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Exact dynamics of a quantum dissipative system in a constant external field
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We study the quantum dynamics of the simplest dissipative system, a particle moving in a con-
stant external 6eld and interacting with a bath of harmonic oscillators with Ohmic spectral density.
Applying the main idea and methods developed in our recent work [L.H. Yu and C.P. Sun, Phys.
Rev. A 49, 592 (1994)] to this system, we obtain the simple and exact solutions for the coordinate
operator of the system in the Heisenberg picture and the wave function of the composite system of
the system and the bath in the Schrodinger picture. An effective Hamiltonian for the dissipative
system is explicitly derived from these solutions. The meaning of the wave function described by
this effective Hamiltonian is clarified by analyzing the effect of the Brownian motion. In particular,
the general effective Hamiltonian for an arbitrary potential is directly derived with this method for
the case when the Brownian motion can be ignored. Using this effective Hamiltonian, we show an
interesting result that the dissipation suppresses the wave-packet spreading.

PACS number(s): 03.65.—w

I. INTRODUCTION

In this paper we apply the idea and methods developed
in our recent work [1] on a quantum dissipative system
to a dissipative system with a constant external field. In
Ref. [1] we worked on the case of an harmonic oscillator
moving in a bath with Caldeira-Leggett's spectral den-
sity [2]. It is shown in Ref. [1] that the wave function
of the system plus the bath is precisely described by a
direct product of two independent Hilbert spaces. One
of them is described by an effective Hamiltonian, while
the other represents the effect of the bath, i.e., the Brow-
nian motion. Therefore this result clarifies the structure
of the wave function of the system whose energy is dis-
sipated by its interaction with the bath and reveals the
relationship between the different approaches for quan-
tum dissipative systems. No path-integral technology is
needed in this treatment.

The study of dissipative quantum systems, especially
for the damped harmonic quantum oscillator (DHQO),
has a rather long history and has been paid much at-
tention more recently due to the work by Caldeira and
Leggett [2]. Now let us brieHy describe two main ap-
proaches for quantum dissipative systems before our work
in Ref. [1]. To reproduce and quantize the phenomeno-
logical dissipative equation

Mq(t) = —rlq(t)— OV(q)
t9g

for a one-dimensional dissipative system S with coordi-
nate q, mass M, and potential V(q), one approach is to
put it into an environment, a bath B of N harmonic os-
cillators interacting with the system S through certain
coupling [3—12]. The bath and the system constitute a
closed composite system C = S+B and the quantization

(t) ntjM 2 + —M 2 vt/M 21 1
2M 2

(1.2)

which is now called the Caldirora-Kani (CK) Hamilto-
nian [13]. With the canonical commutation relation

[q, p] = ih, (1.3)

this Hamiltonian automatically yields the dissipation
equation (1.1) through the Heisenberg equation. Notice
that alternative forms of the effective Hamiltonian have
been given by many authors and an elegant example can
be found in Ref. [18]. Though this approach is very
convenient to treat some dynamical problems of dissipa-
tion process for both classical and quantum cases, such
as tunneling and the motion of a wave packet, it is only
a pure phenomenological method and. the Brownian mo-
tion cannot be analyzed by this approach. In particular,
the meaning of the wave function described by the CK
Hamiltonian is ambiguous.

of C is direct. By eliminating the bath variables from
its corresponding Heisenberg equation, through proper
approximations such as the Markovian approximation
and the Wigner-Wisskopf approximation [9], the phe-
nomenological dissipative equation Eq. (1.1) in the op-
erator form is derived. This approach provides both the
&iction and the fluctuation force in Brownian motion.
The path-integral technique [2,13] and the field-theory
method [14] are sometimes used in this approach. Along
this direction, the work of Caid. eira and Leggett reveals
a remarkable fact that the dissipation occurs exactly, in-
stead of approximately, if the spectral density of the bath
is Ohmic (to be described later). It encourages people to
reconsider many problems of dissipation in an exact man-
ner. Another approach, for the DHQO, is the use of an
effective Hamiltonian [15—17]
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This paper applies the method and the idea developed
in Ref. [1] to a disspative system with a constant exter-
nal Geld to show the direct connection between the above
two approaches and to see how the interaction between
the bath and the system leads to an explicit description
for the dissipative system in terms of the eR'ective Hamil-
tonian. All the discussions in this paper proceed with a
simple model, a particle moving in one dimension with a
constant potential Geld, but the main idea and methods
can be generalized to other cases.

