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p(r2) [g.([p]'i r2) —1]
vs(ri)=

r2
(5)

one-electron potential and a reasonable estimate of atom-
ic exchange and total energies E and E„,.

as an individual part of v . In (5) g„ is the exchange
pair-correlation function, which can be expressed in
terms of the occupied Kohn-Sham orbitals P;(r)

N N P, (rj)P;(rz)OJ (r, )P (rz)
g. ([p] rir2) 1

2 X X
i =1j=l pripr2

(6)

The separation of uz follows naturally from the expres-
sion of E in terms of vz

E =
—,
' fp(r)vz(r)dr . (7)

Differentiation (1) of (7) with a proper account of (5)
represents v as a sum of vz and the additional potential
v„, , an integral of the linear "response" of g,
5g(r, , r2)/5p(r3) [27],

u~"'(r) =u, (r)+ y w,
p(r)

(12)

II. MODEL POTENTIAL u „',p

As a starting point for our model we use an approxi-
mate equation of Krieger, Li, and Iafrate (KLI) [1] for
the OPM exchange potential v . OPM neglects the
electron Coulomb correlation and its Kohn-Sham equa-
tions have the form [6]

[
—

—,'V +u,„,(r)+v~(r)+u„(r)]P;(r)=e;P;(r) .

The ground-state OPM wave function is the Slater deter-
minant of the eigenfunctions P; of (11), so that the com-
ponents uz and u,„ofu„have the form (5) and (9)
with g„built from these functions. In [1] a very accurate
approximation to v was defined with the equation

v„(r)=vz(r)+ v„,~(r),

=1 p(r3)
u„, (r, )=—fp(r2)dr2f

l rz

[5g.([Pl;r2, r3)] „
5P(r, )

(9)

In (12) vz is the exact functional (5) and (6) and the
second term is the statistical average of orbital contribu-
tions w;, the latter being the difFerence between the ex-
pectation values of the potential (12) and the Hartree-
Fock exchange operator u; for the orbital P,.

w;= f lP;(r)l [v„(r)—v„,(r)]dr, (13)

The potentials v& and v„, have rather distinct, charac-
teristic behavior [5,25] and Fig. 1 clearly illustrates this
with the vz and v,„components of the OPM ex-
change potential u [6—8]. v& is an attractive potential,
which embodies the Coulombic asymptotics (4) of the to-
tal potential v

(14)

Note that for the highest occupied orbital P& the expec-
tation values of u and v„; are equal [1], making the
corresponding parameter w& vanish

vs(r)~ — for lrl~~ .1
(10) w~=0 . (15)

It is rather smooth and does not display a very pro-
nounced shell structure.

Contrary to this, v„, is repulsive and short ranged.
Remarkably enough, it exhibits step-function behavior
[25]. As has been shown in [28], the steps of v„, origi-
nate from the corresponding stepped structure of the
response 5g(r, , r2)/5p(r3) as a function of r3. One can
see from Fig. 1 that the above-mentioned small intershell
peaks of v are evidently built in by the superposition of
the stepped form of v„, on the smooth vz.

This special behavior makes desirable the modeling of
v with individual approximations of v& and v„, . In this
paper a model vp sp is derived, using dimensional argu-
ments, which represents v„, as the statistical average of
orbital energy contributions. v„', possesses the proper-
ties and closely reproduces the behavior of the accurate
potential. When combined with the exact vz obtained
from Eqs. (5) and (6), u„', provides an excellent approxi-
mation to v„. A more practical approximation is ob-
tained with v„,' and using the GGA [14] for the ex-
change energy density e„(r) to obtain vz [cf. (7)]. Con-
trary to the standard GCxA schemes, the latter combina-
tion provides both the proper form and eigenvalues of the

The second term of (12) offers a promising form for the
model u„', . Because of the integral kernel (14), straight-
forward evaluation (13) requires laborious calculation of
the two-electron integrals with the orbitals P;. However,
with some suitable approximation for w, one can develop
an efBcient model

vmod(r) w;
p(r)

(16)

w; can be calculated, for example, as the orbital expecta-
tion values of some local potential v

w, = f lp, (r)l'v (r)«,
chosen as the best local approximation of the difference
[v„(r)—u„,(r) ].

