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A model is developed that permits the calculation of the radiation emitted by complex or highly
charged ions in a plasma. The model is based on the usual separation of the plasma-emitter interaction
into the homogeneous broadening effects of the fast electrons and the inhomogeneous broadening arising
from slow ions. For plasma conditions where the ion motion can be neglected, the spectrum is the usual
static line shape. To account for ion dynamics, the frequency-fluctuation model is introduced by decom-

posing the line shape of each radiative transition into a sum of radiative channels that are associated
with the smallest observable inhomogeneities that form the static profile. The fluctuations of the ion
microfield, the ion dynamics effect, is modeled by an exchange process between the static radiative chan-
nels. This results in both a smoothing and an overall coalescence of the radiative channels and depends
strongly on an averaged characteristic fluctuation rate associated with the dynamics of the interaction of
the local plasma microfield with the ion. This rate is formally related to the double-time field-field corre-
lation function behavior. This stochastic model of the observed frequency fluctuations permits fast and
accurate calculations of the emitted spectral profiles, including ion dynamics emitted by complex ions in

a wide range of plasma conditions.

PACS number(s): 32.70.Jz

I. INTRODUCTION

The emitted radiation is usually the only observable
physical quantity available to obtain information on the
underlying physical processes that are involved in line
formation in plasmas. The information contained in the
spectrum is related to both the atomic physics of the ion-
ic emitters and to the plasma physics of the environment.
This physical content is the reason that a great deal of
work has, in the past, been devoted to the effort to model
the physical processes associated with the electromagnet-
ic radiation emitted from various plasma environments.
In addition, plasma spectroscopy constitutes the main di-
agnostic tool for a wide range of plasma conditions, such
as gas discharges, stellar atmospheres, or the hot, dense,
and laser-produced plasmas of inertial con6nement fusion
(ICF). The conditions found in these plasmas mean that
the line-shape model, to be presented here, must describe
the spectra emitted from plasmas with electron densities
which range over more than ten orders of magnitude and
temperatures up to a few keV.

The developments which follow are intended to be
especially useful when a Stark-broadened impurity ion
spectrum is used for plasma diagnostic purposes. This
line-shape computation, in hot, dense plasma conditions,
can be difficult and lengthy. This is because the spectra
of interest are not limited to the simplest hydrogenlike or

heliumlike ionic lines, but include also lines radiated by
complex, three or more electron ions. An order-of-
magnitude estimate for the number of components in-
volved in a typical calculation can be found from the fol-
lowing considerations. A calculation of one radiative
transition may, typically, far exceed 20 states in the lower
and 50 in the upper subspace connected by this transi-
tion. In addition, typically 50, or more, ion microfield
values are required to reasonably describe the probability
distribution of the random plasma ion micro6eld pertur-
bation. Therefore, the resulting basis can involve more
than 50000 states. Conventional theoretical spectroscop-
ic approaches that are commonly used to generate the
line shapes of complex ions, would give rise to calcula-
tions so large that, in practice, they cannot be used for
predicting their spectra. Thus given the fact'that a num-
ber of approximations are necessary to obfa, in a solution
for even the simplest systems, a robust model capable of
describing complex spectra emitted from a wide range of
plasma conditions is needed. The formulation of such a
model is the subject of this work. As will be shown, this
model, rather than leading to a formal analytical method
drastically limited to the simplest systems, will permit
practical spectral intensity calculations of an arbitrarily
complex ion perturbed by very general plasma environ-
ments.

All line-shape calculations must deal more or less
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directly with the problem of converting macroscopic
physics into a solvable 1V-body problem. One of the most
common methods has been to transform the problem into
one of resolving a stochastic evolution equation [1]. The
underlying hypothesis that yields such an equation is the
requirement that the emitter motion, or, more generally,
the emitter degrees of freedom, are not strongly coupled
to the local perturbing microfield. Such an assumption is
generally valid in the case of weakly coupled plasmas
where the interaction can be considered as a stochastic
external perturbation of the quantum emitter system.
For this purpose, the dynamical behavior of the ion-
plasma interaction can be replaced by the stochastic Auc-
tuations of the local perturbing plasma microfield. The
weak-coupling assumption involved in the use of a sto-
chastic equation generally assumes that the plasma cou-
pling parameter I, the ratio of the ionic potential to
thermal energy, be smaller than 1. For the plasma spec-
troscopy model developed in the following, however, it is
required only that the features in the line shapes arising
from collective charge motion be negligible relative to
those due to the chaotic thermal motion. In this case the
stochastic behavior of the local microfields is not driven
by large charge-density oscillations and the microfield
correlation functions can be expected to describe a nonos-
cillatory damping behavior that is sufficiently well
represented by one or more decreasing exponential func-
tions.