This work answers the following questions: (i) How is
the dissipative system quantized with the eQ'ective Hamil-
tonian, based on the basic principles of quantum mechan-
ics instead of only a phenomenological treatment? (ii)
What is the meaning of the wave function described by
the effective Hamiltonian? (iii) How is the propagator
constructed for the dissipative system? (iv) What hap-
pens to the spreading of the wave packet in the presence
of dissipation?

After applying Laplace transformation to Eq. (2.2), a
direct substitution of Eq. (2.2b) into Eq. (2.2a) yields
an exact equation of motion for the system S

Mq = E + L(q) + G(t),

where

(2.3)

G(t) = ) C~ z~(0) cos~~t+ sinur~t
zi (0)

j=1 2
(2 4)

and the second term of the right-hand side of Eq. (2.3)

I(s) = p

N 2 2C s
(2.5)

Notice that the canonical equation for the closed com-
posite system of S and B defines the usual momentuxn-
velocity relations

p(t) = Mq(t), p. (t) = m z (t).

II. EXACT CLASSICAL LANGEVIN EQUATION

In this section we reformulate the Grst approach about
the quantum dissipative system in the Ohmic case with a
simple example. For simplicity, the dissipative system S
is considered to be a charged particle with unit mass, unit
negative charge, and coordinate q in a constant electric
Geld E. It interacts with a bath B of N harmonic oscilla-
tors B, with coordinates xj, mass mj, and frequency aj.
Let p and pj be the corresponding momenta to q and xj,
respectively. The Hamiltonian of the composite system
ofB and Sis

is determined by the inverse of Laplace transformation p

pic(~)l = i(~) = f v(~)~ "«

Usually, for finite N or for a general spectral distribu-
tion p(~~) of an infinitely large number of oscillators in
a bath, the dissipative term —gq with a positive num-
ber g does not appear exactly. However, according to
Caldeira and Leggett, for a specific spectral distribution
of the bath oscillators

H= p
=1 2

2M

1

2M

where

@q+)
j=l

(2.1)

2
pj 1 2 . 2

2m 2 'j+ —m~ (z —q)
2

N
—) C~z~q+ AV,

j=l

~(~') = 2'g(d .m j 2g
mC. vrmj~. ' (2.6)

N C2 2S

m u)'-(s'+ u)'. )j=1 2 3 2

which is called the Ohmic distribution for the bath, the
sum over index j

IIg =) p' 1
2m- 2 2 j j+ —m'(d x-

2

The problem of the renorrnalization mentioned in Ref.
[2] is treated by introducing the frequency-dependent
coupling constant Cj = mj~ and the renormalization2 2
potential

N C2 N

2=1 2 2 j=1

in the Hamiltonian (2.1). The Hamiltonian leads to a
system of classical equations of motion

becomes an integral

j j j
oo C2 s2 2 2 oo

and thus results in

L(q) = qq —qq(0)b(t)—

Mq = E —qq + G(t) (2.7)

by an inverse Laplace transformation. Then, the dissipa-
tive equation, the classical Langevin equation,

N N

Mq = E —) C~z~ —) 2q
j=1 j=1

C
i~ = —cu-xj — q.1 m 2

(2.2a)

(2.2b)

is derived. Because the dissipative process is irreversible,
we shall pay attention only to the process with t & 0 in
the following. Hence the impact h(t) in the dissipative
equation does not play a role in the dynamical problem.

