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In relativistic heavy-ion collisions, the strong Lorentz-contracted electromagnetic fields are capa-
ble of producing copious numbers of lepton pairs through the two-photon mechanism. Monte Carlo
techniques have been developed that allow the exact calculation of production by this mechanism
when a semiclassical approximation is made for the motion of the two ions. Here we develop a
hybrid Monte Carlo technique that enables us to calculate the impact-parameter dependence of the
two-photon mechanism for lepton-pair production, and by using this result we obtain the probabil-
ity distribution for multiple-pair production as a function of impact parameter. Computations are
performed for S+Au and Pb+Pb systems at 200 and 160 A GeV, respectively. We also compare
our results with the equivalent-photon approximation and elucidate the differences.

PACS number(s): 12.20.Ds, 25.75.+r, 02.70.Lq

I. INTRODUCTION

The proposed new colliding-beam accelerators — de-
signed to investigate nuclear matter at high tempera-
tures and densities by accelerating highly charged heavy
ions at fixed-target energies per nucleon up to 20 TeV—
have motivated great interest during the past decade con-
cerning possible new electromagnetic phenomena. When
heavy ions collide at relativistic velocities, the Lorentz-
contracted electromagnetic fields in the space-time region
near the collision are sufficiently intense to produce large
numbers of electron-positron pairs, muon pairs, vector
bosons, and possibly the yet-unconfirmed Higgs boson.
All these processes occur at nearly atomic distance scales
[1-3]. The phenomena involved are pervasive, impinging
upon atomic, nuclear, and particle physics. The electro-
magnetic fields associated with these collisions are intense
as they are proportional to the Lorentz factor -y, which
is approximately the beam kinetic energy per nucleon,
and the charge of the ion Z. These parameters, together
with the impact parameter b, determine the fields avail-
able in a collision. The feature of electromagnetic particle
production by heavy ions, which piqued early studies, is
the Z* enhancement through the coherent action of all
the constituent charges of the colliding partners. The
pulsed fields are strongly time dependent with a width
of b/~ and thus contain large Fourier components which
give rise to relatively large particle production probabili-
ties. Coherent particle production is most clearly distin-
guished in peripheral collisions.

One of the most interesting of these processes, from
the perspective of both fundamental and practical impor-
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tance, is the sparking of the vacuum to produce electron-
positron pairs. Much study has been devoted to the prob-
lem of electron-positron pair production during recent
years in anticipation of new experimental opportunities
at the Relativistic Heavy-Ion Collider (RHIC), currently
under construction at Brookhaven National Laboratory,
as the immense predicted fluxes of electrons cannot be
ignored in detector or accelerator design. This facility
will provide extremely relativistic colliding beams of fully
stripped ions as heavy as gold, fully exposing the large
charge of the atomic nucleus.

The primary physics goal of the RHIC project is the
creation and study of a so-called quark-gluon plasma.
This unique form of matter is expected to be formed in
the central, or near-central, collisions of heavy ions at ex-
treme relativistic energies [4]. The thermodynamic con-
ditions attained in these central collisions are expected to
be such that the constituent quarks and gluons of baryons
and mesons become deconfined in a new and short-lived
plasma state. Electron- and muon-pair production from
hadronic interactions have been widely discussed as a
possible tool to help probe the formation and the decay
of the quark-gluon plasma phase of matter [5,6]. In the
conditions of such central collisions, lepton-hadron final-
state interactions are usually small, and hence the leptons
carry direct information on the space-time region of cre-
ation. However, suggestions by several authors indicate
that other sources of lepton pairs might possibly mask
the leptonic signals originating from the plasma phase
[7-9]. Electromagnetic production from the vacuum of
single- and multiple-lepton pairs is a major contribution
to this physical background [10,1] and therefore must be
understood in detail. In addition, two very abundant
electromagnetic processes constitute the primary limita-
tion to the lifetime of stored beams at the RHIC. One
is a nuclear decay following the electromagnetic excita-
tion of the giant dipole resonance and the second is the
creation of an electron-positron pair accompanied by the
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capture of the electron in an atomic bound state of a
participant heavy ion. Both processes result in a change
in the charge-to-mass ratio of the ion in the storage ring
causing it to be deflected out of the beam.