In Sec. II the theoretical background of traditional
line-shape calculations will be reviewed. Next, in Sec. III
the frequency-fluctuation method of modeling the emit-
ted radiation is developed following essentially a classical
idea involving spectral frequency fluctuations introduced
by Kubo [2], but with more traditional ideas of line-shape
theory incorporated. Here, the concept of modeling the
microscopic ion perturbations with a Markovian Auctua-
tion of the observable spectral components is formulated.
This frequency-fluctuation mixing is extended to formu-
late a model for including the ion dynamics effect in
Stark-broadening calculations. The model is based upon
a statistical analysis of the static profile that allows a
reduction of the amount of data required before the
frequency-Auctutation mixing is applied.

In Sec. IV, the two main methods commonly used to
include the ion dynamics effect are reviewed. In the first
method, the model microfield method (MMM), the field
fluctuations generated by the ion motion are assumed to
be a Markovian modulation that reproduces the main sta-
tistical features known from statistical mechanics studies
[3—7]. The other method is based on a molecular dynam-
ics (MD) simulation of the movement of the plasma ions
that produce the local microfield perturbing the emitter
[8]. These more traditional methods to account for ion
dynamics are discussed in order to clarify their relation-
ship to the frequency-fluctuation model.

Finally, in Sec. V, several results, calculated using the
frequency-fluctuation method, are presented and com-
pared to the spectra produced by a molecular-dynamics
simulation. This comparison illustrates the excellent
agreement found between the proposed model and an
ideal experiment, represented by the simulation.

II. THEORETICAL BACKGROUND

d UI(t)
dt

U~(0)=1 .

=i (Lo+l~)U~(t),
(3)

The Liouville operator I.o used in the above is a phenom-
enological operator, constructed from Ho that describes
the equilibrium emitter system behavior. It involves the
transition energies of the free radiating system and also
accounts for the electron broadening mechanism. As was
indicated above, the electrons contribute to homogeneous
broadening and their effect is described by a non-
Hermitian collisional operator that was included in Ho
and which contributes to the decorrelation of the radiat-
ing dipole [9].

The time-dependent Liouville perturbation operator I&,
in the above, connects the quantum emitter system to the
external ion electric field "f"where f is one of the possi-

The various theoretical approaches developed for the
spectroscopy of Stark-broadened lines emitted from plas-
mas are all related to different approximate solutions of
an N-particle problem. For plasmas the particular X-
body system to be considered consists of the active emit-
ting ions, which are usually taken to be distinct from the
plasma ions and electrons. The plasma ions and electrons
produce local electric fields that interact with the emitter
and modify the radiated spectra. This plasma-emitter
system is usually modeled by partitioning it into an active
radiating system and a perturbing bath. The bath is tak-
en to be the electric fields produced by the plasma parti-
cles, and the emitting ion then interacts with this bath
through the Stark effect. The bath has, in general, a rap-
idly fluctuating field component produced by the elec-
trons and a slowly fluctuating field component arising
from the slowly moving plasma ions. The electron com-
ponent can be removed from the bath through an impact
approximation which results in the addition of a homo-
geneous damping and shift term to the emitter Hamil-
tonian Ho. The remaining ion microfield produces a
splitting of the radiated lines into Stark components and
is generally known only through its principal statistical
properties. As will be seen, this knowledge is generally
sufficient to predict line shapes.

The common starting point for the calculation of a line
shape begins with the dipole autocorrelation function
C(t) related to the radiation intensity through the
Fourier transform

] oo ~

I(co)=—Re f e' 'C(t)dt,
7T 0

where, in Liouville space notation, C(t) is given by the
trace,

C(t) = « d*I U(t) I.dpo» .

