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Adiabatic theory for the doubly excited asymmetric states of the helium atom
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In the asymmetric (or planetary) doubly excited states of the helium atom, one of the electrons is excit-
ed much more than the other. The motion of the electrons is strongly correlated: both of them reside
mostly on the same side of the atomic nucleus. An adiabatic theory for such states is based on the ap-
proximate separation of rapid and slow motion. The rapid motion is that of the inner electron along its
elliptic orbit. The parameters of the orbit (eccentricity and the aphelion vector) slowly evolve in time.
The other slow motion is the radial vibrations of the outer electron. The efFective Hamiltonian is con-
structed as the average of the exact Hamiltonian over the rapid motion. In the quadratic approximation
two types of slow motion are separated and reduced to two harmonic oscillators. The unexpected
feature is that the ratio of the related frequencies is very simple: 1:2. The ratio is changed when the
outer electron is replaced by the particle with an arbitrary mass. The slow motions are quantized and
the series of the energy levels are obtained. In the case of infinite mass of the outer particle, the potential
curves of the quasimolecule are calculated. The present purely analytic results are compared with the
numerical data.

PACS number(s): 31.25.Jf, 31.50.+w, 32.30.Jc, 32.80.0y

I. INTRODUCTION

In the asymmetric doubly excited states of the two-
electron atom, one of the electrons is excited much more
than the other. These states are sometimes referred to
also as the planetary atom states.

In the present paper we develop the adiabatic theory
for the asymmetric states of the special type, namely with
the maximal localization of both electrons on the same
side of the nucleus. Generally, for the asymmetric states,
it is natural to use the long-range multipole expansion of
the interaction between the electrons, which are localized
in different regions of space. The leading term of expan-
sion is the dipole interaction (apart from the trivial
monopole term). The bibliography on the dipole approxi-
mation is quite extensive and can be found in Ref. [1].
For the special type of asymmetric states considered here,
the dipole picture is particularly appealing. The outer
electron is attracted by the Coulomb potential of the nu-
cleus, which is screened by the inner electron. The
inner-electron distribution is asymmetric being shifted to-
wards the outer electron. Its long-range potential is de-
scribed as repulsive dipole. Hence, the total potential
seen by the outer electron has a minimum. Actually the
dynamics of the correlated electron motion is rather corn-
plicated including strong exchange by the orbital momen-
tum between the electrons [1].

For the asymmetric states under consideration, the
large-scale precise quantum calculations by the complex
coordinate rotation method were carried out recently by
Richter and co-workers [2,3]. The classical electron tra-
jectories were also calculated and visualized. Using the
well-known Gutzwiller [4] quantization procedure,
Richter and co-workers [2,3] obtained the Rydberg series
in the form

S
[n+ —,'+2(k+ —,

' )y, +(I+—,
' )yz]

The parameters S, y „and y2 were related with the prop-
erties of the periodic classical electron trajectory; n, k,
and I are integer quantum numbers. The Rydberg series
of type (1.1) converging to the energy zero (which corre-
sponds to the double electron escape) are usually referred
to as the Wannier resonances. They were discussed by a
number of authors [5—7].

The dipole picture [1,8 —10] leads to the Rydberg series
of the form

Z (Z —1)
2n2 2(n, —5 )

(1.2)

where Z is the charge of the nucleus and 6z is the quan-
tum defect. As the principal quantum number of the
outer electron n

&
increases, the series converges to the

level of the residual ion with the principal quantum num-
ber n2. The quantum number y distinguishes the series
with the same limit. The series of the form (1.2) were dis-
cussed also by a number of authors [11,12] without resort
to the dipole approximation. Experimentally the states of
this type with various nz (up to 6) were observed in the
helium atom [12]. We mention also the recent experi-
ments [13,14] with the rare earth atoms, where the addi-
tional effect of the non-Coulomb core is important.

Our analysis [9,10] have shown that the results of the
numerical calculations [2,3] in fact agree better with the
Rydberg series of the form (1.2) than with (1.1). For the
quantitative estimate of the quantum defect 5 (or, more
exactly, of the related parameter l,~r ) we have used the
dipole approximation for the electron-electron interac-
tion and accounted also for the quadrupole correction.
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The precision of this simple approximation is not high,
although it is sufficient for the states classification and the
semiquantitative analysis of the electron correlation pat-
tern.

The applicability of the dipole approximation for the
electron-electron interaction is justified by the localiza-
tion of the outer electron at large distance as compared
with the extension of the inner-electron orbit. Nurneri-
cally the ratio of the characteristic dimensions is about
2.7 for the heluim atom (Sec. III).