In this paper an alternative approach is presented. We
propose to use the model (16) with the orbital contribu-
tions w; being approximated by a function of the orbital
energies of Eq. (2). The form of this function is chosen to
provide gauge invariance, proper scaling, and the short-
range behavior of v„, .

According to the gauge invariance requirement, shift-
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ing the external potential by a constant, which leads to
addition of a constant to the eigenvalues e;, should not al-
ter the w, values. To satisfy this requirement, we choose
w; to be a function of the difference (p —e; )

k~p= +u„[p]+v, [p] .

Inserting the above expression in (24), we obtain

(29)

w,. =f(p, e,—), (18)

v„([pi];r)=A,v ([p];A,r),
where

(19)

where p is the Fermi level of a given system, which is
equal to the one-electron energy of the highest occupied
orbital p =e~.

The exchange potential (1) and its components uz and
v p have the scaling property

(30)

u„', (r)= f QkF k4—hark dk
2(2~) p

&1—x'x'dx =K [p]kF4

2v'2(2m) p

3m%'kF .
16&x '

mod & y Qk2 k2
K [p]
+2PV k~&k

A replacement of the sum in (30) by an integral yields

Pi(r) =A, P(Ar),

while e; has the scaling property

e, [pi ]=A. e, [p(r) ] .

(20)

(21)

From (25) and (31) the Kg [p] value is defined by

Kg[p]=Kg = =0.382,
8v'Z

3m'

(31)

(32)

To provide (19), the function f from Eq. (24) should scale
as

f(& (p ~;))=&f(p—~;) (22)

and so we find the square root of (p —e; ) to be the prop-
erly scaling function f

w;= f (p e; ) = K—[p]+p —e; . (23)

By definition, (23) satisfies the condition (15). Owing to
this, the highest occupied orbital P~ does not contribute
to the numerator of (16), thus providing the short-range
behavior of v esp

u„', (r)=K[p]g+p @,
—

i=1
(24)

kF
vrresp (25)

where kz is the Fermi wave vector

As a result, our model potential (24) possesses the re-
quired gauge invariance, proper scaling, and short-range
behavior.

K[p] in (24) is a numerical coeflicient, which can be
determined from the homogeneous electron gas model.
For the gas of density p the exact v„, of Eq. (9) has the
form

which is valid for the homogeneous electron gas of an ar-
bitrary density, i.e., in this case Kg [p] does not depend on
P.

III. SELF-CONSISTENT SCHEME
WITH v„,

We propose to use the model (24) within a self-
consistent scheme, in which the Kohn-Sham equations
(11)are solved with the approximate exchange potential

u„' (r)=vs(r)+u„', (K,r), (33)

E„=f [3p(r)+r Vp(r)][uz(r)+K„[p]R (r)]dr

where vz is the Slater potential (5) or a suitable approxi-
mation. The resulting Kohn-Sham orbitals are used to
calculate the total energy, with the exchange energy be-
ing calculated from (7) with the self-consistent potential
uz. The electron-gas value K of (32) can be chosen as
the universal parameter of v„'," for all systems. Another
option is to determine K self-consistently from the re-
quirement that the Levy-Perdew relation [29]

E = f [3p(r)+r.Vp(r)]v ' (r)dr (34)

should yield the same value of E as in Eq. (7) with the
potential vz

k =(3m p)'i (26) =—fp(r)uz(r)dr,1
(35)

Setting u„', of Eq. (24) equal to (25), one can calculate
K [p]. For the homogeneous electron gas the Kohn-
Sham orbitals and eigenvalues of Eq. (2) are given by

R(r)= gQp —e; p(r)
(36)

(r) eik r1
k (27) From requirement (35) follows an expression for K [p]

where V is the volume of the system and

k +v. [p]+u, [p] .
2

The Fermi level is given by

(28)

K„[p]=—I)
I2

I, = f [5p(r)+r. VP(r)]uzdr,

I2= f [3p(r)+r Vp(r)]R(r)dr .

