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Pure recoil corrections to hydrogen energy levels
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The pure recoil correction to hydrogenlike energy levels is revisited. An alternative method
for its evaluation is presented. We confirm that the previous result [Doncheski et al. , Phys. Rev.
A 43, 2125 (1991)]of the M (Za) contribution was missing some important terms O.ur result is

2(Z )AE = ~ ~, l [4 ln(2) —7/2]. A new value of the deuteron radius is obtained by comparing theory
to the measurement of the hydrogen-deuterium isotope shift.

PACS number(s): 03.65.Bz, 12.20.Ds

I. INTRODUCTION

The recoil correction is the correction that comes from
the finite mass of the nucleus. Since the electron-proton
mass ratio is very small m/M = 1/2000, as a first ap-
proximation for the hydrogenic energy levels we can as-
sume that the mass of the nucleus is infinite. This al-
lows one to treat the nucleus as a static source of the
Coulomb field. In such a case we have an exact so-
lution of the Dirac equation. From that basis one can
evaluate /ED corrections: electron self-energy, vacuum
polarization, etc. For the precise determination of hy-
drogenic energy levels we have to include also the eAects
that come &om finite nuclear mass. In the nonrelativistic
approximation, the mass dependence is contained in the
reduced mass p of a two-body system, but the situation
is more complex in the full relativistic theory. As a start-
ing point one usually considers a Bethe-Salpeter equation
[1] that gives a full description of the two-body system.
Unfortunately, this equation is not easily tractable and
the limit of infinite nuclear mass, i.e. , the Dirac equa-
tion, is obtained only upon resummation of an infinite
series for the kernel of the Bethe-Salpeter equation. Thus
it seems to be more convenient to develop an effective
three-dimensional equation, at least for the evaluation
of some subset of recoil corrections that is equivalent to
the Bethe-Salpeter equation and takes advantage of the
small electron-proton mass ratio. One such method has
been developed by Grotch and Yennie [2] many years ago.
Using this method, one calculated all the pure recoil cor-
rections (i.e. , without a photon loop on the fermion liiie)
that contribute to hydrogen Lamb shift E(2S —2P) at
the level of 1 kHz. According to this method, the leading
inass correction [through (Zn)4 order] is obtained from
the efI'ective Hamiltonian, by treating the proton nonrel-
ativistically, with Coulomb and Breit interactions taken
into account:
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where f (n, j) is a dimensionless Dirac energy and p, is
the reduced mass. The exact mass dependence of the
pure recoil correction in o, order was first worked out
by Salpeter [4]. Using the Bethe-Salpeter formalism, he
obtained the result
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where n~ is the component of cx perpendicular to p —p'
and m and M are the electron and the proton mass,
respectively. For simplicity we set Z = 1 in Eq. (2) and
below since we are dealing with hydrogen, but in the final
results we restore the dependence on Z since results are
applicable for Z g 1.

The approach of Ref. [2] has been refined and through
order, but with the e~act mass dependence, the energy

levels of hydrogen (excluding the hyperfine structure) are
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and in[A,'o(n)] is the Bethe logarithm. In a order,
the m/M correction has been calculated by Doncheski,
Grotch, and Erickson in [5] using the efFective potential
method, with the result EC= R R (io)

Es is a seagull contribution. The Coulomb contribution
1s

fig —4 » (6)M ns 2 (n) gn)

It has been found that this result omits some impor-
tant terms. Khriplovich and co-workers [6] calculated
the exact mass dependence of the logarithmic term for
the case of arbitrary masses and found that the ln(o. )
term should be absent from Eq. (6). We confirm here
the Khriplovich result. We found that the Doncheski et
al. calculation [5] missed some terms in the seagull con-
tribution coming &om the lower components of the wave
function. We checked both analytically and numerically
that these terms exactly cancel the ln(a) coefficient. We
also correct the single transverse term.