Additionally, the dipole approximation (as it was em-
ployed in Refs. [1,9,10]) assumes also the adiabaticity in-
trinsic in the asymmetric states. Namely, the characteris-
tic frequency for the inner-electron motion exceeds that
of the outer electron. The ratio of the frequencies proves
to be about 13 for the helium atom (see Sec. IV). Hence,
the related applicability criterion is satisfied much better
than for the dipole approximation.

In the present paper, we drop the dipole approximation
and develop a purely adiabatic classical and semiclassical
theory. In the classical picture, the inner electron moves
rapidly along the elliptic orbit. The energy of the inner
electron averaged over this rapid motion is an adiabatic
invariant: It is conserved in time in the first order over
the adiabaticity parameter.

The remaining system coordinates vary slowly. As
shown in Secs. II and III, the Hamiltonian (H ) averaged
over the rapid motion possesses a stationary point. In
this configuration, the orbit of the inner electron is
squeezed into the straight line segment; it corresponds to
zero orbital momentum. The outer electron resides at
some fixed distance from the nucleus. The same trajecto-
ry appeared in Refs. [2,3] (see, in particular, the figure of
Richter and Wintgen in Ref. [2]), where the classical
motion was quantized using the Gutzwiller [4] scheme.
The numerical analysis generated the parameters entering
Eq. (1.1). We are considering the vicinity of the same
classical trajectory using the adiabatic approach, which
allows us to construct a purely analytical scheme. Both
the classical motion and its quantization are described.
An adiabatic and analytical treatment seems to be con-
ceptually important. Indeed, the general Gutzwiller
quantization procedure ignores the presence of rapid and
slow components in the motion, which defines the physi-
cal specifics of the system under consideration. The adi-
abatic theory provides a new outlook on the nature of the
same quantum states and leads to some new conclusions.

The expansion of (H ) over the small deviations from
the stationary configuration does not contain the linear
terms. In the quadratic approximation, the motion is de-
scribed as a superposition of two slow harmonic vibra-
tions with frequencies of the same order of magnitude: (i)
oscillations of the outer-electron separation from the nu-
cleus r I (Sec. III) and (ii) oscillations of the angle between
the outer-electron and the aphelion of the inner-electron
orbit (Sec. IV). The momentum canonically conjugate to
the latter coordinate is the one-electron orbital momen-
tum.

The harmonic oscillations are easily quantized (Sec. V).
The structure of the Hamiltonian testifies in favor of the
Rydberg series of the form (1.1). In Sec. VI, we analyze

in more detail the spectrum domain where the Rydberg
series (1.1) and (1.2) do not differ much. For these levels,
the semiclassical formula obtained by Richter and co-
workers [2,3] is in very good agreement with the precise
quantum calculations of the same authors. Our results
are compared with these of Refs. [2,3] and with the sim-

ple dipole approximation.
We discuss also the analogous problem with the outer

electron substituted by the particle with an arbitrary
mass. In particular, in the limit of infinite mass we come
to the problem of a single electron in the field of two
space-fixed Coulomb centers (Sec. VII). The latter was
used by Richter and co-workers [2,3] in the adiabatic cal-
culations for the helium atom. Although this approach is
well justified when the outer particle is an antiproton
[15], in the case of electron [2] it seems to be too crude.
Section VIII contains some concluding discussion.

II. STATIONARY CONFIGURATION
FOR THE HELIUM ATOM

The helium atom Hamiltonian we cast in the form

l2
H= —'p

2 1r
2 2r1

where

Z
h2o 2p2

r2

(2.1)

(2.2)

TQ
t = (g —e sing),2'

(2.3)

where TQ is the period and e is the orbit eccentricity:

is the Hamiltonian of the inner electron, rl = Ix;,y, ,z; ] is
the ith electron coordinate, p; is the related momentum,
p;„ is its radial component, l,. is the orbital momentum,
and Z is the nucleus charge. The electrons are treated as
distinguishable particles (in the asymmetric states they
are located mostly in different regions of space). We con-
sider primarily the S states of the atom (II = —Iz) where
the classical electron motion is confined to the plane
(z; =0).

Our first step is the averaging of H over the rapid
motion of the inner electron. As discussed in the Intro-
duction, it implies replacement of &20 by the constant en-

ergy E2o, which can be parameterized as
E20 = Z l(2n 2 ). In quantum mechanics, nz has the

meaning of the inner-electron principal quantum number,
which is "good" in the present approximation.