From a fundamental perspective, relativistic heavy-ion
collisions provide an opportunity to study nonperturba-
tive quantum electrodynamics (QED) in an entirely new
and continuously varying energy regime, using an interac-
tion which is completely known due to the combination of
very high collision energies and electric charges. The co-
herent, electromagnetic production of electron-positron
pairs using heavy ions is fundamentally different from
other production mechanisms using light particles at high
energies, since in the former, the coupling constant is
strongly enhanced due to the large charge.

Nonetheless, perturbative methods are useful in study-
ing the problem of lepton-pair production and reliable
lowest-order perturbative calculations have been used as
input into design models for the RHIC [2,11]. Begin-
ning with quantum-field theory, we derive a classical-
field method based on Feynman perturbation theory in
the limit that the momentum transfer of the photons is
much smaller than the momentum carried by the nuclei
[2,12]. This is manifestly true for the coherent production
of particles through two-photon processes in relativistic
heavy-ion collisions. These lowest-order diagrams (see
Fig. 1), coupling lepton fields to classical electromag-
netic fields, have been evaluated exactly using Monte
Carlo [2,13] and analytical techniques [14,15] and pre-
dict cross sections consistent with experiments for free-
electron—positron production performed by two indepen-
dent groups using collisions of S + Au [16] and S + Pt
[17], respectively, at fixed-target energies of 200 A GeV.
Furthermore, no indication of nonperturbative effects is
observed in these experiments using the relatively light
sulfur projectile. However, applying lowest-order pertur-
bation theory to the production of electron-positron pairs
with heavy ions at high energies and small impact param-
eters results in probabilities and cross sections which vi-
olate various theoretical bounds such as unitarity [18,2].
It is therefore clear that low-order perturbative calcula-
tions alone are not adequate for smaller impact param-
eters at the RHIC energies, as higher-order damping ef-
fects must be included (e.g., the creation of multiple pairs
[19]). Heavy ions have been used to produce electron-
positron pairs in collisions of U + Au at fixed-target ener-
gies 0 0.96 A GeV and the observed cross sections are not
in agreement with the low-order calculations performed
at these energies [20]. New experiments using a variety
of targets are scheduled using [21] lead beams at fixed-
target energies of 160 A GeV and using [22] gold beams at
fixed-target energies of 12 A GeV during which electron-
pair multiplicities and other nonperturbative features of
these collisions will be observed.

The Monte Carlo method described in Ref. [2] for eval-
uating the two-photon Feynman diagrams employs an
analytic integration over the impact parameter and thus
does not provide information on the impact-parameter
dependence of the cross section. In this present work,
we generalize these techniques in order to calculate the
impact-parameter dependence of the two-photon dia-

grams which has implications for the description of the
electromagnetic background for hadronic interactions,
the study of strong-field effects (e.g., pair multiplicities),
and the study of the validity of the equivalent-photon
approximation, as discussed below. Various possibilities
for experimental study of the impact-parameter depen-
dence for free-electron- and/or muon-pair production are
discussed in Ref. [23].

Concerning certain classes of detectors designed for nu-
clear physics experiments at the RHIC, the total inte-
grated cross section may not be the most relevant quan-
tity for studies of the electromagnetic background. If
the detector triggers on a limited range of small impact
parameters, the pair production probability for these im-
pact parameters would be more relevant [18]. Due to
the nature of the electromagnetic interaction, the parti-
cle production process occurs over a large range of im-
pact parameters. The larger impact parameters produce
weaker, more perturbative, fields, but these impact pa-
rameters are favored by the geometrical weight factor in
the cross-section integration. An integration over all im-
pact parameters also includes contributions from impact
parameters where the two nuclei would collide. The as-
sumption that the nuclei continue on straight-line paths
for these nonperipheral impact parameters is not accu-
rate. Thus one would like to isolate the relatively small
impact parameters which are still larger than the grazing
impact parameter for the study of strong-field effects.

Recent progress has been made in understanding the
nonperturbative nature of the production of multiple
free-electron-positron pairs [24-27]. Using the usual as-
sumptions of the classical, strong nature of the electro-
magnetic field generated by the heavy ions and omitting
the final-state interactions among the produced leptons,
one can express the probability for producing N pairs as a
Poisson distribution whose mean value is the probability
for producing a single pair in lowest-order perturbation
theory. Therefore, the central ingredient needed for de-
scribing the multiplicity distribution of electron-positron
pairs within this approximation is the impact-parameter
dependence of the two-photon mechanism.