Here, d and po are, respectively, the dipole and the equi-
librium density matrix operator for the given finite quan-
tum system. The average evolution operator U(t) for the
quantum emitter system can be found from the solution
of a stochastic Liouville equation (SLE) of the form [1]
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ble microfield perturbation histories produced by the
varying configuration of the perturbing ions in the plas-
ma. When averaged, the ionic perturbation giving rise to
the Stark splitting of the lines results in a broadening
that, by analogy with Doppler broadening, is considered
to be inhomogeneous. This ion field interaction is
modeled with the time-dependent operator lf that per-
turbs the emitter system, described by the operator Lo.
These rnicrofield perturbations are assumed to belong to a
measurable functional space IF I that provides a statisti-
cal method for the calculation of average quantities
through the use of discrete weighted sums, or a more gen-
eral integration process, with a given measure or proba-
bility density. The average evolution operator can be
written,

U(t) ( Uf(t))f~F (4)

The formal resolution of the SLE of Eq. (3) can be ob-
tained in principle with a two-step process. First, a solu-
tion to the equation for each of the field histories, and
second, a sum, or integration, over the functional space.
However, the quantum average in the trace of Eq. (2)
works as a filter that reduces the information contained
in U(t), with the result that the line-shape problem be-
comes simpler than the resolution of the SLE. Since the
final purpose is the calculation of line shapes, it is
straightforward to develop methods that take advantage
of this simplification.

In a few well-known cases, the SLE can be solved ei-
ther exactly or to a good approximation. For example,
an exact solution is obtained for the impact limit in
which short and rare binary collisional events occur be-
tween emitters and perturbers and the mean time be-
tween collisions is much longer than the collision time.
This type of approximation is used to describe the pertur-
bation of the emitters by the electron collisions in the
plasma. In the simplest approach, the impact theory, the
collisions are assumed to be complete so that U ( t ) be-
comes time independent and can be obtained by solving
the SLE for each binary collision with an average taken
over all the collision parameters. The electron interac-
tion in this case is replaced by an averaged collisional
operator and results in the homogeneous broadening and
shifting of the lines.

The second common case in which the SLE can be
solved exactly is the static limit where the perturbing ion
microfields, acting on the emitters, are constant during
the radiative process and are well characterized by a
probability density. The resolution of the Liouville equa-
tion for each constant field is followed by an average of
the corresponding evolution operator using the probabili-
ty density of the electric microfields. In this case, the
microfield average produces the inhomogeneous broaden-
ing and yields the usual static line shape.

These two limiting cases are the foundation of almost
all theories of the shape of lines emitted from plasmas. In
the usual formulation, they are combined so that a solu-
tion to the SLE is obtained in which the perturbing elec-
trons are treated in the impact approximation and the
ions are considered in the static limit. This is also the
starting point for the model to be presented in the follow-

ing section. However, for this model, we utilize a partic-
ular form [10,11] of the solution to the SLE that permits
practical calculations to be performed for complex ionic
emitters in a wide range of plasma conditions. The con-
siderations which lead to this particular form of the solu-
tion to the SLE are based, first, on the fact that the elec-
tron impact, or homogeneous broadening, is well charac-
terized by a frequency-independent collisional operator;
and, then, second, to obtain the form required, the
remaining average over the ion microfield values is per-
formed by assuming a discrete set of perturbing ion
microfield values f so that the mean evolution operator
of Eq. (4) can be written

U(t) =g pIe
f

(5)

Ck(~ fk )+akgkI (co) =g (~ fk )'+gk— (7)

This form of the solution to the SLE will be used for the
development of the calculational model in Sec. IV. Re-
call that this form is based on the impact electron and
static ion approximations and is, therefore, formally
equivalent to the standard formulation of plasma line-
shape theory found, for example, in Ref. I10]. However,
Eq. (7) has the added feature that it also permits the in-
troduction of the concept of the Stark spectral com-
ponent which will be important in the later formulation
of the model. The Stark components are defined by two
complex numbers, the generalized intensity ak+ick and
the generalized frequency zk =fk +igk These .com-
ponents can be considered to contain a complete set of in-
formation for solving the line-shape problem. The imagi-
nary parts that appear in both the frequency and the in-
tensity are a result of the use of a non-Hermitian col-
lisional operator to treat the electrons in Lo.

To establish a basis for the frequency-fluctuation model
to be developed below, the physical meaning of the Stark
components and their relationship to the physical infor-
mation contained in the radiated spectra will be con-
sidered. The individual Stark components constitute the
radiated spectrum whenever the static approximation is
valid. However, since there can be unshifted Stark com-
ponents, there is no one-to-one correspondence between
the local microfield and the component frequency. In ad-

where pf stands for the probability of the local-field state
f. Thus, for each field value, the Fourier transform of
Eq. (1) can be calculated in the f-dependent basis that
makes the Liouville operators Lo+ lf diagonal,

