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Relativistic Thomas-Fermi formulations with thermal effects for an atom
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In this paper, unified relativistic formulations with thermal effects of the Thomas-Fermi model for an
atom within and without a very strong magnetic field are considered. The general formulations are then
used to discuss the combined relativistic and thermal effects on some atomic properties.

PACS number(s): 31.15.—p, 32.60.+ i

I. INTRODUCTION

The Thomas-Fermi model (Thomas [1],Fermi [2]) pro-
vides a heuristic semiclassical statistical method to de-
scribe the electrostatic potential and the electron distri-
bution around the atomic nucleus, in which the electrons
are considered to form an ideal gas obeying the Fermi-
Dirac statistics. Relativistic corrections to this formula-
tion become appreciable as the atomic number increases,
because for very heavy atoms the electron velocities in
the vicinity of the nucleus become relativistic. Relativis-
tic corrections were developed by Vallarta and Rosen [3]
by replacing the nonrelativistic electron kinetic-energy
term in the Thomas-Fermi formulation by its relativistic
counterpart. On the other hand, the thermal effects on
the Thomas-Fermi formulation were considered by
Marshak and Bethe [4] and Feynman, Metropolis, and
Teller [5], among others (the thermal eFects are as impor-
tant as the relativistic effects if the temperatures con-
sidered are of the order of 10 ~ or more).

The study of atoms in very strong magnetic fields, on
the other hand, is of interest in connection with the emis-
sion of ions and electrons from pulsars. (The pulsar in
the Crab nebula has a magnetic field of the order of
6X 10' G.) In recognition of this astrophysical interest,
Kadomtsev [6] formulated a modified Thomas-Fermi
model to describe the ground state of a heavy atom in a

I

very strong magnetic field. Relativistic corrections to
this formulation were developed by Hill, Grout, and
March [7] and Shivamoggi and Mulser [8], while the
thermal effects were considered by Shivamoggi and
Schram [9].

In this paper, we will consider unified relativistic for-
mulations with thermal effects of the Thomas-Fermi
model for an atom within and without a very strong mag-
netic field. (For the case of an atom without a magnetic
field, such attempts had been made previously by Cox
and Guilli [10] and Koester and Chanmugam [11]in con-
nection with degenerate matter in white dwarfs, but those
considerations were mainly numerical and did not go into
atomic properties. ) We will then use those general formu-
lations to discuss the combined relativistic and thermal
effects on some atomic properties.

II. GENERALIZED THOMAS-FERMI THEORY
FOR AN ATOM

A. Relativistic Thomas-Fermi equation with thermal eft'ects

Consider a heavy atom with an atomic number Z and
let p(r) be the Coulomb potential due to the nucleus and
the distribution of electronic charge around it. Ifp„(r) is
the Fermi momentum, the number density of the elec-
trons in the ground state (taken to be spherically sym-
metric) of the atom is given by

n(r)=
2/3 p

exp

p dp

+p c +m c —mc —e(y —yo)
KT

' +1

where

e

and p is the chemical potential of this electronic system.
The evaluation of the integral in (1) (without the

Coulomb potential y) has been given by Chandrasekhar =sinhO,
7' C

(1) becomes

(2)

[13] in the astrophysical context. We give below, never-
theless, the main steps in this calculation, since they are
needed in the evaluation of similar integrals in the rest of
the paper.

Making Juttner's [12] transformation

'Permanent address: University of Central Florida, Orlando,
FL 32816.

m c f ~ sinh gcosh8d8n(r)=
2 3

Pmc cosh'+ lA'
(3)
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where

p — — —P(p+mc +ep(r)]1 1

KT' A

V y=4men
3/2

m c (@+me +ey)
3m A m'c4

Let us put (Chandrasekhar [13])

u =Prnc cosh8,

so that (3) can be written as

(4)
2

X 1+
2(Pmc )

(@+me +ey)
m c

—2

(10)
m c 1 ~ d%(u)/dudn r
m A' Pmc 0 1,+1—e"+1

A

where

Putting

y+ p/e r =ax, a=-
Ze /r

1/3
9m

128Z me

d%(u ) =
—,
' sinh20,

dQ

Now the integral in (5) can be evaluated by using
Sommerfeld's [14] lemma,

2/3
4Z2 e4 ~2 3~
3~ A c 32 4Z

Eq. (10) becomes

4/3

p'm'e' '

2

—e "+1
A

(6)

(@+me +ey)
q =sinh80=

m'c4

1/2
PF
mc

(7)

where pF(r) is the Fermi momentum, we obtain

which, in the present context, corresponds to the weak
thermal-effect limit. Here,

u 0 = ln A =P[@+mc +e y(r ) ]—=Pmc cosh80 .