Historically, the two-photon process has been modeled
through the equivalent-photon approximation, which
takes advantage of the close relation between the interac-
tion produced by a relativistic charged particle and those
due to incident electromagnetic waves [28-36]. In the
equivalent-photon approximation, the equivalent-photon
flux associated with a relativistic charged particle is ob-
tained via a Fourier decomposition of the electromagnetic
interaction [37,38]. Cross sections are obtained by fold-
ing the elementary, real two-photon cross section for the
pair-production process with the equivalent-photon flux
produced by each ion. The pair-production cross section
is easier to compute using the equivalent-photon approxi-
mation than by calculating the two-photon diagram, and
the results for the total cross section are reasonably ac-
curate provided the incident-particle Lorentz factor + is
much greater than one and the energy transferred via
the photon is much less than v. However, details of the
differential cross sections, spectra, and impact-parameter
dependence differ, especially when complicated numeri-
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cal cuts in the coordinates are applied in order to com-
pare with experiments. Among the shortcomings of this
approximation is an undetermined parameter which cor-
responds to the minimum impact parameter or the maxi-
mum momentum transfer, which makes it difficult to get
specific results. As such, the method loses applicability
at impact parameters less than the Compton wavelength
of the lepton [15], which is the region of greatest interest
for the study of nonperturbative effects. Reference [39]
reviews the application of the equivalent-photon method
in relativistic heavy-ion collisions.

Section II introduces the basic two-photon approach
for computing the single-pair production and the gener-
alization of these results for calculating multipair pro-
duction cross sections. In this section we also discuss the
impact-parameter dependence of these cross sections. In
Sec. III we discuss the details of the numerical tech-
niques used for obtaining impact-parameter-dependent
cross sections. Section IV outlines the results for S+Au
and Pb+Pb heavy-ion reactions. The paper concludes
with the discussion of the results in Sec. V.

II. FORMALISM

A. Single-pair production

The cross section for lepton-pair production in rela-
tivistic heavy-ion collisions via the two-photon process
has been derived in [2] using a semiclassical least-action
principle. The result is equivalent to utilizing the leading-
order Feynman diagram and taking the classical limit
[12,40,41] of the relative motion of the two ions. In this
formalism, the source currents appear as arising from
Lorentz-boosted charge distributions. We follow the for-
malism of [2], only here we develop a technique for calcu-
lating cross sections as a function of the impact parame-
ter rather than the integral over all impact parameters, as
was done previously. The lowest-order two-photon pro-
cess is pictured in Fig. 1.

Nucleus 1 is the nucleus that (in the center of velocity
frame) moves with a velocity -3 and nucleus 2 (in Fig. 2)
moves with velocity +3, both parallel to the z axis. Their
trajectories are taken to be straight lines separated by
an impact parameter b. Throughout this paper, we use
a system of units with Z = ¢ = m = 1. The semiclassical
coupling of electrons to the electromagnetic field is given
by the Lagrangian density

Lint(z) = —=V(2)7,¥(z) A" (z) , (2.1)
which only depends on the field variables via the classical
four-potential A*, where

A* = AR(1) + A4(2) , (2.2)

and in the momentum space, the nonzero components of
the potential from nucleus 1 are

5(40 ﬁqz) . b
0 fre— 2 2_.—.—.——_—. . —
A°(1) = —8n*Z~y P (g2 q;)exp iq 2|

A*(1) = BA°(1). (2.3)
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FIG. 1. (a) Direct and (b) crossed Feynman diagrams for
pair production in a heavy-ion collision.

The potentials from nucleus 2 can be obtained from (3)
by the substitutions b - —b,3 — —(3. If we assume
that the heavy-ion motion can be localized along defi-
nite impact parameters, we can write the total inclusive
singles o, and pair o, cross sections

g, = / d?bN, (b)
op = / d?bN,(b)

where N, (b) is the singles multiplicity and ANp(b) is the
pair multiplicity of produced electrons. In the strong field
limit the multiplicity of electrons represents the mean
number of electrons produced out of the vacuum. It has
been shown that, in the perturbative limit, the pair mul-
tiplicity is the same as the singles multiplicity and the
inclusive pair cross section is op ~ 0o,

(2.4)

2

FIG. 2. Schematic diagram depicting a relativistic

heavy-ion collision.
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o= [ S 16 IS (2.5)

k>0 g<0

where the summation over the states k is restricted to
those above the Dirac sea and the summation over the
states ¢ is restricted to those occupied in the Dirac sea.
The summation of these states is over spin and momen-

SRS F =3

The momentum in 1ntermed1ate states is composed of
parts transverse and parallel to the motion of the heavy
ions, p = p. + Pz- The transition matrix element for
direct Feynman diagrams in Eq. (2.5) has been derived
in [2] as

xP1SIxE)

=55/ e e - ()] 4}

><.A(+)(k,q 1P1), (2.6)

where p is the transverse momentum.