I(co)= g—p&Re f e' '((d*~MI 'M&e
f

XMf Mf ~
dpo))dt

Here, Mf is the unitary matrix that diagonalizes the
Liouville operators. This procedure leads to the desired
result, which is that the above integral can now be writ-
ten as a sum of rational fractions which are generalized
Lorentzian spectral components of the line, i.e., the Stark
spectral components,
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dition, from a spectroscopic point of view, if several Stark
components appear at the same spectral position (or
nearly the same position, within a fraction of their homo-
geneous width), they cannot be observationally dis-
tinguished. This means that the primitive Stark com-
ponents of Eq. (7) should be considered as nonobservable
objects and, therefore, will be replaced here with the con-
cept of radiative channel which is the minimum inhomo-
geneity that is observed in the emitted radiation. The ra-
diative channels represent the fundamental observable
components of the static line shape. They are more pre-
cisely defined as the mean of a coarse-grained distribution
of the Stark components. It is these observable objects
that the ion microfield Auctuations affect. As will be dis-
cussed in detail later, these radiative channels represent,
in some sense, a renormalization of the spectrum of the
isolated ion dressed by the static plasma interaction. The
model that is to be introduced in the next section is based
on this concept.

The argument just given is the same as that found in
the description of experiments involving two-photon
sub-Doppler spectroscopy in which the homogeneous line
is to be extracted from a Doppler broadened line. In
these experiments, counterpropagating lasers detect a sin-
gle velocity class (the projection over a given direction),
i.e., a partial velocity average, not, as is sometimes stated,
the contribution of atoms with the same velocity. As
with the primitive Stark components, the exact velocities
should be considered as unobservable objects. This is be-
cause, in general, no technique is available to unfold the
contribution of different external static perturbations
within the same homogeneous width, and, therefore, the
objects that have a physical meaning are the result of
some partial average over the indistinguishable primitive
components.

This discussion concerning the observables of the sys-
tem can be applied to simplify the introduction of ion dy-
namics effects into the line-shape calculation. For com-
plex ionic spectra the large number of Stark components
can become the limiting factor in calculations. As is usu-
al in situations where a massive amount of data must be
treated, a recourse to statistical methods is desirable.
However, particular care must be taken to preserve the
physical content when reducing the quantity of data in-
volved in the calculation. Since the static line shape in
this case results from the superposition of all the static
Stark components, a reasonably coarse-grained distribu-
tion of these components will preserve this static spectral
profile. Using a statistical algorithm to extract this
coarse-grained distribution from the complete Stark com-
ponent data results in a reduced set of equivalence classes
that can be interpreted as the various radiative channels
allowed for the radiation.

For intermediate cases, that is, when the ion interac-
tion must be considered to have both static and impact
contributions, the SLE must be solved for emitters per-
turbed by an electric microfield that Auctuates during the
radiative process. This is referred to as the ion dynamics
effect and becomes important when the perturbing ion
microfield, and consequently the frequency radiated by
the individual emitters, cannot be considered to be sta-

tionary during the radiation process. A number of ap-
proximate methods exist which have been formulated
specifically to address this problem. The basic strategy of
two of the most relevant methods developed for plasma
line-shape calculations, the model micr ofiel method
(MMM), and the simulation method, is to treat directly
the effect on the emitted spectrum of the stochastic Auc-
tuations of the perturbing microfield. These methods will
be reviewed in Sec. V, for a better understanding of the
frequency-fluctuation model developed here. However,
since we use a completely different approach, the previ-
ous methods will be discussed only for the purpose of
displaying the utility of the technique to be adopted here.
The principal advantage of the model is that these earlier
methods for dealing with ion dynamics have only a for-
mal relevance to the general problem of line-shape studies
and can be used for practical calculations of plasma ionic
line shapes only for the simplest quantum systems. Cal-
culation for arbitrary complex ion emitters in a plasma is
computationally impossible with these previous methods.

III. THE FREQUENCY-FLUCTUATION MODEL

First, we present an example due to Kubo [2] that will
serve as a reference for our subsequent model ca1culation
of the spectra of emitters subject to plasma perturbations
which do not fall neatly into either the static or impact
categories. A classical model of the emitted spectrum
based on the Auctuations in frequency of the radiative
channels is then introduced. Previous statistical treat-
ments such as the MMM as well as the simulation model
were based on a common strategy: an a priori stochastic
field modeling followed by the solution of the SLE. The
model we formulate will drastically change this point of
view by using the fact that the field Auctuations induce
Auctuations of the radiation intensity and of the radiation
frequency through the evolution operator. This leads to
the formulation of a method based on modeling the radia-
tion Auctuations, so that a straightforward consideration
of the stochastic properties of the observables, i.e., the ra-
diated frequencies, can be used to model the ion dynam-
ics effect on the line shape of a Stark-broadened transi-
tion. We defer to the following section the relationship
between this frequency-Auctu ation modeling and the
physical quantity which is directly related to the ion dy-
namics, the microfield Auctuation.