Notice that the Ohmic distribution (2.6) is only an al-
ternative; however, an explicit and convenient reformu-
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lation of the Caldeira-Leggett constraint
a(t) =t„= M(1 —e "'~ ) E

g(t) = —(t —t, )
r/ rl

on the spectral density
o.'g(t) =

2 2 sin ru~t —(cos urgt —1)
C, g

'9M +~q

J((u) = —) ~ h((u —a, ).
2 . m~u)~

(2.S)

We remark that the fluctuating external force G(t) acting
on the system S is generated by the bath and depends
on the initial states of the oscillators in the bath. For
the classically statistical average (),i „;, i, G(t) obeys
the dissipation-Quctuation relation at temperature T

—g/Ma(t)

PA:(t) =
2 2 (cos urqt —1)
C,.

'9 + ~f, ~a -~A;gM

—sin urgt + (uw, a(t)

The commutation relations at t = 0 for the closed com-
posite system of 8 and B

(G(t) G(t')).i...;..i = qKT-b(t —t') (2 9)

III. QUANTIZATION OF A DISSIPATIVE
SYSTEM WITH EFFECTIVE HAMILTONIAN

and (G(t)),i „;, i = 0. This is actually the classical
Brownian force in the disspative process.

[q(0), Mq(o)l ='h, [*,(o),*,(o)l =
mj

quantize q(t) and q(t) at any instant so that

[q(t) p(t)] = ~h, [*,(t), p, (t)1 = ~h

for the ordinary momentum-velocity relations

p(t) = Mq(t), p, (t) = m, x, (t).

(3.3)

(3.4)

In the following, we 6rst detail the description of the
plus system bath in Ref. [1] by an example. Then, we
further develop our theory to derive a general effective
Hamiltonian for arbitrary potential.

It is observed from Eq. (2.7) that, in the Ohmic case,
the action of the bath B on the system S can be described
as two parts, the dissipative term —gq depending only on
the state of 8, and the Brownian force G(t), depending
on the initial state of the bath. In order to study various
dynamical problems in the dissipative process, such as
the tunneling and wave-packet spreading, it is necessary
to determine in what sense the dissipative system can be
isolated from the environment as a "quasiclosed" system
depending only on its own variables. Such a quasiclosed
system can evolve independently and the efFect of the
bath is described only by the friction coefBcient g. For
the classical case, it is quite clear that at zero tempera-
ture the Brownian force can be neglected. According to
the fluctuation-dissipation relation Eq. (2.9), the clas-
sically statistical fluctuation of the bath is proportional
to gT. So when T = 0, the system is isolated, with an
effective dissipation equation

Mj=E —gj, (3.1)

X(t) = ).~&(t) ~&(t) = o'&(t)*&(0) + P&(t)*&(0)

where

and the whole efFect of bath on the system is character-
ized only through the friction constant g. However, for
the quantum case, the situation is not so direct. Now,
we consider the composite system C = 8+ B. Since C
is closed, its quantization process is well known.

I et us start with the exact solution to Eqs. (2.2b) and
(2 7)

q(t) = Q(t) + K(t), Q(t) = (t)q(0) + q(0) + g(t)
(3.2)

lim cu —+oo if t=t'
4P~OO

gg l
~ cos 4P(t —t )

+ w sin ar(t —t')
(t—t')

(3.6)

This equation shows that the Brownian force cannot be
neglected even at zero temperature for the quantum case.
This leads to a divergence in the correlation function of
the Huctuation force. In the practical problem, there may

Notice that the quantized coordinate q(t) is separated
into two commuting parts Q(t) and X(t) depending on
the system and the bath, respectively.

Now, we consider the quantum statistical problem of
dissipation and Quctuation for the above linear system.
Denote the quantum statistical average () = ()~„„&
over the bath de6ned by

T [~.-~"-]
(")=

T [.-~ -] ' P = Zr
for an observable A, where H~ is the Hamiltonian for the
bath. A direct calculation gives the quantum Quctuation-
dissipation relation

(G(t)) = 0,

D(t-t') =-, ((G(t) G(t')))

gh (Ph(u~ i
(u, coth

i i
cos(u (t —t')dw

vr 0 ( 2 )
(3.5)

At the high temperature limit or h m 0, i.e. , p ~ 0
or T ~ oo, the above results approach the classical
dissipation-fluctuation relation (2.9). In the zero tem-
perature limit, it becomes
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be a cutoff &equency of the bath with the upper bound of
&equency u~ and then the correlations are proportional
to urM2 and wM for the cases t = t' and t g t', respectively.
This means that the correlation at t = t' is stronger than
when t g t'.