Including both the direct and crossed Feynman dia-
grams, the results for the cross section, as a function of
impact parameter, can be obtained as

o 1 [ EPaty,
ab 432 Z (2m)®
x[A(+)(k,q :pL) +_A(_)(k,q :k; +q1 —p1)]
xl[A(+)(k,q :p) + A(—)(k,q :ki +q1 —p)]*
(2.7)

where k (q) is the momentum of the produced lepton
(antilepton) and A(*)(k,q;p, ) are given by

AN (k,q:py) =

bJo(b|pL — P'L|)

F(ky —pi:w)F(pL—qi:wz)
XTig(PL : +0) s
AP (k,q:pL) =F(kL —pL:w2)F(pL —qL :wi)
XTrg(PL : —0) . (2.8)

The quantity F(q,w) is the scalar part of the electro-
magnetic field of the moving heavy ions in momentum
space

4w Z~23? G
w? + B2y%|q|?
where Gg/(g?) is the form factor of the nucleon and fz(g?)
is the form factor of the nucleus. The frequencies w; and

wy of the virtual photons are fixed by energy conservation
at the vertex where the photon is absorbed

F(q:w) = e(q%) fz(d%) (2.9)

_ o - EIE:-H +B(g: — k)
wy = ’
2
(=) _ p(H) _ _
wp= P2~ B 5 Ale: —k:) (2.10)

The quantity 7 contains the propagator of the interme-
diate lepton and the matrix elements for the coupling of

the photon to the leptons

E(+) E(—)
e - DX e - (B )

o (%3%)]
x (S |(1 — Baz)[ufy))

X (ul)|(1+ Bas)[ul)) . (2.11)
Here |u((,f)) is the usual Dirac spinor and «, is the z
component of the Dirac matrices.

B. Multiple-pair production

In this section we will provide the basic formulas used
in our calculation of multipair cross sections. Recently,
a number of differing approaches have been developed to
compute the multipair cross sections [24-27], all result-
ing in a Poisson distribution for the multipair impact-
parameter-dependent probability function. The prevail-
ing assumption is that the heavy ions do not suffer any
recoil or energy loss while electron-positron pairs are pro-
duced from the vacuum, which seems to be a reasonable
assumption when the pair energy is compared with that
of the heavy ions. One implication of the above assump-
tion is the approximation of straight-line, heavy-ion tra-
jectories for all impact parameters. Although this may
not be correct for central impact parameters, its relia-
bility for cross-section predictions depends on the phys-
ical region for producing pairs. Provided that most of
the pair-production cross section stems from peripheral
heavy-ion trajectories, the use of this assumption seems
to be safe.

It has also been recognized that in most lowest-order
perturbative calculations, pair production probability vi-
olates unitarity for small impact parameters and extreme
energies. It has been suggested that the summation of
the classes of diagrams resulting from the independent
pair approximation can be used to restore unitarity to
the lowest-order perturbation theory. These have been
discussed in Ref. [24] using the sudden and quasiboson
approximations, in Ref. [25] where a similar result is ob-
tained by a straightforward summation of the diagram-
matically defined series in the perturbational expansion,
and in Ref. [26] using a nonperturbative treatment and
neglecting the interference terms. The resulting mul-
tipair production probability is described by a Poisson
form

P (b)N exp[—P(b)]

Pn(b) = i , (2.12)
where N denotes N-pair production and
PO) =Y > 16a7 1S (2.13)

k>0g<0

is the lowest-order perturbation result for the pair-
production probability. P(b) can also be interpreted as
the average number of electrons produced out of the vac-
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uum. The N-pair cross section onpair is obtained by
integrating the N-pair probability over the impact pa-
rameter b

O Npair = /dszN(b), N=1,2,.... (2.14)

In the two-photon formalism, as discussed above, the to-
tal one-pair cross section is given by

- / PP (b) .