(37)

(38)

(39)
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to the second order of the gradient expansion
1/3

&approx(p. r ) p4/3( r )
3 3

2 8m.
+ao (41)

22/3 ~ P(r}
p4/3( r )

2

(42)

is modified with the correction function f of the argu-
ment g' sinh

GGA( .
)

1/3

= —p (r)g/3 3 3
2 8m

+aof(g' sinh 'g' )g

(
1/2 inh

—1 1/2
)

1

1+6a g' sinh

(43)

(44)

Using (7) and (40}, one can derive from (43) the corre-
sponding approximation for Uz

2 GGA( .
)

vs "(r)=
p(r)

I /3
31/3(r)

8m.

+2a,f(g'" sinh-'g'" g (45)

This potential has the proper scaling (19), the correct
asymptotics (10), and for the fitted value ao=0.0042 it
yields a rather accurate estimate of E via the integral
(7). The results of self-consistent calculations within the
proposed scheme will be discussed in the following sec-
tions.

We will give examples of the use of our model response
potential together with the exact vz of Eq. (5), but in or-
der to develop an efficient DFT scheme with (33), an ap-
propriate approximation to U& is needed. One can use,
for example, the weighted-density approximation [30—32]
for the pair-correlation function g, which guarantees the
correct asymptotics (10) of vz. In this paper we use a
more practical model of uz, which is obtained from the
GGA of Becke [14,5]. In [14] the exchange energy densi-
ty e (p;r}

E„=Ie„(p;r)dr,

neglected in (33)] v ' ' ', which is a sum of vz and v„,'
calculated with either K„or X, and the full v . The
second group includes the bare Uz+, U„' '6 ', which is
a sum of v& and U„', calculated with either I( „orK,
and the total exchange potential v of the standard
GGA [22,14], obtained as the functional derivative of
E, . The response part of v is defined by Eq. (45)
and the equality

vGGA(r) —gzGGA/Qp(r) vGGA(r)+vGGA (46)

TABLE I. Values of the parameter K„obtained within the
self-consistent scheme for potentials v ' ' ' and vx

' '

The results will also be compared with those obtained
with the KLI potential (12).

To investigate the quality of the GGA to vz locally, in
Fig. 2 vz [Eq. (45)] is compared to vz [Eqs. (5) and
(6}]. The orbitals and densities have been obtained self-
consistently in GGA and OPM calculations, respectively,
for Ne and Mg. There are appreciable local deviations of
U& from U& . For both Ne and Mg the former is
more attractive than the latter within the regions of 1s
and 2s shells and less attractive in the intershell region.
At longer distances (not shown here} all the potentials
presented have the same Coulombic asymptotics (10).
The differences between uz and vz originate from
the different expressions, Eqs. (45) and (5), respectively,
and not from differences in the self-consistent densities
and orbitals. Even the change in self-consistent orbitals
and densities resulting from neglect of the response part
of the exchange potential during the self-consistency
iterations, which leads to uz and uz, has little effect.
U& and u& are hardly distinguishable from each oth-
er on the scale presented. The neglect of U„, makes
uz slightly more attractive than Uz

The local deviations of U& from the accurate v&

clearly manifest themselves in Table I where the atomic
K„values for v, ' ' ' and v„' ' ' are presented (we
drop in the remainder the superscript OPM on vz and
there is no need to distinguish between vz and vz ).
For all atoms (with the exception of the lightest Be and
Ne) IC„values obtained with the accurate functional (5)
are rather close to the electron-gas constant K =0.382.
However, replacement of Uz by Uz leads to a great
overestimation of the integral I, of (38). As a result, the

IV. COMPARISON
OF THE SELF-CONSISTENT POTENTIALS

In order to test the proposed self-consistent scheme,
comparative exchange-only atomic calculations have
been performed for the closed-shell atoms Be, Ne, Mg,
Ar, Ca, Zn, Kr, Sr, Cd, and Xe. The exchange potentials
U„ to be compared can be subdivided into two groups, de-
pending on whether the accurate function vz(5) or its
GGA vz (45) is used as the Slater potential in (33). The
first group includes the bare vz [i.e., in this case v„, is