Introducing

d'&= &'" 1+~+
d x X

3/2
2

1+ " 1+~+
x

—2

(12)

Equation (12) is a generalization of the Thomas-Fermi
equation to include both the relativistic and thermal
effects when the thermal effects are weak. Observe that
(i) in the absence of relativistic effects, Eq. (12) reduces to
the Marshak-Bethe [4] equation,

d2y y3/2 x2

dx x' 1+v (13)

(ii) in the absence of thermal effects, Eq. (12) reduces to
the Vallarta-Rosen [3] equation,

2 2

@( )
P mc 3 qp/f( )

1 2q + 1

pmc

Using (6) and (8), we obtain from (5),

(8) 1+X+
2 1/2 x

(14)

3 3 2 2m c 3 1+ lr 2q +1+
3lr ill (Pmc ) 2q"

Using (9), Poisson's equation then becomes

B. The total kinetic energy

The total kinetic energy of the electrons in the atom is
given by

E„,„=f "4~r'dr, ', f"
0

exp

(+p c +m c —mc )p dp

+p c +m c"—mc —e(q& —
q&0) +1

KT

(15)

Making Juttner's [12] transformation (2), (15) becomes

m c ~ (sinh 8cosh 8—sinh 8cosh8)d8
Ekin 47Tr dr

2 3~263 Pmc cosh'+ 1—e
A

(16)

Putting

u =Pmc cosh8,
d%(u ) =sinhO cosh 0—sinhO coshO,2

dQ

2d m c 1 ~ d%(u)/du
dEk;„= 4~r dr

2 3 2
dQ

lr fi pmc 0 1,+1—e "+1
A

(18)

(16) becomes Using Sommerfeld's [14] Lemma (6) again, (18) becomes
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m4c' 1Ez;„= 4nrd. r
z 30 m A' pmc

X %(uo)+ ql"(uo)+
6

(19)

3 Z 2

E„,„= —' f "d ' ++X~
a o X

2
1/2

+,.f -d . ++~ &
0 X

(22)

Introducing q as in (7), we obtain

q(q2+1) / qt/ q +1
4 8

3

8
——' ln(q+ +q + 1)—

3
(20)

where P satisfies Eq. (12). In order to evaluate (22)
analytically, we will follow the procedure given by
Schwinger [15] for the case without thermal effects, i.e.,
v=0.

Noting that A, « 1 and v « 1 (since the relativistic and
thermal effects have been taken to be weak), (22) and (12)
become

4"(uo)= 1

pmc
(1+3q )t/q +1 2q +1

q q
3 ZE„,„=—kin 5 a O

Using (20), and considering the relativistic effects to be
weak (so that x « 1), (19) becomes

y7/2+ ,'Af—,dx + ,', Av—f, dx x'

m 4c' 2772 1

0 8' fi (Pmc ) q4 and

+—'v dxx
8 (23)

(21)

Using (7), and rescaling y and r, as in (11), (21) becomes

d 2y y3/2 3 y5/2 1 3/2
+ ~ A.vx ~~ +vdx2 x 1/2 2 x 3/2 2 ~ yl/2

Upon integrating by parts, and using Eq. (24), (23) be-
comes

3 Z eE.kin
—P'(0)+A, 2f dx +3f dx + v f dxx' P — v f dx x

7/2 „As/2k 31 81
o x ~ o x'~ 16 0 8 o

(25)

Equation (25) shows that (i) the relativistic effects (A,XO)
enhance the total kinetic energy' [which is due to the
enhanced concentration of the electrons near the nucleus
(Muller and Rafelski [16] and Ferreirinho, Ruffini, and
Stella [17])]—This is also in accord with the numerical
calculation of Hill, Grout, and March [18]; (ii) the
thermal effects reduce the total kinetic energy (which is
due to the thermal expansion of the semiclassical radius
of an atom) —this is in accord with the numerical calcu-
lations of Feynman, Metropolis, and Teller [5].