Therefore, from the above equation, we can write P(b)

(2.15)

1 do

(2.16)
which can be used in Eq. (2.12) to calculate N-pair cross
sections. Consequently, our task in this paper is to deter-
mine a well-behaved impact-parameter-dependent cross
section. In terms of the multipair cross section, the total
cross section for producing any number of pairs is given

by
(2.17)

Opair = _S_ O N pair -
N=1

J

Zm dk,dq,d?k, d?Kd*Q
q 8,6’2 ZZ/ d‘bq/ zﬂ 10

+F [§(Q ~ i | Fl-Kiwa] Ty k. ~Ki =6
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III. NUMERICAL TECHNIQUES

For the calculation of the total cross section, the dif-
ferential cross section given by Eq. (2.7) can be inte-
grated over all impact parameters analytically (it pro-
duces a simple ¢ function) and yields the result for the
total cross section as given in Ref. [2]. However, the
impact-parameter-dependent cross section is numerically
much more difficult and evaded any computations un-
til the present. This is due to the fact that the function
Jo(b|pL—p’,|) is a rapidly oscillating function, especially
for large b. One can add an additional d°p’| integration to
the Monte Carlo technique given in Ref. [2] and attempt
to do the integration in Eq. (2.7) directly. We tried up to
100 million Monte Carlo points and, although accuracy
for small impact parameters was acceptable, we have not
been able to obtain convergence for large impact param-
eters.

We propose the following technique for circumventing
this difficulty. We divide the integration according to

do

2= [o dqqb Jo(ab)F(q) , (3.1)

where F(q) is given by a nine-dimensional integral

{F Q- Q);wl] F [-K; w3] Tiq [kJ_ - %(Q —q);+0

i
}

<P [3@+ o] Pl-a - Kiwal T [ies - 3@+ ) +9]

F[%(Q+q);w1]F[—q—K;wz]77eq [erl_K;—ﬂ]} )

where we have changed variables to
1
pJ_:k_L_E(Q‘q) )
1
qJ_:kJ__E(Q—q)_*_K )

%(Q+q)-

For a fixed value of ¢, the Monte Carlo technique of Ref.
[2] can be generalized to calculate the nine-dimensional
integral of Eq. (3.2). The details are provided in the
Appendix.

This procedure results in a function F(g), which is a
relatively smooth function of ¢. The number of Monte
Carlo points used is chosen such that there is approxi-
mately a 5% error in each point we generate for F(q).
We fit a smooth function to the F(q) generated by the
Monte Carlo integration and then perform the ¢ integral
analytically. We check the procedure by integrating over
the impact parameter and find that we are always within
the 5% error we set for ourselves in comparison with the

P =k — (3.3)

(3.2)

total cross section calculated using the methods of Ref.

2]-
IV. RESULTS

To demonstrate the ability of the technique presented
here to produce the impact parameter dependence of the
two-photon electron-positron pair-production cross sec-
tions, we present results for two typical cases. These are
for electron-positron pairs produced in the S + Au col-
lision at 200 A GeV per nucleon and in the Pb + Pb
collision at 160 A GeV per nucleon in the fixed-target
frame. These two systems are studied because they cor-
respond to experiments either completed or planned for
the immediate future at CERN [16,21]. In all cases we
set the form factor of the nucleon equal to 1 and use a
Woods-Saxon form factor for the nucleus. The use of reg-
ular form factors for the nucleon or uniform or Gaussian
form factors for the nucleus does not alter the results at
these energies.
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In Fig. 3 we present the function F(g) both from the
Monte Carlo calculation and from our smooth fit. The
smooth functions fit to F(g) are given by (in barns), for
the Pb + Pb and S + Au cases, respectively,

F(q) = 3835.7 ¢~ 1:34029

F(q) = 163.5 ¢~ 135199 (4.1)

The differential pair production do/db is then calculated
by integrating the smooth fit to F(g) according to Eq.
(3.1). The results are presented in Fig. 4 for the S +
Au and Pb + Pb cases, respectively. We see a smooth
exponential fall for large b, as expected. We may further
integrate these results over impact parameter. In Fig. 5
we show the integrated cross section when integrated to
a maximum impact parameter by,ax, given by

oo bmax
o= [ dag [ v e F(a)
0 0

=/ dquax Jl(quax)]:(q) ’

0

(4.2)

which, as b — oo, reproduces the total cross section
obtained in Ref. [2] using the exact integration over b.
Analytically one could also show that F(g = 0) converges
for large bmax to the total cross section of [2]. This is done
by taking the bpax — oo limit of Eq. (4.2) as

0’—_—/ del(:E)f(L) N m=quax
o bmax

~ F(0) /0 ~ 4o Ji(2)

— 7(0) , (4.3)

T T

Pb + Pb (160A GeV) |

& Monte Carlo
—— Fit

| |
T T

F(a) (b)

S + Au (200A GeV)

101 1 1 —
0.0 0.5 1.0 15

q[(units of Compton wavelength)™!]