Since we neglect photon loops on the fermion line, the
state @R here is the eigenstate of the second quantized
Dirac Hamiltonian in the external Coulomb field. There-
fore, we have one electron in, let us assume, state P and
a filled Dirac sea of states gP, so

~2
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II. DERIVATION OF FORMULAS

Our method takes advantage of the small electron-
proton mass ratio. Because we are interested only in
the first term in the m/M expansion, we may treat the
proton nonrelativistically, i.e. , its Hamiltonian is

(P+ e A)2
2M

where P is the proton momentum and J)i.(R) is an elec-
tromagnetic vector potential in the Coulomb gauge at
the proton position R. The O(m/M) term is obtained
by taking the matrix element of this Hamiltonian in the
electron state @R

where we introduced R' to move the differentiation P
out of the matrix element. Since after the R' di8'erentia-
tion we set R' = R,

Ec = —
M (PRI&R)+).(Al&R)2M
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We can omit the first sum in (12) because it does not
depend on the electron state. Since Ps (R, r) = Ps (r R), —
we can make the replacement P' ~ —p',

2
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=
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where gR is an electron eigenstate of the QED Hamil-
tonian in the external Coulomb field positioned at R.
When we apply the perturbation theory, this formal ex-
pression contains also the radiative recoil contribution,
which could easily be subtracted out by neglecting the
terms with the photon emission and absorption by the
same particle (electron or proton). We derive below the
exact (without expansion in Zn) expressions for the pure
recoil correction. These relevant formulas were first de-
rived by Shabaev [7] from the Bethe-Salpeter formalism.

In the derivation we first expand the expression in (8):

R 2M R + R MeA R

.(.. ;"'.-)
Ec+Ev +Es,

where E~ is a Coulomb, ET is a single transverse, and

where P+ and P are projection operators onto the posi-
tive and the negative energy subspace of the Dirac Hamil-
tonian. In this way we derived the formula for the
Coulomb contribution E~.

The single transverse contribution Ez is

1
&T = —(VRIPe&l@a).

In the Furry picture, in the external potential

V(r, t) = 8(t)V(r —R) + 0(—t)V(r —K'), (16)

where V(r) = —n/r, the single transverse contribution
reads
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where t '~ are spatial components of the photon propa-
gator in Coulomb gauge,

2m (27r) ( k

i(cue —k x)1 0

—k

The matrix element
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could be written as a sum over all possible states lg„),
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where the plus and the minus sign superscripts denote positive and negative energy eigenstates in the above sums,
respectively. The last term in (22) does not depend on state Ps, so we simply remove it. The single transverse
contribution reads now

2
d'y G'(y)(8(ys)I ):( s)s'yd)( )y(st. ly"lds) —).(d y'ds)(y)(dsl&'ld ) 1+0( ys)(ss)) —(»).

The summation over states gives Dirac-Coulomb propagators. We obtain for the single transverse contribution

e du. ~ d k ij 1
, ~", ((Osl~'"" ~ (~s )~'p'14.—)+"),M 2vri 2~ s k2 (24)

where b&~ ——b*~ —"&,"
The seagull (or double transverse) contribution is

(25)

For its evaluation we use a Furry picture in the external Coulomb potential and obtain
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The above closed formulas will be used in the next
section for the calculation of recoil corrections.

III. THE I EADING-ORDER CONTRIBUTION

The recoil contribution, through o. order, is obtained
from the Coulomb E~ and the single transverse ET using
the following approximations. In Eq. (14) for E~ we
neglect P and replace P+ by unity

(28)

In the single transverse contribution Eq. (24) we replace
the Dirac propagator S~(R—u) by 1/(ur —i e) and obtain
the so-called Breit term

e du d k,~ 1 (—1)
M 2' x 2m u —k2
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m2 —E2~E=
2M (30)

The sum of these terms, after some manipulation, gives The a term comes &om the single potential term of the
Dirac propagator, with both wave functions on the mass
shell

where E is the Dirac energy. This simple result is valid
through o. order.

LE = — 0,
1 m 6

2 M (37)

IV. HIGHER-ORDER CORRECTIONS

After separation of the leading-order terms we are left
with the following expressions. The Coulomb contribu-
tion

and &om the Coulomb correction to one of the wave func-
tions P(r) -+ (P —m) ' VP(0)

LE = — a1' 6
2M

The complete Coulomb contribution is a sum of (36)—(38)

1
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could be transformed upon the identity

(P —m —7' &) P4' = '7 [P V] 4

to the form

in agreement with [5].

B. The seagull contribution
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The seagull contribution remains the same
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The evaluation of higher-order corrections is a more
complicated problem due to the fact that both small and
large photon energies ~ contribute through o. . This is
the reason why we used the e method introduced in [8].
Except for some terms in E~ it is suKcient to consider up
to three-photon exchange to obtain corrections through

order. We perform the calculation for the 1S state
and later evaluate the difference AE(1S) —n AE(nS),
which we found to be exactly zero in o. order.