The idea of calculating spectra with a simple
frequency-Auctuation model of the radiating system has
been introduced by Kubo [2]. The treatment is based on
a Markovian model for the Auctuations of the emitted ra-
diation frequency and contains concepts similar to those
to be formulated here. It is especially relevant to under-
standing the behavior of the associated line shape. In this
model, the Auctuation of the emitted frequency is taken
to be caused by the complex perturbations to which the
emitter is being subjected. Hypotheses about the process
responsible for the frequency fluctuation are not neces-
sary at this point. The simplest case is a system emitting
two radiative components with frequencies co& and co& and
equal intensities. The frequencies of these two lines are
assumed to be exchanged, or mixed, by the Markovian
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process with a Auctuation rate v, and the associated spec-
trum is given by the expression

v(coi co2)
I(co)=

~ 2 ~ 2, (8)
(co —co, ) (co —coi) +v (co —co )

where co =(coi+coz)/2. This system can be seen to have
two limits which depend on the Auctuation rate v. For
the static limit v=0 the spectrum consists of the two
nonperturbed frequencies co, and co2. Then, as the Auc-
tuation rate, v increases to infinity, these two lines
broaden and coalesce towards the mean frequency cu

This frequency-Auctuation model for the observable
frequencies forms the basis of a practical method to ac-
count for the ion dynamics effect on a static Stark-
broadened line shape. It is physically interesting because,
instead of basing the calculations on speculations con-
cerning nonobservable quantities like the Auctuating local
microfield "seen" by an emitter as in microscopic
theories, the frequency-Auctuation modeling is based on
macroscopic physical quantities, i.e., the characteristics
of the emitted radiation itself. In addition, as will be
seen, this model permits rapid and accurate calculations
of the spectra emitted by complex ions in hot dense plas-
mas.

The frequency-fluctuation model (FFM) generalizes the
considerations leading to Eq. (8) in order to describe the
frequency variation of the radiation emitted by ions in a
plasma. The explicit steps necessary to extend the above
calculation for the definition of the model are: first,
define the component set to be mixed by the stochastic
process; second, construct the Markov process through a
consideration of the fluctuation rate for the chosen com-
ponent set; and finally, give a prescription for the practi-
cal calculation of the line shape with an equation that is
the generalization of Eq. (8).

The choice of a component set is based on the con-
siderations concerning observable quantities which gave
rise to the radiative channels. These radiative channels
are defined by the mean of a coarse-grained distribution
of the Stark components, which are obtained through a
quantum-mechanical development in the static ion limit.
The coarse-graining process is to be identified with a re-
normalization of the primitive information contained in
the static profile. This gives rise to the first hypothesis of
the FFM: the stochastic Auctuation of the static radia-
tive channels represents the ion dynamic effect on the line
shape. It is based on the assumption that the frequency
Auctuation of the static frequencies is the physically ob-
servable result of the Auctuation of the ion microfield.

The next step, the construction of the Markov process,
requires a discussion of the stochastic Auctuation process
driving the frequency mixing. In principle, the channel
Auctuation mechanism may not be Markovian. This is
because the behavior of each channel formally can de-
pend on the past behavior of all the others. Nevertheless,
as this memory is completely unknown and, perhaps, ir-
relevant, its effect will be ignored and a stationary Mar-
kov process will be chosen. Assuming that the Auctua-
tion mechanism of the static frequencies obeys a station-
ary Markov process driven by the field Auctuations is the
second hypothesis used to define the frequency-

P —wt (9)

The transition rates to be used in the following are
chosen to be proportional to the Auctuation rate v and
are defined by

W, =vp; (i'�), W, ;=—v(1 —p;) . (10)

In the frequency-Auctuation model, the probabilities p;
are defined to be the normalized real part of the corre-
sponding radiation channel intensity. The transition
rates and the probabilities 8'and p satisfy the sum rules
required by normalization and detailed balance:

=0, gW, p=0.