Atom

Be
Ne
Mg
Ar
Ca
Zn
Kr
Sr
Cd
Xe

mod(S)
X

0.305
0.342
0.384
0.365
0.389
0.381
0.381
0.397
0.388
0.386

mod(GGA)
X

0.803
0.518
0.536
0.463
0.478
0.440
0.440
0.453
0.432
0.428
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FIG. 2. Slater potentials calculated self-consistently as the
parts of the OPM and GGA exchange potentials and also ob-
tained with the neglect of v„,„. (a) Ne and (b) Mg.

K„value for Be calculated with v& is 2.6 times as
large as that calculated with vz. The overestimation de-
creases rapidly with increasing atomic number. Still,
even for Xe, X„ for vz is about 1.1 times as large as
that for vz.

The analysis of the contributions to I, shows that the
major part of the above-mentioned overestimation comes
from the region close to the nucleus where v& exhibits
the largest deviations from vs (see Fig. 2). The success of
the GGA for the exchange energy is due to the fact that
the exchange energy integrals (7} with Us are very
close to those with vz', the typical error is only about
0.1% [14]. However, our results show that it is not a
high local quality of the GGA, but an incredibly precise
cancellation of local errors when v& is integrated
against p(r) [Eq. (7)] that provides this success. For the
integrals of the type (38) associated with the Levy-Perdew
relation this balance is destroyed, which leads to the
overestimated IC„values (see Table I). We refer to Refs.
[23,24,5] for detailed discussions of the local deficiencies
of the total GGA potential and its components (Slater
and response respectively).

To analyze the local quality of the proposed model (24)
for the response potential, v„', ' ' with the parameter K„
and v „', ' ' with K are compared for Ne and Mg in
Fig. 3 with v,„and v„, with the parameters m, from
(13) and also with the corresponding potential v„, , the
latter being obtained from the total exchange potential
U„of the GGA [22,14] by the subtraction of its Slater
part vs [Eq. (45}]. In this case the GGA gives a con-
siderably worse approximation than in the case of the
Slater potentials discussed above. Due to the inclusion of
the uncompensated Laplacian terms, v „, has incorrect
Coulombic divergence at the nucleus, being proportional
to —1/r [4,22]. At large distances it has incorrect
Coulombic decay, being proportional to I/r. Further-
more, v„, does not display the shell structure at inter-
mediate distances, thus exhibiting large local deviations
from v

oPM
resp

Contrary to this, the simple model (24) provides a good
fit to v „, and to the more complicated approximation"" Both p.t t 1 -""~ d -"-"hav thresp ' resp resp

proper short-range behavior and they reproduce well the
height and the width of the individual shell steps of v „,
the largest differences being constants within the 1s shell.

In Fig. 4 various self-consistent approximate exchange
potentials are compared with v . The bare Slater po-
tential Us is everywhere more attractive than U (the
response part of the exchange potential is positive) and
the v& can be considered as a satisfactory approximation
to v only at larger distances where both potentials have
the same Coulombic asymptotics. At r & 1 a.u. the
neglect of the repulsive potential v„, leads to a substan-
tial overestimation of the exchange effect.

The GGA [14] offers a more balanced approximation
to v, though the above-mentioned defects of its com-
ponents Us and U „, clearly manifest themselves in
the total potential v„. In particular, it has incorrect
long-range asymptotics —1/r and it is not attractive
enough in the outer region. However, due to the diver-
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gence of its component u„, at the nucleus and the
overattractive character of vz in the region close to
the nucleus, u strongly overestimates the exchange
effect in this region. At intermediate distances u

smooths away the clear shell structure of v

The self-consistent scheme of Sec. III produces poten-
tials with a higher local quality of approximation to
v ™.One can see from Fig. 4 that v