The efFective coordinate Q(t) approaches the physical
coordinate q(t) only when this quantum fluctuation is
neglected in a certain sense. In Sec. IV we will clarify
further the exact meaning of this argument in terms of
the wave-function description.

When the quantum Huctuation is ignored, the evolu-
tion of the system can be described by the variable Q(t),
independent of the bath. Then, the system is isolated
&om the bath to become a "closed" system. Now, let
us derive the effective Hamiltonian governing this sys-
tem. Our derivation is valid for both the classical and
the quantum case.

Notice that the explicit expression (3.2) for Q(t) de-
termines the commutator

(3.7)

and then we can choose a momentum-velocity relation

H = H (t) = e "'/ P +. e"'/ V(Q),
1

2M
(3.13)

when the Brownian motion is ignored. Indeed, the
Heisenberg equation H@ = H@(t), or the disspation
equation

(3.14)

for arbitrary potential, is derived in the same way as we
derived Eq. (2.7), with the same Brownian term G(t)
neglected.

Next, the generalized CK Hamiltonian (3.13) can be
explicitly derived from the above equation (3.14). It fol-

lows from Eq. (3.14) that the commutator [Q(t), Q(t)] at
time t satisfies the equation

Motivated by the above discussion, for an arbitrary po-
tential V(Q), we prove that the general efFective Hamil-
tonian for the dissipation problem can be obtained (in
one among the different forms, corresponding to difFer-

ent definitions of momentum) as

P(t) = e"'/MMQ(t) (3.8)
(3.15)

for the effective variable Q so that the basic commutators
for the Hamiltonian dynamics are

[Q(t), P(t)] = ih. (3 9)

Notice that the definition of the canonical momentum
based on Eq. (3.7) is not unique. Furthermore, different
definitions, e.g. , the one given by Ref. [18], may give the
effective Hamiltonian difFerent forms. For the Q(t) given
by Eq. (3.2), one can explicitly obtain the expressions
for Q(t) and P(t) in terms of Q(t) and P(t)

for any potential V(Q). For an arbitrary potential V(q),
it still leads to the commutator Eq. (3.7), which is the
same as the one for the case of the harmonic oscillator
and for the case of a constant external field:

[Q(t), Q(t)] = h
—"'/ /M. (3.7')

(3.8')

It also suggests the same canonical momentum-velocity
relation Eq. (3.8) for the arbitrary potential

P(t) @ qt/M Q(t) = e "™P(t)/M. (3.10) as a special solution of Eq. (3.7') and

We are looking for an effective Hamiltonian for which the
associated Heisenberg equations

[Q(t), P(t)] = i h. (3.9')

Q(t) =,&[Q(t) H (t)]

The solution to Eq.
Hamiltonian H, (t)

(3.11) determines the efFective

H. = H. (t) =, ~'/MP' EQe&'/M—+ y(t), (3.12)1
2M

up to an arbitrary function P(t) of t independent of P
and Q. It can be regarded as a generalization of the CK
Hamiltonian [14—16] of damped harmonic oscillator.

P(t) =
—,„[P(t) H (t)]

lead to Eq. (3.10). Thus we obtain a simple system of
partial differential equations about the effective Hamil-
tonian H, (t):

&( ) E l7t/M &( ) Tft/MP( )/M (3
—
1 1)

BQ
' OP

P(t),,~/M ~V(Q)
t9

(3.16)

Equations (3.16) and (3.8') and the Heisenberg equation
give the equations for the unknown Hamiltonian H~,

[Q(t), H~(t)] = ihe ~' P(t)/M,

[P(t) H (t)] ggt/M (Q).
t9

(3.17)

Obviously, the generalized CK Hamiltonian (3.13) is a
solution of the above equations. Therefore, we have de-
rived the generalized CK Hamiltonian for the arbitrary
potential V(q).