The nontrivial averaging is that of the electron-
electron interaction potential 1/rI2. It is convenient to
introduce the rotating frame (X', Y', Z'=Z) with the X'
axis directed along the principal axis of the unperturbed
elliptic orbit of the inner electron. The parametric equa-
tions of motion along the elliptic orbit (in terms of Kepler
eccentric anomaly g) are universally known:

n2 n2 l2
2 2

xz = (e —cosg), y2 = sing,Z n2
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e =+1—lz/nz. In the space-fixed frame, the inner
electron has the coordinates

1 1 f o 1
d

Z a+er„' To o r, —x,' n', v'I —a'
x2 =x 2cose2 —y 2sine2,

y2 =x zsin@2+y zcos@2,
(2 4) where

1

Zr, In2 —e
(3.4)

where N2 is the azimuthal angle of the orbit aphelion.
The orbit parameters @2 and I2 depend on time describ-
ing the slow evolution of the inner-electron orbit due to
the electron-electron interaction. The azimuthal angle of
the ith electron in the space-fixed frame will be designat-
ed as tp;.

We will carry out the averaging of 1 Ir, 2 in the vicinity
of the stationary configuration. The latter is described in
the Introduction and corresponds to l2 =0 (i.e., yz =0,
pi=&bz=0) and some fixed value of ri, which will be
defined in Sec. III. For simplicity it is assumed that in
the stationary configuration the vector r1 lies along the X
axis. The expansion of 1/riz is obtained using Eq. (2.4)
and the trivial relations x1=r,cosy1, y, =r1siny, . Only
the terms quadratic in small y 2, y1, and 42 are retained:

The average (3.3) varies with r, (via the parameter a)
and also with the variation of the form of the inner-
electron orbit (via its eccentricity e). In this Section, we
are interested in the former dependence (the corrections
due to the orbit evolution are considered in Sec. IV).
Therefore, we take the expression (3.3) for e = 1; it will be
designated as (1/ri2)„d. This potential gives the aver-

aged electron-electron interaction under the additional
condition that the inner electron moves along the ellipti-
cal orbit squeezed into the interval of line. The related
averaged Hamiltonian for the radial motion of the outer
electron is

I 2 Z 1
HMd l 1 + d l 1 +V(ri)

r1 r12
(3.5)

r12 "12 r12
(2.5)

1 1

r12
1 r1 x2

1
'2 2+r1x 2+12

2(r, —x~)"12

(2.6)

(2.7)

1 r1y29 12
f'12 0'1 @2

ri2 3 (ri x2)
(2.8)

The term (2.8) is linear in y2. Hence, being averaged
over the rapid motion it gives zero, as is straightforward-
ly seen from Eqs. (2.3). Therefore, this term does not ap-
pear in the subsequent analysis. In the stationary
configuration (y2=0) only the term (2.6) in the right
hand side of (2.5) contributes. The term (2.7) is impor-
tant when the motion in the vicinity of this configuration
is considered.

III. RADIAL MOTION OF THE OUTER
ELECTRON IN THE ADIABATIC THEORY

The averaging of the Hamiltonian (2.1) over the rapid
motion implies the replacement of the electron-electron
interaction potential 1/r, z by

1 1 ~0 1

Tp p r12
(3.1)

The basic integral required for this and subsequent (Sec.
IV) calculations is known:

f 2~ COSnx dx
o 1+b cosx

2' +1 b 1——
&1—a' (3.2)

We start with the averaging of the first term in the
right hand side of the expression (2.5). The integration
gives the result

with the effective potential V(r, )
' —1/2

Z n2
V(r )=

1 1 ——
n2 Z r1

n 2
2—1— (3.6)

The structure of the interaction becomes particularly
simple in the long-range asymptote

n2

2Z",
(3.7)

rio=an&, a= —(1—Z ~
) (3.8)

Z2
V(rio)= —

2 (1—3Z +2Z ') .
2n2

(3.9)

Note that for Z= 1 (i.e., for the H ion isoelectronic to

where the first term corresponds to the interaction of the
outer electron with the nucleus screened by the inner
electron. The second term describes the outer-electron
interaction with the permanent dipole, which corre-
sponds to the inner-electron motion in the stationary
(squeezed ellipse) configuration. It is worthwhile to note
that in the quantum-mechanical description of
the inner electron, this term should be replaced by
3n2(n2 —1)/(2Zr i ), i.e., the dipole moment is somewhat
less than in the classical limit. This is due to the fact that
in the quantum mechanics the inner-electron distribution
cannot be stretched into the line, but is somewhat spread
around the axis of the electric field created by the outer
particle. In other words, the angular oscillations con-
sidered in the Sec. IV cannot be eliminated completely
due to the uncertainty relation (see also Sec. VII).