A. The Coulomb contribution

In contrast to Ez and Eg, the calculation of the
Coulomb contribution E~ proceeds in a straightforward
way. The o. term is obtained by putting both wave func-
tions P on the mass shell in (33), P(r) -+ P(0), and ne-
glecting the Coulomb potential in the Dirac propagator,

1 dt's 1
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The single transverse contribution after the separation is
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The seagull contribution Es (35) is more difficult to
evaluate since it gives terms logarithmic in o.. Thus we
present more details of its evaluation. We use the method
presented in detail in [8]. The contour of cu integration
is deformed according to Fig. 1 and divided into two
parts. In the high energy part C~ we expand the electron
propagator in the Coulomb Geld, set the binding energy
equal to zero, perform momentum integrals, and expand
in o. and then in e. The terms divergent in e will cancel
out with the low energy part (the contour CL, ), where we
could perform the nonrelativistic approximation. For the
terms in n order the contour of u integration is again
deformed according to Fig. 2. It so happens that the
branch cuts from photon and fermion propagators cancel
out and the expression under the u integral is an analytic
function on the left-hand side of the complex plane, i.e. ,
for Re(~) ( 0.

First we consider the term with the one Coulomb ver-
tex &om the electron propagator in the seagull contribu-
tion (35). The contribution from the CL, contour is zero.

4 m' 0.5DE�——=3 vr
(36)

FIG. 1. The contour of cu integration on the complex plane.
CL, is the lour energy part and C~ is the high energy part. The
dashed line denotes the branch cut from the fermion propa-
gator and the dotted line that from the photon propagator.
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jm(m)
i.e., e = o, e'. On the CL, contour, in the deep nonrela-
tivistic region, all momenta have one power of 0; and the
photon energy is of order o. . We can neglect w in the
photon propagator. Then

Re(o)) f d(u 1 ( 1
2+ I

= —8(/2e —p) .
2iri 2 g2ur+p2 —2cu+ p2) 4

(45)

The first term in Eq. (43) does not give a contribution
on CL, contour. The third term is

FIG. 2. CH is a deformation of the CH contour, used in
the evaluation of the a. correction. The branch cuts from the
fermion and photon propagators cancel out on the left-hand
side of complex u plane.
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In the CH contour we set E = m, both wave functions
on the mass shell, and m = 1. Then

The second term in Eq. (43) is
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where I = /2ur —~2. After the ki, k2, ~ integrals are
done, the result is

EE = n [4 ln(2) —2),M (41)

e du dkq dk2 dp
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in agreeinent with [5].
The remaining terms that contribute through o. order

are those with the Bee fermion propagator in Eq. (35).
After performing traces they are

(4~n) 2 d~ d ki dsk2
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After the kq and k2 integrals are done, the expression is

On the CJI contour, the third term in Eq. (44) does
not contribute. In the evaluation of the second term in
(44) we set one wave function on the mass shell and in the
second wave function we neglect n in the denominator.
This can be done in two ways, so we have an additional
factor 2,

T" = — ~+ — b'~ y —(8'~ki k2 —kik2) + 2p*p'
2 2

(43)

( b"p'+ b'~k, . k, —k;k', ) + 2 p' p .
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2 ln(t) 4 ln(1+ t) l 1
4J M 2

(50)

We use the grouping in Eq. (43) for the Cl, contour and
Eq. (44) for the C~ contour. Before the w integration it
is convenient to symmetrize in ~. The reason for this is
the fact that generally there are three regions of photon
energy w ~ o. , m ~ o., and u) 1 that give a contribu-
tion and this middle region is almost eliminated by the
symmetrization [except for the first term in (44)]. We
assume in this subsection that e contains one power of o.,

where t = i/ —u2/i/2w —m2. The additional factor 1/2
at the end of Eq. (50) is due to symmetrization in ur and
the fact that the term with —u is exactly zero on the CH
contour. The u integration is done along the contour C~
of Fig. 2,

os 3 1 (elEE = ——+ —ln
M 2 2 i2)
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The first term in Eq. (44) is again subdivided into
three pieces (in large square brackets)

e d~ dp dk1 dk2LE = ——
M c„27ri (2vr)s (2')s (2vr)s

1 1
xP(p+ ki) P(p+ k, )

seagull expression if one is working to order ns [see (4.27)
of Ref. [2(b)]], but it is incorrect as a starting point for
the o, terms since it was derived by setting the lower
components of the wave function to zero.

C. The single transverse contribution

2~ 1 (ki x kz)
X2+p2 2 k2k2

The single transverse contribution E& (34) is subdi-
vided into three parts

( ur 1l (ki x kz)~
p' 2)l A, g k2 (52)

dQJ (d

M c„2mi (u) + n)(io+ n+ A)
'

The first piece, in the above, becomes, after k and p
integration,

E~ ——BL, +BI+BE,
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(59)

(60)

where i() = g—u~. After symmetrizing in u, performing
integration, and expanding in o. and then in e' we found
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where implicitly symmetrization in ~ is assumed in the
above expression.

