependence of the transient solution is very
similar to that of the refiected wave exp( ikx) Ther—e-.
fore, the nonresonant recoiling atoms contribute to the
reflection spectrum with the same amplitude as resonant
atoms traveling towards the surface.

It is also important to point out that atoms traveling
against the incident direction are not in the steady state if
the vapor layer is thin. This is because they remain in the
ground state right after leaving the back surface, and
there is simply not enough time for them to adopt the
external field. Nevertheless, atoms moving in opposite
directions with the same speed contribute the same
amount to the reflected field just as in the case of a thick
layer of vapor.

Furthermore, we remark that the reflection from a thin
atomic layer cannot be obtained by a simple superposi-
tion of reflections from two similar boundaries. Due to
transient terms in the atomic polarization, the medium
becomes nonuniform, and moreover the optical proper-
ties of the medium at any point depend on the overall
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APPENDIX

The first two integrals in Eq. (14) are of the same type

exp( —x )dx
0 x+0 (A 1)

where a =+(0+iI ). For ~a~ && 1, the integral is already
evaluated in Ref. [4] and the result is

YE

2
—lna +0 ( ~a~ ), (A2)

where yE=0. 577. . . is Euler's constant and ln(z) is
defined for ~arg(z)~ &m and ln1=0.

The third integral takes the form

B= ~ x exp( —x bP/x)—
dx

0 x +b
(A3)

thickness of the vapor layer. Consequently, the reflected
field as given by Eq. (14) cannot reproduce the classical
interference pattern E„—[exp(2ig) —1] with a sequence
of nodes at P=nm. .Instead, the interference pattern due
to selective refiection is given by Eq. (15), which implies
that only the sequence $=2n~ remain to be the nodes.
When P = (2n + 1)n., the amplitude of the selective
reAection in the case of a thin layer is four times stronger
than that of a thick layer although it has the same even
counter ln(I +0 ). When P=(n +1/2)n, the selective
refiection is described by the odd function tan '(0/I ).
Even and odd parts mix for any other thickness.

Finally, we just mention that the influence of the
second boundary on selective reflection can be quite
dramatic if nonselective contributions from both the back
and front interfaces are eliminated by some experimental
techniques such as different kind of coatings. Such con-
ditions have never been exploited in experiments thus far
because only weak signals can be expected. Our analysis
indicates that the presence of the second boundary
enhances the selective reflection signals up to sixteen
times under particular conditions and hence an attempt
of experimental observation becomes quite feasible. It is
of particular interest to note that this strong enhance-
ment may be realized without making use of any
antireflection coatings. As a matter of fact, the nonselec-
tive reflection from the front and rear interfaces interfere
destructively whenever the layer thickness satisfies the
condition P=nn. Under the condition, however, selec-
tive reflection from the two boundaries interfere con-
structively for odd n and destructively for even n.

As a conclusion, we emphasize that it should be of
great interest to carry out experimental investigations of
selective reflection from thin films of vapor. The most at-
tractive features of such experiments are the nontrivial
dependence of the line shape on the vapor layer thickness
and the extraordinarily enhanced signals.
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where b = I —i II, so that Re(a) )0. We are only interest-
ed in the region iIm(b)i —~Re(b)i && 1,
1 (&P« [Re(b)] '. The integral can be carried out ap-
proximately by dividing the range of integration from 0
to xt =P' Re(b), xt to x2, and finally from x2 to
where x2 satisfies the inequality P Re(b) &(x2 (& 1. Thus
B =B

) +B2+B3.
For the first interval of integration, we note that

PReb &)x, . Therefore, we have
r

X]
8, ~( xexp

(Reb)
P Reb

x

3xi Reb
exp — =exp( —P

i
) «1 .

P(Reb)
(A4)

In the second interval, x )) b~ so that b can be neglect-

83= x exp( —x )dx = — —lnx2 .2 ~E
X2 2

(A6)

Combining the last three equations, we find a reasonable
estimate

8 = —
—,'y~ —1nbg . (A7)

As it is expected, this result does not depend on the exact
positions of x, and x2 which are arbitrarily chosen.

ed in the denominator. Accordingly, we have for
~b~y &)x, and ibity &&xz.

Xp
82-- J x 'exp( —bg/x)dx = —yz+In(xz/bg) .

X)

(A5)

For x )xz, the integral becomes
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