The effective potential (3.6) has a weak (square root)
repulsive singularity at the point r1, =2n2/Z where the
electron-electron collision becomes possible.

The minimum of the potential (3.6) lies at the point
r1 =r io-
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2 2/3t) V 3Z (Z —Z'n)
r2 16n 6 (3.11)

In this approximation, the outer-electron radial motion
corresponds to harmonic oscillations with the frequency

=&k = -'z'"(z —z'")'V'3
rad 4

It is instructive to consider the characteristic numeri-
cal values of the parameters for the helium atom (Z =2).
The parameter a=2.7024 is essentially the ratio of the
characteristic dimensions of the inner-electron and
outer-electron orbits. As discussed in the Introduction,
this parameter governs the applicability of the dipole ap-
proximation. The other parameters are

(3.12)

V(r&p)= —0.22024n2, co„d=0.298 81n2 3 . (3.13)

Note that V(r&p) is small compared with the unperturbed
energy of the inner electron [~ V(r, p)~/Earp=0. 1]. This
relation is important for the justification of the present
approximation. Table I demonstrates that the radial fre-
quency m„d is in good agreement with the energy separa-
tion between the numerically calculated quantum energy
levels.

IV. ANGULAR ELECTRON CORRELATIONS
IN THE ADIABATIC THEORY

When the averaging of the electron-electron interac-
tion (2.5) is carried out, the terms responsible for the an-
gular correlations come from (i) the averaging of the term
(2.7) and (ii) the difference between the expression (3.2)

the helium atom) the effective potential becomes purely
repulsive and the minimum disappears.

The presence of the Coulomb term in the asymptote
(3.7) shows that the energy levels form a Rydberg series.
The series is convergent to the eigenvalues E2p of the
inner-electron Hamiltonian h2p i.e., to the energy levels
of the residual ion. This conclusion coincides with that
drawn by us before [9,10], and differs from the results by
Richter and co-workers [2,3].

Now we consider the lowest members of the series.
The corresponding wave functions are located primarily
in the vicinity of the potential minimum r&p. The quadra-
tic approximation for the Hamiltonian H„d reads

H„d=H,',d+ V(r)p), Hrad =
2p &. + 2k(ri rip)

(3.10)

where

1 0 1I, (r, ):—
TP P P1 +2

I

Tp p (r& —x2)

3'2
(4.2)

(4.3)

where x2 is defined by Eq. (2.3) with e =1. In (4.1), one
should use the integrals (4.2) and (4.3) calculated for
r, =r,p. However, at first we will carry out the integra-
tion for arbitrary r

&
(these results are used in the discus-

sion of the potential curves, Sec. VII). The necessary in-
tegrals are obtained from (3.2) by taking derivative over
the parameter b. The calculations are quite cumbersome
but the final result looks simple:

Z ap+3~o 2
(4.4)

2nz 2(1 —ap) ~

3Z2 (1+ap)
2 5n (4.5)

2n4 (1 a2 )5/2

The r& dependence enters here via ap(r, ):

1ap=
Zr, /n2 —1

(4.6)

The calculation of the second contribution to the angu-
lar correlations is straightforward:

1+Go 12
( I/r)2) )

—(1/r„)...=, 1—
n2 ( ap) 2n2

(4.7)

In the present context the sum of the contributions
(4.1) and (4.7) can be named the angular-dependent part
of (1/r)2):

(1/r&2),„s=—
—,'k &l

—
—,'k2yf2, (4.8)

3Za p 1+ap
k', (r, )= 4, k~(r, )=I~(r)) . (4.9)

2n@ (1—ap )

As discussed in Sec. II, in our case I] = l2' we intro-

for (1/r&z) &
and its value for e= 1 designated above as

(1/r, 2)„d. In the quadratic approximation, only the
terms linear in e —

1 =12/(2n z ) or in y, 2 are retained.
The averaging of (2.7) gives

(4.1)

I 2

TABLE I. The classical frequency of the radial vibrations co„d compared with the energy separation
hE [3] between the lowest levels in the Rydberg series: [n, k, TJ = [nz —1,0,0) and
[n, k, TI = [n2 —1,0, 1I for the helium atom.