' ' ', with the
components uz and v„', , is an excellent approximation
to v„.u

' ' ' is very close to u at any distance and
in the major intervals they are even hardly distinguish-
able from each other. The main difference is that the ap-
proximation (24) smooths away the small intershell peaks
of v . However, this difference does not seem to be an
important one since these peaks appear to be a minor de-
tail of the stepped shell structure of U (see Figs. 1 and
4).

v„' ' with the components v& and u„, shows a
worse local quality of approximation, mainly due to the
defects of vz discussed above. Nevertheless, the re-
placement of v„, by u„', improves the short- and
long-range asymptotics of the approximate potential and
makes more clear its shell structure. As a result,
v ' '6+ ' is, in contrast to u GG, finite at the nucleus and
has the proper Coulombic asymptotics at longer dis-
tances (see Fig. 4}.

V. CALCULATIONS
WVITH THE ACCURATE SLATER POTENTIAL

Tables II and III present the total E„, and exchange
E atomic energies calculated self-consistently with u~
and various potentials uresp namely, with v resp u resp
U„', (calculated with K„and K ), and also with the
neglect of v„, . In all these approaches the energies are
calculated with the same functional (5)—(7}, so that the
corresponding energy differences are caused exclusively
by the differences in orbitals and densities generated with
various exchange potentials. It is of no surprise that the
OPM E„, values [33,23] are always the lowest ones
presented in Table II. The OPM potential is defined

within the variational method and so it provides the true
minimum of E„,calculated within the one-determinantal
approach with the exchange functional (5)—(7). The in-
clusion of the proper u„, is of importance for the quality
of the calculated E„,. Neglect of v„,p leads to consider-
able errors; the error in E„,obtained with the bare u& in-
creases with increasing atomic number and reaches 0.45
a.u. for Xe.

One can see from Table II that the model (24) provides
an excellent approximation to v„, as regards the total
energy. It is not too sensitive to variations of the parame-
ter K and calculations with either K„or Kg yield virtual-
ly the same energies as with the more complicated KLI
approximation. E„,values obtained with v& and u„', are
only by a few millihartrees higher than those of the
OPM. The corresponding error increases (though non-
monotonously) with increasing atomic number, but even
for Xe it is only about 0.01 a.u. It means that the addi-
tion of (24) considerably improves the quality of the
Kohn-Sham orbitals and density, which come very close
to those of the rigorous OPM.

Because of the attractive character of uz, calculations
with the neglect of the repulsive v„,p yield contracted or-
bitals and too negative E„(see Table III). The addition
of the approximate repulsive potentials U„, brings the
self-consistent E„values much closer to E„[8],but it
overcompensates and makes them more positive than
E (the only exception is E„ for Be obtained with

U„, '). A comparison of Tables II and III reveals another
type of compensation. In all cases the errors of E are
compensated with those of the opposite sign in other
parts of the total energy, so that E„, errors are much
smaller than those of E . In most cases the E„errors of
the model (24) are somewhat larger (though of compara-
ble magnitude) than those of KLI.

The Inost important one-electron energetical charac-
teristic of the Kohn-Sham theory is the energy e& of the
highest occupied orbital P&. For the exact Kohn-Sham
potential e& is equal to minus the ionization energy I of
the system [34] and in the exchange-only case ez has the
same meaning through Koopmans's theorem [35,1].

TABLE II. Comparison of differences (in mhartree) of the total energies calculated self-consistently
with the exact potential vz and various approximations to v„,p, with the OPM total energies E„,
[33,23] (the latter are given in hartrees and are always more negative).

Atom

Be
Ne
Mg
Ar
Ca
Zn
Kr
Sr
Cd
Xe

EoPM
tot

14.572
128.545
199.612
526.812
676.752

1777.834
2752.043
3131.533
5465.114
7232.121

resp
V KLI v ",'pd (K„)

0
1

2
3
4
6
5
7
6

12

0
0
2
4
4
6
5
7
6

11

Neglect of v„,p
11
44
79

109
146
258
288
324
419
450
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TABLE III. Comparison of differences (in mhartree) of the OPM exchange energies E„[8](the

latter are given in hartrees) and those calculated self-consistently with the exact potential vz and vari-

ous approximations to v„,„.
Atom

Be
Ne
Mg
Ar
Ca
Zn
Kr
Sr
Cd
Xe

EOPM
X

2.666
12.107
15.992
30.182
35.209
69.647
92.875

101.974
148.963
179.173

resp
V KLl

—1

9
10

8

5

78
65
58

123
119

V",'pd(K„)