FIG. 3. Function F(q) versus g for the production of elec-
tron-positron pairs. The points are the results of the Monte
Carlo calculation and the smooth curve is our fit to these
points.

10 T T

A Pb + Pb (160A GeV)

do/db (fm)
=)

0.0 10.0 20.0 30.0
b(units of Compton wavelength)

FIG. 4. Differential cross section do/db versus impact pa-
rameter b for electron-positron pair production. Solid lines,
exact numerical result; dot-dashed lines, equivalent-photon
approximation (Ref. [25]).

where we have taken F out of the integral since, in the
range of z for which the integral converges, F is essen-
tially a constant with argument very close to zero. The
same result can also be obtained by actually setting ¢ = 0
in the definition of F(q) given by Eq. (3.2) and realiz-
ing that the resulting expression is the same as the total

5000.0 T T T T

4000.0

3000.0

2000.0

| 1
1000.0 -

¢ (b)

0.0 i 1 f f

150.0 .

S + Au (200A GeV)

100.0

50.0

0.0 ' ‘ : ——
0.0 20.0 40.0 60.0 80.0 100.0
bmax(units of Compton wavelength)

FIG. 5. Integrated cross section as a function of bmax for
electron-positron pair production. Solid lines, exact numeri-
cal result; dot-dashed lines, equivalent-photon approximation
(Ref. [25]).
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cross section expression given in Ref. [2]. Numerically,
we have obtained this result in Eq. (4.1) with a less than
2% error.

We compare our two-photon results in Figs. 4 and
5 with results obtained using the equivalent-photon ap-
proximation as expressed in [39,25]. Using this equivalent
photon method, a simple expression for P(b) is given by
the lowest-order perturbative result as

P(b) = 9—17:*—2(22(12)2 [51)2]21112 [%} +A(Z), (44)

where « is approximately the energy of one ion measured
in the frame of the other ion (y = 2y%, — 1) and § is a
constant that has a value of 0.681. A(Z) is a Coulomb
modification which is ignored here. In this equation, for
impact parameters smaller than Ac, P(b) goes to infin-
ity very rapidly; i.e., the equivalent-photon formula di-
verges for very small impact parameters [15]. In addi-
tion, impact parameters larger than v6Ac/2 exceed the
region of validity for this formula. However, for valid
impact parameters, i.e., y6Ac/2 > b > Ac, the simple
equivalent-photon method gives quite reasonable results,
although it overestimates the contribution to pair pro-
duction from the two-photon process by approximately
5% in both cases considered, with the largest disagree-
ment coming at small impact parameters. In Fig. 5, the
equivalent-photon probabilities have been integrated in
their region of validity, whereas the integration limits for
the Monte Carlo evaluation of the two-photon diagrams
are from zero to infinity. We note that other formulations
of the equivalent-photon approximation may implement
slightly different approximations from the ones used to
obtain Eq. (4.4) [42] and, as a result, may produce re-
sults somewhat different from the simple formula used
here.

Taking advantage of our demonstrated ability to
compute the impact-parameter dependence of the two-
photon mechanism and the simple Poissonian form for
the impact-parameter dependence of the multiple-pair
cross section [Eq. (2.12)], we compute the probability dis-
tributions for N-pair production as a function of impact
parameter b for S + Au (200 A GeV) and Pb + Pb (160
A GeV) collisions. Our results show that the N-pair pro-
duction probability has a finite value at impact parameter
b = 0 and is continuous everywhere. In Figs. 6 and 7 we
see that one-pair production completely dominates both
the S + Au and Pb + Pb collisions. The two- and three-
pair probability distributions are small and, as expected,
decrease rapidly for impact-parameter values larger than
the Compton wavelength, although for the Pb + Pb case
the two-pair cross section has an appreciable 95-b value.
The other values for two- and three-pair cross sections
are shown in Figs. 6 and 7.