The quantities in Eqs. (9)—(11) define the stationary Mar-
kovian process that is the generalization to n channels of
that used to produce the line profile of Eq. (8). The spec-
trum associated with the stochastic mixing of n radiation
channels is now seen to be [12]

I (co)=Re g (co f +i W+i y );i'(a;+ic; ),— (12)

where the elements of the diagonal matrices f and y are,

fluctuation model.
Finally, the third step, the actual line-shape calcula-

tion, involves the method to be used to solve for the line
shape. The choice of a particular Markov process cannot
be unique, but must be selected in conjunction with this
method. This will involve most of the approximations
needed to complete the profile calculation and will also
characterize the frequency-Auctuation mechanism. Un-
like the microfield Auctuations, the frequency-Auctuation
process necessarily ignores any field dependence of the
transition rates involved in the definition of the Markov
process. Therefore, the Markov frequency-Auctuation
process is based on a unique Auctuation rate which is as-
sociated with the restrictions on the model. It is chosen
here as the average rate of the Auctuations driven by the
ion microfield and is obtained either from simulation, or
from a simple model of the field-field correlations.

For complex ions, we consider n channels, character-
ized by their generalized complex frequencies and ampli-
tudes, that Auctuate in accordance with a finite Markov
process. The behavior with respect to the limits of the re-
sulting profile will then be similar to that in the Kubo
model. The static profile v=O will be given by the sum of
the channels, and is the static solution to the SLE. The
opposite bound, the fast Auctuation limit v —+ ~ will have
a single resonance which concentrates the entire set of ra-
diative channels at the center of gravity of the original
profile, as should arise with a very large ion dynamic
effect. Thus, although the zero Auctuation limit is the
same as the static limit, the infinite fluctuation limit is not
the impact limit, as will be explained in more detail later.

This process is defined completely by two quantities,
the instantaneous probability of states p I,p2, . . . ,p„,and
the transition rates between these states 8'" with
i,j =1,2, . . . , n. The transition probability matrix P is
related to the matrix of transition rates 8'through
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respectively, f; and g;, the real and imaginary parts of
the generalized frequencies z; of the radiation channels.

The steps necessary to formulate the model have now
been defined. That is, the component data set has been
defined to be the static radiative channels and the Auctua-
tion rate for the Markov process is defined by Eqs. (10)
and (11) with a v chosen to be that determined by the
microfield Auctuation rate. Finally, the line shape is to be
calculated with Eq. (12). This series of steps connects the
X-body problem through the SLE to the final Markov
model.

IV. FIELD FLUCTUATION MODELS

There exists no straightforward relationship between
methods based on the ion microfield fluctuations and
those based on the frequency Auctuations, both methods
necessarily involve the same basic physical framework.
The first field fluctuation model that we consider for com-
parison with our frequency-fluctuation model, is the
MMM, introduced by Frisch and Brissaud [3], for treat-
ing the ion dynamics. The assumptions contained in the
MMM illustrate particularly well the requirements for a
solution in the intermediate, nonstatic, nonimpact cases.
This method, primarily developed for neutral emitters in
plasmas, is purely analytical. It requires the history func-
tions for the ion field to belong to a well-defined measur-
able stair-function space or, equivalently, it requires the
time-dependent field Auctuations to obey a particular
Markov process, the kangaroo process, that enables an
exact resolution of the SLE. This Markov process is
chosen in such a way that its static and dynamic proper-
ties match the static field distribution function and the
field correlation function supposedly known from an in-
dependent plasma physics study. Thus, the MMM uses
rather restrictive assumptions on the time-dependent field
Auctuations in order to obtain a model for which an exact
solution exists. Similar methods have been used in other
fields, e.g. , to treat problems related to spin Auctuations
in solids [13].

The assumption that the functional space of perturbing
ion rnicrofield is restricted to stair-functions corresponds
to the basic hypothesis that the electric field suddenly
jumps from one field value to another according to pre-
cise rules, which for the MMM, is assumed to be the kan-
garoo process. This simple restriction permits the
definition of a new basis that includes the microfield
states. The relevant basis that generates a Liouville space
X. extended to the field states is denoted

~a, b, i» . (13)

In this extended space, the quantum operators act only
on the atomic states a and b while the stochastic process
is exclusively connected to the field states i belonging to a
particular set I. This notation explicitly describes the
evolution of a quantum system performing random jumps
among states of the product space X.(SF.

The mean evolution operator can now be written in
terms of a partially averaged operator U, J ( t ) This.
operator is averaged over all possible fields that occur be-
tween the two definite field states defined at times 0 and t.

The mean evolution operator is then found as an average
over initial states and a sum over the final states as

(14)

—i (Lo —I,. )t
G (z)= e"'e ' ' dt .