2
5

11
41
40
55
88
59

150
218

14
30
9

63
30
60
90
14

123
199

Neglect of v„,„
—49

—200
—305
—436
—525

—1030
—1101
—1177
—1536
—1591

Table IV represents ez values obtained with uz and vari-
ous v„, . It follows from the table that in the case of the
orbital energies e&, the qualitative trends are the same as
in the case of the exchange energies discussed above. In
spite of its correct asymptotics (10), the bare vz always
has too negative e& values. The addition of v„,„cornpen-
sates this error. By construction, both u„," and u„', de-
cay exponentially in the region of Pz, because P& does
not contribute to the numerators of (24) and the second
term of (12), while contributing to the density p in the
denominators. The resulting exponential tails of v„', and

u„," produce the compensating repulsive contribution to
e&. The addition of u„, even has an overcompensating
effect because the approximation (24) always (with the
only exception of Zn) overestimates the value of the pa-
rameter tv&

&
for Pz &, the next to the highest occupied

orbital. As a result, v„', becomes more positive than

v„," in the outer valence region (see Fig. 3) and yields
more positive e& values than those of KLI (the only ex-
ception is E& of Zn); the latter are virtually the same as
the OPM ez. However, the corresponding errors are not
large and vary within 0.01—0.03 a.u. in both variants (X„

and% ).
The present results show that the self-consistent

scheme with v& and u„', can be used as a very good ap-
proach to the OPM. The variants with E„and K yield
results of the same quality, so one can use a more simple
variant with the universal electron-gas parameter K for
all systems. When the exact functional vz is used, the
scheme requires calculation of the two-electron integrals
with the orbitals P; and the required computational time
per iteration is approximately the same as in the case of
KLI. However, replacement of u„," by u„',„greatly ac-
celerates the convergence of the self-consistent pro-
cedure. The ratio of iterations needed to reach conver-
gence in KLI and in the present scheme varies within
6—12 for the noble-gas atoms from Ar to Xe and within
12—18 for the alkaline-earth atoms from Mg to Sr. As a
result, the proposed scheme takes about an order of rnag-
nitude less computational time than KLI.

Still, to develop a practical DFT scheme, one should

approximate not only v„, , but also uz. The results of
calculations with the GGA to vz will be presented in the
next section.

TABLE IV. Comparison of differences between the OPM values for the highest occupied orbital en-

ergy e~z~ (in mhartree) [33,23] and those calculated self-consistently with the exact potential vz and

various approximations to v„„.
Atom

Be
Ne
Mg
Ar
Ca
Zn
Kr
Sr
Cd
Xe

OPM
~N

309
851
253
591
196
293
523
179
265
456

respv KLI Vmod~&sc ~

1

21
5

18
10

—14
20
12
2

23

6
30

5
21
10

—14
20
10

1

22

Neglect of v„,p
—17
—61
—31
—47
—29
—64
—44
—30
—65
—40
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TABLE V. Comparison of differences (in mhartrees) between the OPM total energies Et,t [33,23]
and the GGA total energies, calculated self-consistently with uz and various approximations to u„, .

Atom

Be
Ne
Mg
Ar
Ca
Zn
Kr
Sr
Cd
Xe

EQPM
tot

14.572
128.545
199.612
526.812
676.752

1777.834
2752.043
3131.533
5465.114
7232.121

V G~EA

6
—45
—21

11
—2

—287
—60
—48
—79

2

34
—30

3
33
27

—272
—39
—19

57
35

12
—29
—5
26
15

—268
—41
—23

60
25

Neglect of u„,p
21
35
78

141
149
33

269
298
364
463

VI. CALCULATIONS WITH THE GGA TO vz

Tables V and VI represent E„,and E„values obtained
with the GGA (45) to us, with and without the response
potentials v„,p and v „',„being used in the self-consistent
field (SCF). These energies are given as diff'erences with
respect to E„, , but it should be noted that, since they
are calculated with the GGA energy functional, these en-
ergies reflect both the effect of changes in the SCF density
and orbitals due to the use of different potentials and the
effect of using a different energy expression. Engel and
Vosko [24] have investigated both the substitution of
self-consistent OPM densities into LDA and GGA ener-