We like to point out here that to derive the general CK
Hamiltonian we do not need to know the explicit analyti-
cal form of Q(t) for general V(q). This is because the ba-
sic commutator (3.9') can be obtained directly from the
equation of motion Eq. (3.14). Notice that the derivation

Using Eq. (3.8') and the dissipative equation Eq. (3.14),
again we have
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of the generalized CK Hamiltonian (3.13) and its special
case (3.12) in this section is also valid for the classical
case without Brownian motion, as long as the commuta-
tors is replaced by the Poisson brackets.

We like to point out that a recent paper by Schuch
[18] also discussed the theory of the efFective Hamilto-
nian for the quantization of dissipative systems and gave
the commutation relation Eq. (3.7) phenomenologically
so that the dissipative equation (1.1) can be derived in
the Lagrange-Hamiltonian formalism. Actually, Dekker
[17] also discussed similar results. However, our recent
studies reveal the connection between the two major cat-
egories of methods describing the dynamics of dissipa-
tive quantum systems: the system-plus-environment ap-
proach, on the one hand, and the approach using the
time-dependent Hamiltonian such as the CK Hamilto-
nian, on the other hand.

IV. MEANING OF THE WAVE FUNCTION
FOR THE EFFECTIVE HAMILTONIAN

In the preceding section we derived the effective Hamil-
tonian in terms of the Heisenberg equations. It serves as
a starting point to study some dynamical problems of
quantum dissipation in a certain limited sense. To un-
derstand the problem completely, one must investigate
the physical meaning of the (effective) wave function de-
scribed by the effective Hamiltonian (3.12) and clarify in
what sense this effective Hamiltonian can be used cor-
rectly. Thus we turn to the Schrodinger picture and fur-
ther detail the main ideas and methods developed in Ref.
[1]

Let us first show that the wave function of the compos-
ite system C = S+B can be reduced to a direct product
of wave functions in two independent Hilbert spaces. For
this purpose, it is observed that the coordinate operator

q(t) = Q(t) + ~(t)
of S is a direct sum of two commuting parts Q(t) and
A" (t). So the eigenfunction of q(t) with the eigenvalue q
is expressed as a direct product

Iq t) = IQ t) l&~ t) 1&2 t) . I(~, t) (4.1)

of the eigenstates IQ, t) for Q(t) and I(i, t) for Xi (t) with
the eigenvalues Q and (~, respectively. Notice that these
eigenvalues satisfy

is used to represent the degenerate eigenstate of q(0) with
eigenvalue Q, which is, in Hilbert space,

V = Vg N) Vjy ——Vg (I gV,

of the composite system C. Here Vs and V~ = Q. ~ V~.
are the Hilbert spaces of 8 and B, respectively, V~ is the
Hilbert space for the jth oscillator in the bath H, IQ) is
the eigenstate with the eigenvalue Q, and I(i) E Vi are
the eigenstates of x~ (0).

Let the composite system be initially in a product state

I&(0)) = I&) IIv) = I&) IIv') (4.4)

at t = 0, where IP), IW), and IW;) are in Vg, V~, and V~,
respectively. The central problem is now whether, similar
to Eq. (4.4), where the wave function is a direct prod-
uct of two wave functions in two independent Hilbert
spaces, the product form is still persevered during the
Schrodinger evolution. A positive answer would imply
that the system can be isolated &om the bath and de-
scribed by an e8'ective Hamiltonian. To study this prob-
lem, it is necessary to calculate the evolution operator
U(t) or its matrix elements. Because the coordinate op-
erator q(t) is an unitary transformation of q(t):

q(t) = &(t)'q(0) U(t),
the eigenstate

lq (& ) t) = U(t)'lq (4)) (4 5)

of q(t) with eigenvalue q can be constructed in terms of
the evolution operator &om the eigenstate IQ = q, g~))
of q(0) with the same eigenvalue q. Then, the coordinate
component of the evolution state

(t)) = U(t)l@(0))
can be calculated as

+(Q (4) t) = (Q (4)l@(t))
(Q, (&,)IU(t) l@(0))