~rad
5E COr~d

farad

0.0040
0.0047

16

0.002
0.0024

16

7.8 X10-'
8.7X 10

10

5.3 X 10
5.8 X 10

3.76 X 10-'
4.09 X 10
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H
g
— 2k]l 2k2tp]2 j

2 ] 2 (4.10)

duced the notation l = l
&
=I2.

The effective Hamiltonian for the slow angular motion
H,„ is obtained as a sum of (4.8) and the term 1f /(2r f )

in the helium atom Hamiltonian (2.1). All contributions
should be calculated at the stationary point r, =r,o,
which leads to the compact expressions

V. QUANTIZATION

Z2(I)= — ", +H'„, +I,„, .
2n2

(5.1)

As a summary of Sec. III and IV, the present adiabatic
approach generates the effective Hamiltonian for the
lowest members of the Rydberg series

k' = 'n —(Z —Z' ) (4 11) Here the effective charge is defined by the relation

k, =k', a—nz =—'nz (Z —Z' )8 7 (4.12)
Z,q=Z —2nzV(r&o) . (5.2)

k = 'Z-'"n '(-Z Z—'")' .
8 n2 (4.13)

The Hamiltonian (4.10) is of the type —
—,'p —

—,'co q,
i.e., it differs only by the sign from the standard harmonic
oscillator Hamiltonian —,'p +—,'co q . Obviously the spec-
tra of both Hamiltonians also differ only by the sign.
(Note that we do not meet here the Hamiltonian of the
parabolic potential barrier —,'p —

—,'a q .) The Hamiltoni-
ans of this form appear very frequently in a large variety
of quantum problems reducible to the three-term recur-
sion relations (see the recent review by Braun [16] and
Refs. [1,17]). The "upside down" oscillator Hamiltonians
arise also in the description of the vibrational spectra of
polyatomic molecules. The analysis of local and normal
modes and the dynamical barrier picture could be men-
tioned here [18,19].

The role of canonically conjugate coordinate q and
momentum p in (4.10) are played by 1 and |p,2 (or vice
versa) and the frequency is

=(k k )~~2= n Z ~~3(Z —Z ~~3)2 (4.14)
v'3

~IIg & 2 8

The numerical values of the parameters for the helium
atom are k

&
=0.068 464/n 2, kz =0.32604/n 2, and

co,„=0. 149 406/n 2.
The pair of conjugate coordinate and momentum is the

same as in the dipole approximation [1]. Physically the
oscillations imply the exchange by the orbital momentum
between the inner and outer electron under the constraint
I&+12 =0. When 1=

~
l

& ~

=
~ 12 ~

is maximal, the elliptical
inner-electron orbit has minimal eccentricity, and the an-
gle y, 2 is zero. As y, 2 increases with time, the orbit ec-
centricity increases also, i.e., I decreases. As y&z reaches
its maximum value, I turns zero, i.e., the orbit is squeezed
into the straight line segment. After that ~l ~

increases
again, but the sign of 1 is changed (that implies that the
sense of the inner-electron circulation along its elliptical
orbit is reversed).

Comparing the expressions (3.12) and (4.14), we obtain
an unexpected result. The ratio of the frequencies for the
radial and angular vibrations proves to be an integer:
co„d..m,„=2:1.This implies the resonances in the classi-
cal mechanics and the additional degeneracies in the
quantum description. Both these frequencies are much
less than the typical frequency of the orbital motion
co„b=Z /n2. In particular, for the helium atom, we
have ~„b/~„d= 13.4. This large parameter governs ap-
plicability of the present adiabatic approximation.

E
n2 PI fl

2.220 24 0.298 81

n2 n2

0. 149 41
( + 1)

n2
(5.4)

The interpretation of the formulas (5.3) and (5.4) re-
quires some additional discussion. The straightforward
analysis shows (see also Ref. [1]) that the relation I

&
=12

in quantum mechanics holds not only for S states, but
also for P' states. In the dipole approximation [1],the P'
levels lie approximately halfway between S levels. This
alternating structure is retained in the present approach.
Bearing in mind also that the unexcited n, mode should
correspond to the S state, we conclude that even n, give
S levels, whereas odd n, produce P' states.