It is to be noted that a straightforward integration of
the relativistic integrals in (25) fails because most of the
relativistic correction originates in the region close to the
nucleus where the Thomas-Fermi model breaks down. .

This dif5culty may be remedied by taking the nucleus to
have a finite size in the model (Hill, Grout, and March
[18]). Alternately, one may seek to treat the strongly

~Schwinger [15] also sought to derive the formula (25), in the
cold electron-gas limit v~O, but missed the first term (which is
the dominating one and has the right sign) in the relativistic
correction; the other term is subdominant and has the wrong
sign.

bound electrons near the nucleus correctly by using a
separate procedure (Englert [19]).

III. GENERALIZED THOMAS-FERMI THEORY
FOR AN ATOM IN A VERY STRONG

MAGNETIC FIELD

A. Equation for the self-consistent potential

For an atom in a very strong magnetic field, the mag-
netic confinement of the electrons perpendicular to the
magnetic field will dominate the Coulomb attractions by
the nucleus. Thus, the electrons tend to move in thin cy-
lindrical shells with the axes directed along the magnetic
field, and precess around the nucleus.

For very strong magnetic fields, the Coulomb forces do
not excite the electrons from the ground state, which is
taken to comprise eigenstates of the angular rnomenturn
along the magnetic field, with spins antiparallel to the
field, and zero excitation of the radial motion. The oscil-
latory motion of the electrons along the magnetic field is
confined by the Coulomb field.

Consider a heavy atom with an atomic number Z and
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let P(r) be the Coulomb potential due to the nucleus and
the distribution of electronic charge around it. In order
to calculate the number density of the electrons in the
ground state, we count the number of states inside a
small volume taken to be a thin cylindrical shell of radius

p, thickness hp, and height Az. The number of trans-
verse states (which correspond to cyclotron orbits) is

given by (Banerjee, Constantinescu, and Rehak [20]),

eB
hN() = php .

Ac
(26)

The number of longitudinal states inside Az is given by

2hz
y

exp

dp

+p c +m c —mc —e(P —Po) +1
KT

(27)

where

0

and p is the chemical potential of this electronic system. (We are assuming the electrons behave in a nondegenerate
manner with respect to the slow longitudinal motions. )

The number of electrons in the cylindrical shell in question is then

N, ~N
and the number density of the electrons is given by

hNn(r)=
2~phphz

On using (26) and (27), we then obtain

(28)

(29)

eBn(r)=

exp

dp

+p c +m c —mc —e(P —$0) +1
KT

(30)

Making Juttner's [12] transformation, Introducing q as in (7), we obtain

=sinhg,
mc

(30) becomes

eBm
y

~ coshgd 9n(r)=
e Pmc cosho+ 1A'

where

p — —e
—P(p+mc +ep(r)]1 1

vT

Let us put

u =Pmc cosh8,
d%(u ) =cothO,

dQ

(31)

(32)

(33)

%(uo)=(pmc )q, 4"(uo)=— 1 1

pmc q

Using (36), (35) becomes

eBmn(r)= q 1 — +
2m' (p'mc2)2 6q4

Using (37), Poisson's equation then becomes

eBm (@+me +eP)
V j=4~en =4me

2~ A' m'c4

772
X 1—

6(pmc )

' 1/2

(36)

(37)

so that (32) can be written as

eBm 1 d %(u )/du
22 2 dQ

2m fi Pmc 0 1 „+1A'
(34)

Putting

(@+me +ep)2
m'c4

—2

The integral in (34) can be evaluated by using
Sommerfeld's [14]Lemma (6),

Q+~= @, r =bx
e r

b —2
—3/5 2/5 4/5 Z 1/5(B /B )

—2/5
0 (39)

n(r)=
2 2 2

'Ir(uo)+ 4(uo)+eBm /I

2m'A' Pmc 6
(35) B= a0=-

Ae me
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and assuming the ground state of the atom to be spheri-
cally symmetric, even in the presence of a strong magnet-
ic field (which is valid if the cylindrical shells in which
the electrons move are distributed uniformly in a large
sphere), Eq. (38) becomes