[(@(0)IU(t) tlQ, (4))l
[(y(o) IQ, (I', ), t)] (4.6)

using the eigenstate IQ, ((~), t) of q(t). In fact, this eigen-
state can be directly solved in the coordinate representa-
tion with

j=0
(4 2)

Due to Eq. (4.2), for a given q, there exist many diferent
sets of ((q, Q, ..., (~) corresponding to the same q, that
is to say, these eigenstates lq, t) are degenerate. So, the
new notation lq, ((~ j, t) with an additional index g~), is
used instead of lq, t) to distinguish among the different
degenerate eigenstates with the same eigenvalues q. Cor-
respondingly, the following notation for arbitrary com-
plex number (~'

*,(o) = g, , *,(0) = -(ih]m, ) |9

Obviously, the eigenstates IQ, t) of Q(t) and I(~, t) of (~ (t)
with eigenvalues q and (z(t), respectively,

&~(Q' t) =(Q'IQ t)
„' (,) f—

~
Q' +I@—g(t)]Q'+A(Q))

(4 7)

IQ (&.7) = IQ) I( ) I( ) ". I(~) (4 3)
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are explicitly obtained from the difI'erential equations

([—1'«(t)/M], + Q'+ g(t))&Q(Q' t) = Q4g(Q' t)

A(Q) and p((~) are functions independent of Q' and (',
respectively.

Now, we can write

&Q' (&,')lq (4) t) =(Q'IQ=q —).4 t)

= ~ —p, (Q t),(, t) (4 9)

which results in

e(q, (&,')) = [(@(0)Iq, (&,'k, t)]
N

=W q — -, t W. -, t *, 4.10

where

W q —
~

= d ' 0 q

~ (4 ~). f~(,'(~, l6,')~=&(6,', ~). ,

'Notice that the variables (~. are related to the bath,
but they are not the coordinates x~ of the bath. There-
fore, when applying the above discussion to a practical
problem, one should distinguish between (~ and xz.

From Eq. (4.10), it is observed that the system is in a
highly excited state such that the Brownian motion con-
tribution P (z is negligible in comparison with q, the first
factor is approximately independent of (z. In this sense,
the whole wave function for the composite system S+B is
factorized into two parts in Vp and V~, respectively. The
first part represents the wave function of the dissipative
system, evolving according to the efI'ective Hamiltonian
(3.12). Because of the Brownian motion, the physical
variable q = Q + P(z fluctuates about Q with a mean
value of (P (~)

o.~ t + cu.

xcoth
2KT

at temperature T. It is zero at t = 0. At the low tem-
perature limit, it approaches its final value at t = oo

h (vr ~o= lim —+ arctan
'g(d

(4.8)

([ h (t)/ ] 0+p(t)(, ) ((, t) („((,t)

directly for the efI'ective Hamiltonian H~ obtained and
(ii) by using the reduced density matrix in terms of the
path integral for the composite system C = S+B. Now,
we shall deal with this problem a third way, a shortcut, in
which we need not know what the effective Hamiltonian
H~ is. Because we have known the time evolution of
the observable Q(t), we can derive the propagator f'rom

Q(t) directly. It not only avoids the complexity of the
calculations in the first two ways, but also gives us insight
for the understanding of quantum dissipation.

According to the definition of the propagator, we have

G(q2~ ((j,2}t2~ ql~ ((j,l), ti)
= (q2, ((,,2), t2lql, ((,, 1),ti)

N

= (Q2 t2IQi ti) (4,2 t214, 1 ti )

= G(Q2, t2, Qi, ti) G, ((,,„t, l(, ,t, ).
i=1

Because of the linearity of the Heisenberg equation in
the variables Q(t), Q(t) and (~ (t),(~ (t), the operators
O(t2) (0 = Q, Q, (~, (~) at time t2 must be a linear com-
bination of the operators O(tl) at tl For exam. ple,

Q(tl) = Q(t2) + a(tl, t2)P('t2) + b(tl )it2),

(4.i4)
Q(t2) = Q(tl) + a(t2, tl)P(tl) + b(t2, tl),

where

b(t2, tl) = g(t2) —g(tl) —Ea(tl) e "" a(t2, tl),
a(t, t ) = —a(t, t ) = a(t ) —a(t ).