gy functionals and the substitution of self-consistent
I.DA and GGA orbitals and densities into E„, . The
latter procedure gives energies that are typically only a
few centihartrees too high, where the variational stability
of Etpt has to be kept in mind. The effect of switching
to the GGA energy functional is of the order of O. l%%uo.

Using OPM densities, the differences with E„, are
again usually a few centihartrees (but occasionally a few
tenths of a hartree) both positive and negative because
E„, does not represent a lower bound for E„, . Using
the full GGA potential in the SCF calculation, including
u esp derived from the functional derivative of E
yields the minimal E„, and Table V demonstrates that
the differences with E„, are of the same order of mag-

nitude as with OPM densities substituted into E„, , but
now the energies are more consistently too negative.
Note the exceptionally large error of —0.3 a.u. for Zn.
The main message of Table V is that again calculations
with the neglect of v„, yield too positive E„,values. The
upward shift in the energies as a result of omission of
u„, is very similar to (in general, some 30—40 mhartree
higher than) the one found in the calculations with the
accurate u&,

' cf. Table II. Compared to E,„ the error is
much larger than with the use of u„, , except for Zn
where it becomes fortuitously small due to adding a posi-
tive shift to the exceptionally large negative deviation of
the u„, result. Inclusion of vpzsp leads to results more
similar to those of v„, . E„,for Be obtained with K is
much closer to E,„ than that obtained with K„, be-
cause of the overestimation of K„ in the GGA discussed
above. In general, however, both variants yield very
similar E„, values. The considerable local deviations of
u „, from the model potentials u resp show up in
differences in the energy. These differences are of course
positive with respect to the optimized GGA energy re-
sulting from the use of u esp and indeed constitute an im-
provement with respect to E„, in the 6 out of 10 cases
where v„, leads to a significant negative deviation. This
improvement, which is not very significant, is thus under-
standable and cannot simply be related to the fact that
the u „', are actually much closer to the accurate step po-

TABLE VI. Comparison of differences (in mhartrees) between the OPM exchange energies EopM [8]
and those calculated self-consistently with uz and various approximations to u„,„.
Atom

Be
Ne
Mg
Ar
Ca
Zn
Kr
Sr
Cd
Xe

EOPM
X

2.666
12.107
15.992
30.182
35.209
69.646
93.876

101.974
148.963
179.174

resp
u GGA

14
20
20
59
27

—76
76
61

126
167

u",'pd(K„)

44
—36

25
93
97

—138
95
91

189
314

—10
—122
—92
—13
—39

—303
—83

—128
—27
100

Neglect of u„,p
—73

—359
—406
—520
—606

—1375
—1277
—1332
—1688
—1714
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TABLE VII. Comparison of differences of the OPM energies of the highest occupied orbital ez (in
mhartrees) [33,23] and those calculated self-consistently with us and various approximations to v„„.
Atom

Be
Ne
Mg
Ar
Ca
Zn
Kr
Sr
Cd
Xe

6OPM~N

309
851
253
591
196
293
523
179
265
456

V GEA

128
396
104
249

80
102
218

72
95

187

v"',~g(E„)

29
128

19
57
15

—19
42
12

—6
35

8
98

6
43

6
—25

33
5

—13
28

Neglect of v„,~
—15

9
—30
—23
—34
—74
—31
—38
—82
—34

tential v,„(cf.Fig. 3) than is u „,„.
In complete analogy with the case of us, calculations

with the bare vz yield too negative E values (see
Table VI). The addition of the approximate u„,~ consid-
erably compensates the corresponding error. In the case
of v„, and u„',„with E„ this leads even to overcom-
pensation and for most atoms E are too positive, while
in the case of u„', with E the compensation is not
enough, thus producing too negative E (the only excep-
tion in the latter case is Xe). In general, all the schemes
with the approximate u„, yield E values of comparable
accuracy.