VI. APPROXIMATIONS
FOR THE ENERGY SPECTRUM

The formula (5.4) can be compared with the expansion
of the expression (1.1). At fist we assume that n =n2 —1

[9,10]. Taking the numerical coefficients for helium from
the papers by Richter and co-workers [2,3] (S= l.491 50,
y &

=0.461 64, y 2
=0.0676 ), one obtains

2.224 57 2.224 57
nkvd 2 3n2 n2

+ 0.300 98 (1+, ) + 4. 1078
(k +, )

3 2 3 2
n2 n2

(6.1)

It should be stressed that this form is applicable only to
the bottom of the Rydberg series; for the highly excited
states, Z,I is replaced by Z in agreement with (1.1). (See
also the discussion in Sec. III.)

The second and third terms in (5.1) are essentially the
Hamiltonians of the harmonic oscillators in the radial
and angular motion, respectively. The quantization of
the oscillatory motion is trivial:

2
Zeff

q +co„d(n„+—,
'

) —co,„(n,+ 1), (5.3)
2n2

where n„and n, are nonnegative integer quantum num-
bers. We took into account that the angular vibrations
correspond to the two-dimensional oscillator. Note also
the sign "minus" in the last term, which is related with
the form of the Hamiltonian (4.10) discussed above.

In particular, for Z =2 the expression (5.3) reads
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2.224 57 0.300 98
nkvd 2 3 Y

n2 Pl2

0. 170 67 (2k + 1 )3ll 2

(6.2)

Bearing in mind that for S states n, is even (see discus-
sion above) we see that the expressions (5.4) and (6.2) are
in a good quantitative correspondence concerning the an-
gular mode (related with the last terms in the right hand
side). However, it is worthwhile to note that for the radi-
al excitation mode the agreement is appreciably better.

The formula (5.4) corresponds to Z,&=2. 1073. The for-
mula (6.1) gives a very close value Z,ir=2. 1093; note that
in both cases one has "antiscreening" since Z,z) Z. Us-
ing the Gutzwiller [4] quantization procedure, Richter
and co-workers [2,3] have expressed Z,a via the action S
along the classical periodic trajectory. In the present ap-
proach, practically the same numerical value is obtained
via the sum of the energy parameters (5.2) (the unper-
turbed energy of the inner electron E2p and the depth
V(r i0) of the potential well for the outer electron).

For the n„mode in (5.4) and the I mode in (6.1), the fre-
quencies practically coincide. This sustains interpreta-
tion of the l mode as the radial excitation [9,10].

At the same time there is the large difference in the fre-
quencies associated with the n, mode in (5.4) and the k
mode in (6.1). Moreover, bearing in mind the numerical
values of the parameters, from the formula (1.1} we see
that the typical frequency for the k mode is very close to
that of the n mode. In other words, the motion associat-
ed with the k mode is not slow.

The underlying reason for this is easy to understand.
There are two natural possibilities to choose the angular
variables for the planetary states of the helium atom.
The angle between the electron vectors (for the plane
motion gi —pz, see Sec. II) is the rapid variable. The re-
lated frequency is close to the frequency of the inner-
electron orbital motion; it corresponds to the k mode.
The adiabatic separation of the dynamic variables cannot
be carried out in these coordinates. This corresponds to
the approach adopted by Richter and co-workers [2,3]
who obtained Eq. (1.1) without resort to the separation of
rapid and slow motion.

The alternative choice of the angular variable is sug-
gested in the present paper: It is the angle between the
outer-electron vector and the aphelion of the inner-
electron orbit yi2=y, —@2 (2.8). It is a slow variable
well decoupled from the rapid orbital motion.

Closer correspondence between (1.1) and the present
results can be achieved if one refines the relation between
the quantum numbers introduced by Richter and co-
workers [2,3] and in the present approach. Note that our
previous study [9,10] in fact was confined to the states
with the unexcited angular mode (since Richter and co-
workers [2,3] have published the results of the precise
quantum calculations only for this case). For kXO, we
suggest the following relation: n2=n+k —1, n„=l,
n, =2k. Then the expansion of the expression (1.1) gives
the formula, which differs from (6.1) in the last term only:

0. 16933 (2N, +I)
3

71 2

(6.3)

(We have used here the approxiinate expression (4} of
Ref. [9].} The angular frequency in (6.3) is quite close to
that in Eq. (5.4) and especially to that in Eq. (6.2). How-
ever, the radial frequency differs appreciably. The reason
is quite evident: The dipole approximation is quite crude
near the minimum of the effective potential r& =r]p ~ It
can be used only for the states classification and semi-
quantitative analysis [9]. Accounting for the quadrupole
correction [10] somewhat improves the situation, but the
convergence proves to be quite slow. On the contrary,
the present treatment does not resort to the multipole ex-
pansion and generates the effective potential (3.6), which
includes contribution of a large number of multipoles.
Therefore, it is much more efficient quantitatively.