Then, the definitions of eigenstates of Q;(t)

Q(t')IQ' t') = Q'IQ' t*) & = i 2

and its Qz representation (j g i) leads to the partial
difIerential equations for the propagator

8
[Q2 + [a(tl) t2) t~/M]

g
+ b(tl ) t2)]G(Q2) t2I Qi, tl)

2

QlG(Q2i) t2i Qli) ti))
(4.i5)

t9
Q, —[a(t„t,)ih/M] + b(t„t, ) G(Q„t, ; Q„t,)*

1

within a time of the order of 1/g. Obviously, in practical
problems, whether or not the effective Hamiltonian can
work well mainly depends on whether or not the values

([P(~(t)] ) can be neglected.
To study further the dynamics of the dissipative sys-

tem, we need to calculate its propagator. There are usu-
ally two ways to do that in principle: (i) by solving the
effective Schrodinger equation

'h —I+(t)) = II~(t) I+(t))
0

2= 2 2= Q)p —'g4

hm

2M@'

(4.i2)

= Q, G(Q„t„.Q„t,)*.

Solving the above equations, we obtain the propagator
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G(Q2, t2, Q„ t) ) =
26Mx

~e t)tt/M e t—)tx/M
~7l

Mx 1 2 1
P t t h 2 ]. +2

—QgQ2 + b(t2) t).)Q). + b(tg, t2)Q2

+6(t) ), (4.16)

the efFective Hamiltonian (3.11) can also be derived again
&om

(4.17)

V. SPREADING OF THE WAVE PACKET
SUPPRESSED BY DISSIPATION

In this section the efFective Hamiltonian (3.12) for the
dissipative system is applied to study a quite simple dy-
namical problem: the motion of the wave packet for a
"free" (E=O) particle of mass M in one dimension. An
interesting result is that the dissipation suppresses the
spreading of the wave packet if the breadth of the initial
wave packet is so wide that the effect; of the Brownian
motion can be ignored. Usually, without dissipation, a
Gaussian wave packet spreads into the full space infinitely
and the localization of the wave packet is lost during the
evolution of the system. Its breadth increases to infinity

where tI)(t) is an arbitrary function of time independent
of Q; (i = 1, 2). Similarly, we can also calculate the fac-
tors Gi((i 2, t2, (i qt) ), but here we do not need to write
them down explicitly. For a highly excited q system
where the Brownian motion is ignored, the first factor
G(Q2, t2, Qq, t) ) can be regarded as the efFective propa-
gator for the dissipative system. Taking into account the
fact that the propagator is the matrix elements of the
evolution operator Ug(t), i.e. ,

(Q.IU(t)IQ ) =(Q IU(t)'IQ )'
(Q2 t]Qi) = G(Q2 t Ql 0)

while its height decreases &om its initial value to zero.
Notice that the height and breadth of a wave packet are
correlated through its normalization. However, for the
present case with dissipation, there appears to be a sig-
nificant difference about the wave-packet spreading. It
will be shown that the final breadth and height have fi-
nite values as t ~ oo. In the following, we denote the
operator Q by x, which approximates the physical coor-
dinate q when Brownian motion is ignored.

Using the effective Hamiltonian in the absence of the
external field, the Schrodinger equation

0
ih —@(x,t) = — e "'/M @(x,t)

Ot
' 2M Bz2

gives the the evolution of wave function

4(x, t) = ) (k~@(x, O)) exp ikx— (5.2)

where

1 -2
@(*o) = (*I@(0))=

[2Vrd'] 4
(5.3)

5 k2

2M
is the energy of the momentum eigenstate ~k)

ikX1

g2~
and with the definition

M (1 6)t/M )—t„=a(t) =
rl

The only difference between Eq. (5.2) and a solution of
&ee propagation without dissipation is that t is replaced
by tz. We have tz -+ t when g/M ~ O. So one can regard
t„as a deformation of time t due to disspation. Notice
that tz approaches a limit —as t ~ oo; this clearly
shows the physical features of wave-packet spreading in
the presence of dissipation.