0
(16)

Note that, for this example, the Auctuation rate v in Eq.
(15) is the ion microfield fiuctuation rate. The evolution
operator is easily calculated whenever the atomic systems
are finite by inverting the complex non-Hermitian matrix

G, (z) =(z Lo —I;)—
or, equivalently, finding the eigenvalues and the eigenvec-
tors of the matrix to be inverted

G, (z) =M;
z z.

/c

(18)

where M, is the unitary matrix which transforms Eq. (17)
into a diagonal form.

It can now be seen that, for a given stationary Markov
process the z;k, the M;, and the microfield transition rate
matrix are the necessary quantities required to obtain a
solution of the SLE. This data set is seen to be equivalent
to the one used for the definition of the static Stark com-
ponents. It is assumed that the ion microfield fluctuation
rate v of Eq. (15) is the same as the frequency mixing rate
v in the frequency-fiuctuation model of Eqs. (10) and (12).
It can now be seen, that solutions of the SLE which as-
sume Markovian Auctuations require the same data
whether one considers the microscopic microfield Auctua-
tions or the observable frequency Auctuations. However,
it will be shown that the frequency-fluctuation model
while containing all the fundamental information retains
a calculational advantage and provides more accurate re-
sults. This latter point will be shown explicitly by com-
parison with simulation.

Molecular dynamics (MD) simulation is a second field
fluctuation approach to the problem of including ion dy-
namics in line-shape calculations, relevant to the
frequency-Auctuation model. The MD method is based
on the numerical simulation of the ion microfield fol-
lowed by an integration of the time-dependent evolution

In the case of a Markovian stochastic model of the field
Auctuations, the problem is simplified because these par-
tial averages can be expressed in terms of the evolution
operators for constant fields, i.e., the evolution operators
are restricted to one-field subspaces. Taking the frequen-
cy space transform of Eq. (14) and using the simple Pois-
son step process (PSP), where, unlike the kangaroo pro-
cess, the fluctuation rate v for the PSP is independent of
the field states, the equation for the matrix U with ele-
ments U, .(z) can be written [14]

U(z) =G (z)+i vpG (z)[1 i —v(G (z) ) ] 'G (z), (15)

where
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equation for the dipole operator [8,11]. Here, the solu-
tion obtained depends on the convergence of the simula-
tion process. That is, the simulation process is stopped
when the result reaches a definite neighborhood of the re-
quired solution. This convergence is directly checked on
the dipole autocorrelation function, and is related to the
line shape through Eq. (1). For the simulation method
two steps are necessary. First, a reduced set of history
functions is constructed with a molecular-dynamics algo-
rithm that follows approximately 100 ions with mutual
Coulomb interactions contained in a cubic box. This first
step can be thought of as the construction of a function
space reduced to N history functions each with an equal
weight 1/X. The SLE is then solved and averaged over
the quantum states for each history. In this second step,
the information contained in the evolution operator for a
relevant time period is converted into the scalar function
of Eq. (2). This, together with the relaxation mechanism,
acts as a noise filter ensuring a fairly fast numerical con-
vergence of the method. Results from simulation have
been used as model laboratory experiments to compare
with line shapes calculated by other methods or resulting
from experiments [12].

V. DISCUSSION AND EXAMPLES

The frequency-Auctuation model has been developed
primarily for plasma line-shape studies. In this field a
number of sophisticated formal approaches have been
discussed, e.g. , the MMM [3—7] and the simulation
method [8,11] that lead to calculations which are limited
in practice to simple radiative systems. The main pur-
pose of the present approach is to permit complex sys-
tems to be considered on the same level as those simpler
systems. That is, to expand the field of plasma line-shape
investigations so that rapid calculations involving mul-
tielectron ions present in hot dense plasmas can be con-
sidered. It should be emphasized, however, that this
method is not restricted to studies involving plasma spec-
troscopy, but applies to any area where the decorrelation
behavior of the bath Auctuations is well represented by an
exponential damping. In addition, since the Auctuation
rate is fundamental to the frequency-Auctuation model, it
provides a simple and practical method to describe con-
tinuously the region between the static limit or, zero Auc-
tuation rate, and the fast Auctuation limit in which the
external perturbation vanishes.