At this point the evaluation of seagull contributions is
complete. The result for Es is the sum of (41), (46),
(48), (51), (54), (55), and (57)

In the second piece of Eq. (52) we first integrate with
respect to p, then in k1, k2, and finally in u. The result
1s

m2a 8ZE = ——[1 —ln(2)] .Mvr3
In the third piece of Eq. (52) we use the same method
as in (49)-(51)

x(&I&'(e'"" —1) S (E —~) ~'[p', V]]4) +c c,
(61)

e2 d~ 1 dak b"
M c 2vri u —i e (2vr)s uz —k~

x((t)lp'e' ' Sp (E —(u) p [J)', V]lg) + c.c., (62)

where BL, is a low cu a, BI is an intermediate ~
and BH is a high (d 1 energy contribution. Since at the
end we expand in e, we can rewrite BL, using the identity

e2 ' dk; 1
M (2 7r)s + 2 k

x (&l~' S~(E —k) ~' p'l4) + c.c. ,

and apply a nonrelativistic approximation

This integral could be expressed in terms of Bethe log-
arithms ln(I(, p) and was calculated in [8], Eqs. (6.15),
(6.17), and (6.19),

BL, ——
m~ n 8 (2el 64 nz 8—ln —+ — ———ln(kp)

3 I ) 3 2. 8

4 e2 ' d~k 1 1'-2M (2.) 22 "Z 2 a'~) '"'--

m' o.' 14 2Es = ————ln(2) + 2 ln(n)M m 3 3

yn (
—2 y 4 ln(2) + 2 ln(n))) . (58)

The intermediate energy part BI is

e2 ' d3k, ~- 1

M (2vr)' ~ 2k'

(65)

Some explanation of the di8'erence between the o. term
of (58) and the corresponding term of Ref. [5] is needed.
Since (58) is for the 1S state, while Ref. [5] does the
2S state, we expect some state dependence beyond the
usual 1/n term. Equation (4.24) of Ref. [5] is the correct

x(41~' (e'"" —1) S~(E —k) ~' [p' Vll&) (66)

Because of the presence of e'"" —1, we can expand in
kinetic, potential, and binding energy without creating a
divergence,



1860 KRZYSZTOF PACHUCKI AND HOWARD GROTCH 51

p~ ' d3)g , 1j
M (2 )s 2k2

x Q p' (e* " —1) —
~

—+ V —E
~

(1 1)-
I

-+ -
I

[p', &1 +2) (67)

find that this difFerence is exactly zero. Thus the cor-
responding S state correction for arbitrary n is known.
The o.s correction corresponding to the one given in (72)
is expected to be negligible for the 2P state.

V. CONCLUSIONS

After integration with respect to angles r and finally in
A:, BI is

m' n' 32 8
BI —— ———ln

M ~ 9 3 i2n)
4 (e)+n —2 ——+2ln~

~ ).))2 n) (68)

The high energy part B~ is calculated in the same way
as it was previously in (49)—(51). Bygq is calculated by
neglecting V in the fermion propagator and next by set-
ting one wave function on the mass shell and neglecting
o, in the denominator of the second P(p). The result is

2m
BH1 — Q

4 (2)+ —+2 ln( —
/ (69)

B~2 is a single Coulomb correction &om the fermion
propagator. Here we set both wave functions on the mass
shell and perform all integrals to obtain

m2 63Ba2 = —
M

O' —.
2

(70)

The complete single transverse contribution E& is the
sum of (65) and (68)—(70),

m 6 72

E~ = a ———2 ln(n)M 2

o.5 32 16 8 8+——+ —ln(2) ——1n(n) ——1n(ko) ) .
9 3 3 3

(71)

This differs &om the result presented in [5]. A recalcu-
lation of Eq. (4.20) of that paper reveals an additional
contribution beyond (4.21) which cannot be accounted
for by the high momentum approximation. When this is
added, the factor 9/4 of (4.22) in [5] is replaced by 6/4.