If we assume that the initial state is a Gaussian wave
packet

F.:=:—M)
p ::::~g~—Vh, ~ 11 ~ I

I1141~
14 ~I 1 1 V1

—- —Vhhhhl ~ hhVVV111,1 ~h 11 I ~
'~ 11 1 1 . 1V

VVLVI, V
h

~
I~ 1 1 11th

I 1 ~ 11 h1 ' h
. I

L

h

, h, h li, ': 1 h 66 1 —r. 6'4'.rh:h. r.v:h.r 4:i.r.h:thr.

VI '' 2 4 '' '::~ ' L' 1 rixx:4: t '4 4 4'. 4'4hx ttxrthxrhhxrthxrtht

:4 6'.4146LitttX:t6X:ttXit: X44LX64:XtttXhKX44

'.thXtt: Xt X:t.X .t X 4''Xt X44%4ht tht4NtX6\
.': ':. -' '. Xi.ttt:.X 4614L'..46 X:ttX64..'ttXtttXtL"IXX64XX(t

'. Ltt.'X' L:Lt Xt4: .t: 'L;t: I:4:-'t:X 4:ttXrt$64Xti X
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FIG. 1. Motion of a wave packet in the
presence of dissipation: E(x, t„) = ~4(x, t)

~

The dissipation not only restricts the motion
of the center of the Gaussian wave packet
like a classical particle, but also suppress its
spreading so that it has a limited Gaussian
wave packet with 6nite breadth and height
ast ~ oo.
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F{~,t,}= [e{~,t)p

0.4

0.3

0.2
t=2T

FIG. 2. Projection of Fig. 1 on the I4'I—
x plane, which actually represents the func-
tion E(x, t„) = I@(x,t)I at t = 0, T, 2T,
3T, ..., NT. When N ~ oo, it becomes
the Gaussian wave packet I@(x,t = oo)I
E(x, I/g).

o.a-

20 40 60 80 100

then we have

(4'(0)lxl@(0& = 0, (4'(0)IPI@(0& = hk,

e(o) I* le(0)& —(e(0)lxle(0)&' = d. (5.4)

Equation (5.4) shows that the wave packet is centered
at x=O with an average momentum hkp and a breadth
d. According to the wave equation (5.1), the Fourier
transformation

In this process, the velocity of the center

(t) =
d, (@(*t) I*I@(*t) &

= M' (5.7)

decreases kom "M' to zero. It is evident that the motion
of the center of the wave packet is the same as that of a
dissipative classical particle. However, a pure quantum
picture is manifested by the change of its breadth

4(x, o) = 1 @(k)e'" dk,
g2~

y(k)
—d {A:—ko)

B(t) = d + (ht„/2Md)

from d at t=0 to a limit value

Bii~it = gd'+ (h/2rld)'

(5.8)

(5.9)

exp ikpx —'
&

"
@(x,t) =

(2') ~ Qd+ it„h/(2Md)
1 2x exp ——(x —kpt h/M)
4 rl

1 —it„h/2Md
d~ + (t„h/2Md) ~ (5.5)

To understand the physical meaning represented by
the wave function (5.5), we write down the corresponding
position probability

l@(»t)l' = 1

/27r [d' + (t„h) '/(2Md) ']
(x —kpt„h/M) ~

2[d + (t„h) /(2Md) ]

This shows that the wave packet initially has a velocity

and is centered at the position x=0. As t —+ oo, this
Gaussian wave packet stops with its center at a limit
position

&limit = hkp

rl

for the initial wave packet determines the wave function
at t

as t —+ oo. These results determine the final shape of the
the spreading wave packet. These physical features are
illustrated by Figs. 1 and 2.

Finally, we point out that the suppression of the wave
packet spreading by dissipation possibly provides a mech-
anism to localize a quantum particle. It might be of in-
terest to note that the finite value of the width of the
damped particle wave packet for t ~ oo leads to exactly
the same final value for the uncertainty product of the
damped free particle, found by Schuch using a nonlinear
Schrodinger equation [19].
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