Finally, it should be noted that this method does not
formally yield the impact limit. This limit is not a simple
Auctuation rate limit, but rather corresponds to a particu-
lar regime of the external perturbation Auctuations. That
is, since the FFM assumes that the effect of the perturb-
ing ion microfield Auctuation is manifested as a Auctua-
tion, at the same rate, of the observable radiative chan-
nels which compose the static line, then in the limit of an
infinitely rapid ion microfield Auctuation, the effect of the
perturbation disappears and the line components collapse
to the center of gravity. This effect is the same as veloci-
ty narrowing where the rapid collisional mixing of veloci-
ty components causes a collapse of the Doppler line
shape. Note that the no-Auctuation limit results in the

static line shape, but the rapid Auctuation limit does not
result in the ions contributing to the impact width of the
transition, but rather in the complete disappearance of
the ion microfield perturbation. This is because the fast
Auctuation limit is not the same as the impact limit of
short and rare binary collisional events. The modeling of
collisions with a Auctuating microfield and a varying in-
teraction parameter with an impact limit is possible [14],
but could not be simply included in Auctuation of the ra-
diative channels and is thus, not possible within the ap-
proximations of the FFM.

To perform a comparison with the frequency-
fluctuation model, the hydrogenic argon Lyman-a transi-
tion, including fine structure, in a weakly coupled proton
plasma, is now investigated. This choice is made for
several reasons. First, this case has been frequently cal-
culated with various theoretical line-shape methods
[6,15], and therefore, reference profiles are available for
comparison. In addition, the quantum system involved is
simple enough so that a large number of time histories
can be used in the MD simulations to minimize the noise.
Finally, the Stark line shape investigated for different
plasma density and temperature conditions can involve
both a linear Stark effect for the red (1S,&2-2P, &2) and a
quadratic Stark effect for the blue (1S&&2-2P3/2) com-
ponent, which will be important in low-density cases.
For higher densities these two components merge, so that
another useful pattern for cross comparisons, the limit
without fine structure, occurs. It should be emphasized
that for the Lyman-a transition, the ion motion effect is
nontrivial and is not simply accounted for by the com-
mon procedure of using a convolution process which
broadens the line. It is therefore important to note, that
in this case, the component mixing model permits ion dy-
namic effects to be included in a physical manner.

In the present context the MD simulations represent
gedanken experiments, where essentially the same hy-
potheses are used as in the calculations with the
frequency-Auctuation model. The simulation is based on
a time-intensive step by step numerical integration of the
multidimensional differential linear equations of motion
for the plasma particles. The simulation results contain
both noise, due to the finite sample size, and the
equivalent of an apparatus function which arises from the
finite number of time steps used. These are both smaller
and better known than in experiments, but must be in-
cluded for the comparisons. For a complete description
of the simulation method see Ref. [8].

To make the comparison as rigorous as possible, the
same static ion microfield distribution will be used for
both methods. For the simulation calculation, this con-
straint is applied by using a sample history set with an in-
itial field probability that is the same as the field distribu-
tion that produced the static Stark frequency component
set for the frequency-Auctuation method. Further, the
same atomic data, and the same homogeneous electron
broadening mechanisms are used in the two methods,
while the effects due to Doppler broadening are neglected
to increase the sensitivity of the comparison. For the
line-shape simulation, the temporal properties are ac-
counted for through the normal evolution of the selected
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trajectories in the simulation, while in the frequency-
Auctuation method the Auctuation rate is used. This rate,
as explained above, can be obtained from the best ex-
ponential fit of the microfield time correlation function.
An example of such a MD simulated electric field corre-
lation function is shown in Fig. 1 with a typical station-
ary field distribution function. %'e point out that the fit is
only required to provide a good representation of the de-
cay of the CzE(t). Further, the fit to the field-field corre-
lation function by the simple exponential shown in Fig.
1(b) indicates that the true field-field correlation function
is indeed not a single exponential, but the single exponen-
tial approximation reproduces the decay —thus defining
the Auctuation rate for this case. The variation of the fit
to enhance agreement at early or late times is possible,

but would not in any manner change the qualitative na-
ture of the comparisons shown here.

Three cases have been considered, corresponding to
electron densities N, =1.5X10 cm, 1X10 cm
and 5 X 10 cm, all with the same electron temperature
T, =10 K. Figures 2—4 show the simulation result com-
pared with the frequency-Auctuation model line shape
convolved with the appropriate Gaussian apparatus func-
tion that, as explained above, accounts for the finite time
used in the simulation. The corresponding static profiles
are also presented for comparison to illustrate the contri-
bution of the fluctuations to the line shape. These three
cases are representative of the inhomogeneous Stark
structures encountered in weakly coupled plasma spec-
troscopy. For the three cases, the good agreement of the
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