VII. TRANSITION TO THE
QUASIMOLECULAR SYSTEM

The present theory is easily generalized to the case
when the outer electron is replaced by a particle with an
arbitrary mass m, . The frequency of the radial vibra-
tions is simply multiplied by the factor m

&

' . For the
angular oscillations, the situation is somewhat more com-
plicated. In the expression k, —:k

&

—o. n2 only the
second term should be multiplied by the same factor. As
a corollary, we see that 2:1 ratio of the radial and angular
vibrations is specific for the (nonexotic) atom when the
outer particle is an electron (m, =1). As mi increases
from 1 to ~, the ratio co„d.co,„varies from 2:1 to 2:v'3.

The case m
&
~ 00 is particularly important, since it

corresponds to the inner electron placed in the field of the
nucleus and the space-fixed outer particle. The present
theory allows one to calculate the r& dependent potential
curves for this quasimolecular system.

In the potential curves analysis, the radial vibrations
do not appear. The angular vibrations correspond to the
oscillations of the inner-electron orbit in the field of the
space-fixed charge with the frequency co,'„=Qk', k2. In
the asymptotic limit of large n2, the relative role of these
vibrations is negligible and the potential curve coincides
with V(r, ) [see Eq. (3.6)]. (Note that the separated atom
limit of the potential curve is chosen as a zero of the en-

ergy here. ) This potential curve has minimum at
r& =r&p. The similar minimum was obtained previously
in the numerical calculations of the potential curves
[3,15]. The results were employed in the tentative
analysis of the bound states of antiproton in the matter

If the angular oscillations are taken into account, the
potential curves are given by the sum

W„(r, ) = V(r, ) co,'„s(ri )(n—, +1), (7.1)

The result of the dipole approximation discussed in
Ref. [9] can be also presented in the form similar to (5.4)
and (6.2):

2.32 0.512
iip 11 p
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where co,'„should be calculated via r, dependent k
&

and
k2 (4.9): co,'„s=(k&k2)' . In particular, the large-r,
asymptote of this potential curve is

0.0

—0. 1—

3n2(nz —n, —1)
a p 2ZT

(7.2)

0, 0

I

I

0
I

I

I

I

I

iQ
I

1

0

Q

ON 0

.—=:0

It describes exactly the charge-dipole interaction in con-
tradistinction to the formula (3.7) (see the subsequent dis-
cussion in the Sec. III).

The analytical potential curves in the present approxi-
mation are compared with the numerical data [3] in Figs.
1 and 2 where we replace r

& by R (which is the notation
conventional for the quasimolecular system). It should
be stressed that we show only the region of the potential
minimum and the inner wall since the long-range outer
wall is reproduced quite well already in the simplest di-
pole approximation (3.7). Figure 1 shows the potential
curves in the case n, =0. For the inner wall, the dipole
approximation underestimates the repulsion, whereas the
simplest approximation (3.6) overestimates it. (Note that
the curve nzV(R) is a universal (nz independent) func-
tion of n2. ) The potential Wo(R ) agrees with the numeri-
cal data [3] much better. For nz =10, it reproduces even
the height of the potential maximum. However, this ac-
cidental agreement disappears for higher n2.

The effect of the angular mode excitation is demon-
strated by Fig. 2. Richter et al. [3] noted that for n, =1
(in our notations) the minimum on the potential curve ex-
ists for n2 ~16. Our results agree with this conclusion.
The minimum is absent in the case n2 =14 but appears
for n2 = 18, where it is somewhat deeper than for the ex-
act adiabatic potential curve.

Richter and co-workers [2,3] analyzed the asymmetric

~
I!