2 2=(xe)'" 1
——

2 (p2
(41)

(i) in the absence of relativistic eff'ects, Eq. (40) reduces to
the equation derived by Shivamoggi and Schram [9]

' 1/2

2
=(xe)1/2 I+x-

dX X

x
1 —v 1+A—

(p2 X

—2
(ii) in the absence of thermal effects, Eq. (40) reduces to
the equation derived by Hill, Grout, and March [7] and
Shivamoggi and Mulser [8]:

where
T

Ze 7T KTV= «1 .
24 Ze2yg

2 =(xe)'" 1+A—
dX2 X

1/2

(42)

Equation (40) is a generalization of the Kadomtsev
equation to include both the relativistic and thermal
effects when the thermal effects are weak. Observe that

I

B. The total kinetic energy

The total kinetic energy of the electrons in the atom is
given by

E„;„=f 4~r dr f0 2m A'c
exp

(+p c +m c —mc )dp

[+p c +m c —mc —e(P —Po)] +1
KT

(43)

Making Juttner's [12] transformation (31), (43) becomes

z eBm c ~ (cosh 8—cosh8)d8
kin

= 7Tr r
2 2

Pm cashed+ 1A'
. (44)

kin 2 2 64m i' » (pmc2)2 q

(49)

Putting

d%'(u ) cosh 0—cosh8
u = mc cosh8, (45)

Using (7), and rescaling p and r as in (39), (49) becomes

2 2 2
3/21Ze x dx —+g

3 b o X

(44) becomes
+2

+3v —+I,
X

—1/2

eBm c 1 d%'(u)ldu
d7jr r 22~ iii pmc 0 1 u+1A'

(46)

Using Sommerfeld's [14] Lemma (6) again, (47) becomes

eBm c 12 2

Ek„= 4mr dr
2 20 2~ iii Pmc

(50)

where N satisfies Eq. (40).
In order to evaluate (50) analytically, we will follow the

procedure given by Schwinger [15] for the atom without
a magnetic field. Noting that X «1 and U « 1 (since the
relativistic and thermal effects have been taken to be
weak), (50) and (40) become

X %(uo)+ 4"(uo)+. . .
6

Introducing q as in (7), we obtain

(47)

Z2 2

f dx C' 'x' '+
2 o

+3t f dx e 'i'x'i'
0

4'(uo)=Pmc [—,'(sinh 'q+q+1+q ) —q],

0"(uo)=
2 3 [(1+q )

—1] .1 1

pmc q

(48)

+3XUf "dx e'"x'"
0

X 1/2@1/2+ ~ (p3/2 —1/2 -C —3/2 5/2
dX2 2

g-(y —1/2 3/23--
2

(51)

(52)

Using (48), and considering the relativistic effects to be
weak (so that x « 1), (47) becomes

Upon integrating by parts, and using Eq. (52), (51) be-
comes
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Z2e2
kin

b
——N'(0)+ X dx @ ~ x

3 15 o

4 dxN ' x
3 0

(p 1 /2 3/2

2 0
(53)

In the absence of the thermal effects (U=O), (53)
reduces to the formula derived by Shivamoggi and
Mulser [8], while in the absence of relativistic
effects(X, =O), (53) reduces to the formula derived by
Shivamoggi and Schram [9]. (53) shows that (i) the rela-
tivistic effects (XAO) enhance the total kinetic energy of
the electrons (which is again due to the enhanced concen-
tration of the electrons near the nucleus); (ii) the thermal
effects (tj%0) reduce the total kinetic energy of the elec-
trons (which is, of course, due to the thermal expansion
of the semiclassical size of the atom).

IV. DISCUSSION

In the present paper, we have given unified relativistic
formulations with thermal effects of the Thomas-Fermi
model for an atom within and without a very strong mag-
netic field. We have given generalizations of the
Thomas-Fermi equation for an atom and the Kadomtsev
equation for an atom in a very strong magnetic field to in-
clude both the relativistic and the thermal effects when
the latter are weak. We have also given analytic calcula-
tions of the total kinetic energy of the electrons in the
atom.
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