The self-consistent scheme with vs and u „', shows a
definite advantage over the standard GGA in calculation
of e& (see Table VII). As indicated in [2,4] and as one can
see from Table VII, the GGA greatly underestimates the
absolute magnitude of e&. Due to the incorrect asymptot-
ics of its response parts (see Fig. 3),

~ ez ~
values of v„

are about twice as small as compared with the OPM
values and are very close to the LDA ones [4]. On the
other hand, the bare us overestimates ~ez~ (the only
exception is Ne), though the corresponding errors are
considerably smaller. The addition of u e p

with K„ to
us overcompensates this effect and produces compara-
ble errors of the opposite sign. The e& values of the po-
tential (us + u „', ) obtained with K are in most cases
the best approximate ones and the closest to e&

It follows from the above analysis that the self-
consistent scheme with vs and u„', provides the same
accuracy for the total and exchange energies as the stan-
dard GGA scheme [14] and considerably improves the
form and the eigenvalue e& of the one-electron potential.
Bearing in mind the high quality of the presented results,
we propose v ' with the components vs and v „', as
an efficient approximation to u„. The variant with K
provides a better fit to the accurate u„, and it is also
simpler than that with E„,so the electron-gas value K
can be recommended as the universal parameter for the
many-electron calculations.

VII. CONCLUSIONS

In this paper a scheme of approximation of the Kohn-
Sharn exchange potential u has been pr'oposed, making

use of a partitioning of v„ into Slater and response poten-
tials. A model potential u„', has been derived from di-
mensional arguments that possesses the proper short-
range behavior and the characteristic atomic-shell
stepped structure. When combined with the accurate vs,
u esp provides an excel lent approximation to u . With
the GGA approximation to vs, u„', provides an efficient
DFT approach which possesses the three desirable prop-
erties of fitting closely the form of the accurate exchange
potential, yielding reasonably accurate exchange and to-
tal energies and giving a reasonably accurate orbital ener-

gy of the highest occupied orbital.
Still, we have to mention appreciable errors, which are

introduced with the GGA to vs. In particular, the
present GGA approximation shows considerable devia-
tions from the accurate u& in the region close to the nu-
cleus. In spite of such local deficiencies in us, the er-
ror in the GGA to E„ is relatively small due to very pre-
cise cancellation of local errors in the integrand of Eq.
(7). Nonetheless, the typical error of the calculated total
energies is in the order of centihartrees with the replace-
ment of v& by vz . So, in order to provide a better
practical DFT scheme, one should improve, first of all,
the quality of the applied uz approximation. A promising
way of obtaining an improved model Slater potential us

'
is to construct it not as a function of p and Vp, but as
some function of the orbital densities ~P; ~

and their gra-
dients.

To test the quality of the developed u
' approxima-

tion, exchange-only atomic calculations have been per-
formed in this work. Our main goal, however, is to apply
this approximation for full exchange-correlation molecu-
lar calculations. For this purpose one can use u

' either
as an independent exchange part of the approximate
exchange-correlation Kohn-Sham potential v'„' or as
the basic functional form for approximation of the total
u„, . Within the former approach v ' is inserted in the
Kohn-Sham equations (2) together with some approxima-
tion for the Coulomb correlation potential v„' the latter is
to be constructed independently. Then the exchange en-
ergy is calculated via (7) with the self-consistent density
and vs ', while the correlation energy is calculated with
the independent functional, which corresponds to v, .

An alternative approach is based on the fact that u is
the dominant part of v„, and the exchange energy density
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E' is the dominant part of e„,. To approximate the total
U„, and e„„one can use the same models v&' and v„',
with other parameters chosen to fit the available
accurate exchange-correlation Kohn-Sham potentials
[4,10,36—38]. Work along both above-mentioned lines is
in progress.
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