I

I—0.3- !
I

I

I

—0.4
1.0

(a

~
r

1.5 2.0 2.5 3.0
R/nz (a.u. )

3.5 4.0

FIG. 2. Same as Fig. 1, but showing also the result of the an-

gular mode excitation. The solid and the dashed-dotted curves
show Wo(R) for the unexcited angular mode (n, =0) in the
cases n2=14 and n2=18, respectively. The potentials 8'&(R)
for the excited angular mode (n, =1) are given by the short-
dashed and long-dashed curves, respectively. The results of the
numerical calculations [3] are presented by the closed (n2 = 10)
and empty (n2=18) circles for n, =0 and by the closed
(n& =10) and empty (n2 =18) squares for n, =1.

atomic states in terms of the potential curves obtained for
the space-fixed atomic electron. The apparent advantage
of this approach lies in the fact that the two-center
Coulomb problem is well studied and, in particular, the
efFicient computer codes are available. Although such an
approach is well justified for the heavy outer particle
(such as an antiproton), for the electron it leads to appre-
ciable error in the treatment of the angular vibrations.
Indeed, it corresponds to the replacement of angular fre-
quency co,„ in the proper adiabatic treatment by co,'„,
which is larger by the factor 3' . The physical reason is
easy to understand. For the atom the angular motion of
the outer particle is important and enters as a constituent
part in the construction of the effective Hamiltonian
(4.10) [via the term l, /(2r f ) ]. Namely, this term
governs the difference between co,„and co,'„. It implies
exchange by the orbital momentum between the inner
and the outer electrons. The space-fixed outer particle
destroys the spherical symmetry of the system and can be
considered as an unlimited source of the angular momen-
tum for the inner electron.

—0.4-
1 1.5 3.5

VIII. DISCUSSION AND CONCLUSION

FIG. 1. The potential curves describing the interaction of
He (n2) with the unit negative charge (antiproton) in the re-
duced variables. The separated atoms energy is chosen as ener-

gy zero. The dotted curve is the approximate dipole-charge in-
teraction (3.7); the dash-dotted curve is the universal (n2 in-

dependent) approximation (3.6). The analytic potential curves
Wo(R) (7.1) account for the zero vibrations (n, =0) in the elec-
tron angular mode for n2=10 (the long-dashed curve) and
n.2=18 (the short-dashed curve). The results of the numerical
calculations [3] are shown by the closed (n2=10) and empty
(n2 =18) circles.

Previously the adiabatic approach to the doubly excit-
ed states was related with the hyperspherical representa-
tion [20] where it proved to be very eff'ective although the
underlying physical reasons are not easy to understand.
In the present study, the adiabatic ideas are applied to
the case of highly asymmetric excitation. In this case,
the adiabaticity parameter has a lucid meaning.

In many aspects the present paper can be considered as
an extension of our previous studies in the dipole approx-
imation [1,9,10]. We drop the most restrictive assump-
tion, the dipole approximation itself, but some important
qualitative features of the dynamics are retained.
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It would be interesting to extend the adiabatic treat-
ment to the higher-L doubly excited states. In the
present paper, we have obtained (Sec. V) the energies of
P' states as a by-product in our treatment of S states.
Generally, for the states with I, )0, the associated classi-
cal motion is nonplanar and that makes the analysis con-
siderably more difficult.

The integer (2:1) ratio of the radial and angular fre-
quencies of the oscillations (Sec. IV) is an intriguing
point. This extremely simple result is obtained in the
present treatment via quite extensive calculations. It im-
plies the classical resonances and the additional degenera-
cy of the levels in quantum mechanics. The latter can be
considered tentatively as some residual part of high
[O(4) X 0(4)] symmetry of the two-electron atom with
the electron-electron interaction being switched off. Al-
ternatively, one can try to concatenate the present situa-
tion with the famous 2:1 Fermi resonance in polyatomic
molecules. Physically the situation looks very different
since there is no net Coulomb forces between the atoms
in molecules. The molecules with the Fermi resonances
are not necessarily asymmetrical as the planetary atomic
states under consideration. However, it could be that all
such specific features in fact are not important. Indeed,
recently Xiao and Kellman [21] used the catastrophe
theory to relate the appearance of the 2:1 or 1:1 reso-
nances with the general structure of the system phase
space. The analysis of these interesting problems is

beyond the scope of the present paper.
In principle, 2:1 resonance could imply an efficient

mixing of the radial and angular modes by the weak per-
turbations omitted in the present approximation. The
fact that the contributions from the radial and angular
excitations to the energy (5.4) differ in sign could be par-
ticularly important in this context.

However, it seems that in practice the mixing is not
very important. This is testified by the good agreement
between the energy levels obtained from Eq. (5.4) and the
results of the quantum calculations. The tentative reason
could lie in the strong anharmonicity effects. For the ra-
dial excitation, the anharmonicity is manifested as the
transition from the serial form (5.3) to (1.2) as n„ in-

creases. For the angular mode, the anharmonicity is
more important. This can be seen, for instance, from Fig.
2, which shows that the excitation of the angular mode
changes the shape of the potential curve very
significantly.
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