The total recoil correction LE is

Ze+ &~+ Zs
m2 o,5 62 14 2 8—+ —ln(2) ——ln(n) ——ln(ko)M ~ 9 3 3 3

+n ——+ 4 ln(2) ) .6 7
2

(72)

This result is valid for the 1S state. The state de-
pendent corrections of o, order are connected with small
photon energy, namely, (46), (47), and (67). Considering
the difFerence EE(1S)—ns E(nS), where we can expand
the fermion propagator in kinetic and potential energy
(the divergent terms cancel out in this combination), we

We have calculated higher-order pure recoil corrections
to hydrogenic energy levels. The correction in o. order
Eq. (72) agrees with the general result (4) for arbitrary
masses and in o. order is

M ~s
E 2

(73)

EL, (2Sg)2-2P)y2) = 1057838(6) kHz,

1
El, (4S 2S) ——E-l, (2S-1S) = 868621(5) kHz.

(74)

(75)

The older proton radius rz ——0.805(11) [14] will give a
result that is 18 kHz smaller for the n = 2 Lamb shift of
Eq. (74) and 16 kHz smaller for Eq. (75).

Comparing this with the experimental results of Refs.
[15—18], respectively,

EL, (2S)~q-2Pq~2) = 1 057 845(9) kHz,

QE( 2&S-j2P2& z))
= 1 057851(2) kHz,

EL(2Sg)'2-2'(2) = 1 057 839(12) kHz,

1
EL, (4S-2S) ——Er, (2S 1S) = 868630(12-) kHz,

(76)

(77)

(78)

(79)

we find satisfactory agreement with the experiments of
[15,17,18] if the larger proton radius is used, although it
should be pointed out that it is necessary to confirm by
an independent group the result for the binding two-loop
correction [ll] because it is unexpectedly large. If we
include the ( —)2 (Zo.) ln (Zn) correction of Ref. [19],
which was estimated to be —3.6 kHz for the 2S state,
the agreement will be less satisfactory. We prefer not to
include this correction, until the remaining corrections of
that order have also been determined.

From the very precise measurement of the hydrogen-

which is difFerent &om the previous result of [5]. The
correction of Eq. (73) gives —7.4 kHz for the 1S state and
—1 kHz for the 2S state (compared to the previous —3
kHz for 2S). Let us now consider the current situation
for the Lamb shift, taking (73) into account. Recently
all six sets of gauge invariant diagrams were evaluated
for the two-loop binding corrections to the Lamb shift.
Five of these sets have been calculated independently by
two groups [9,10] and these produce 4.7 kHz for the n = 2
Lamb shift. The last or sixth set was completed in [11]
with a large contribution of —41(1) kHz. Taking these
into account and adding the higher-order correction to
the one-loop electron self-energy, which was obtained by
extrapolation of Mohr's data [12],we obtain for the Lamb
shift with the more recent proton radius r„= 0.862(12)
[13]



51 PURE RECOIL CORRECTIONS TO HYDROGEN ENERGY LEVELS 1861

deuterium isotope shift [20] performed by Schmidt-Kaler
et al. ,

of the deuteron and proton

r,h
—r„=3.805(19) fm (84)

where the error comes &om the electron-proton mass ra-
tio.

We take this opportunity to correct a previous paper
of one of us (K.P.) [21]. The 6rst correction is due to the
terms calculated in the present paper, while the second is
due to the fact that the deuteron has spin 1 rather than
spin 1/2. For a spin 1 particle the Zitterbewegung term is
not present [23] and this means that we should subtract
from formula (3) above, which is valid for an electron
interacting with a spin 1/2 nucleus, the expression

p3 ~4
, ~io,2M2 n3

where M is the deuteron mass. It changes the isotope
shift by 11 kHz.

Using the expression for the nuclear size correction

2AE= n p (r), (83)

we find for the difference in the square of the charge radii

ED(2S 1S-) —EH(2S 1S-) = 670994337(22) kHz, (80)

we can determine the deuteron charge radius. The theo-
retical value for this isotope shift [21], with the recently
calculated nuclear polarizability correction [22] but with-
out the nuclear size correction, is

[ED(2S-1S) —EH (2S-1S)]' = 670 999 549(14), (81)

which gives, for the deuteron charge radius [with r„=
0.862(12) fm],

r,h = 2.133(6) fm. (85)

These results are in disagreement with the charge radius
difference obtained &om electron scattering experiments
(see [23] and references therein)

r,h
—r„=3.728(12) fm (86)

but is in agreement with the radius obtained on the basis
of nucleon-nucleon scattering data [24] (deuteron matter
radius plus the Darwin term),

r,h
—r„=3.787(4) fm (87)

This means that the interpretation of low energy
electron-deuteron scattering data may require an addi-
tional analysis to obtain the correct charge radius.
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