For comparison, we also plot in Figs. 6 and 7 the
multiple-pair, impact-parameter-dependent probability
distributions calculated using the equivalent-photon ap-
proximation [Eq. (4.4)]. However, the inability of the
equivalent-photon approximation to accurately approxi-
mate the two-photon mechanism at impact parameters
below one Compton wavelength, along with the general

10 T T
Pb + Pb (160A GeV)

Solid line: Dot-dashed line:

O, pay =3569b O, oy =3744b

1 Pair

Gy pair =95b Gy pair =133b

63 Pair =8b

Pu(b)

10.0 20.0 30.0
b(units of Compton wavelength)

FIG. 6. Probability distribution for N-pair production as
a function of impact parameter b for the Pb + Pb collision.
Solid lines, exact numerical result; dot-dashed lines, equiv-
alent-photon approximation (Ref. [25]). Total N-pair cross
sections are given in units of barns.

overestimation of the total pair-production cross section
by Eq. (4.4), results in the equivalent-photon approxi-
mation overestimating the N-pair multiplicities. For the
lead collision considered, the equivalent-photon approxi-
mation overestimates the two-pair cross section by 40%
and the three-pair cross section by a factor of 2. Once
again, the equivalent-photon approximation has been in-
tegrated here only over the range of valid impact param-
eters.

In summary, we have found the total one-pair cross
section for S + Au to be 160 b and Pb + Pb to be 3569
b by integrating the two-photon diagram and using the

10 T T
S + Au (200A GeV)

10 ‘' N=1 Solid line: Dot-dashed line: 3
10° L O pair =160b O pay =167D ]
O, par =0.19b O, par =0.25b

O pai =0.3mb O paiy =0.6Mb

10.0 20.0 30.0
b(units of Compton wavelength)

FIG. 7. Probability distribution for N-pair production as
a function of impact parameter b for the S + Au collision.
Solid lines, exact numerical result; dot-dashed lines, equiv-
alent-photon approximation (Ref. [25]). Total N-pair cross
sections are given in units of barns.
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Poissonian distribution to extract the cross section for
one pair to be produced. The cross section for any num-
ber of pairs can be found by summing the contributions
from all multipair cross sections as given by Eq. (2.17).
Another interesting quantity is the total cross section for
multipairs, i.e., excluding the single-pair cross section.
For the lead collision considered, this cross section has
an appreciable value of approximately 100 b, which is
about 3% of the total cross section.

V. CONCLUSIONS

We have found a technique that is capable of calculat-
ing the semiclassical two-photon mechanism for lepton-
pair production as a function of the impact parameter.
This required a generalization of the previously devel-
oped Monte Carlo technique in order to be able to handle
the oscillating Bessel function which occurs in Eq. (2.7).
We find that utilizing a Monte Carlo technique to gen-
erate the remainder of the integral F(q) as a function of
g, fitting a smooth function to this result, and then per-
forming the final integral utilizing the smooth fit function
produces a workable hybrid Monte Carlo technique.

Using the simple results obtained recently in under-
standing the nonperturbative nature of the production
of multiple, free-electron—positron pairs [24-27], we use
the calculated impact-parameter dependence of the two-
photon diagrams as the central ingredient needed to cal-
culate the multiple-pair-production cross sections. Our
calculations show that, for the systems and energies con-
sidered, single-pair production is the dominant part of
the total production cross section as expected, since, at
these energies, the two-photon mechanism does not vi-
olate unitarity, indicating that nonperturbative effects
remain relatively small. For the Pb + Pb case we
find a substantial two-pair cross section of 95 b, which
may yield itself to measurement. However, the impact-
parameter dependence of the two- and three-pair cross
sections are limited to a few Compton wavelengths (b <
10X¢). For S + Au and Pb + Pb collisions, we have
found that a large portion of the cross section of e”e*
pair production resides in the region b > 2R (R ~ 6.8
fm for Au, with a Compton wavelength for the elec-
tron of Xc=386 fm); thus, for low invariant masses we
can eliminate much of the concern over the hadronic de-
bris. The simple equivalent-photon approximation does
a fairly good job of predicting the total pair-production
cross section, but its utility decreases when multiple-pair
cross sections are desired due to its inability to accurately
describe the small impact-parameter collisions.

It appears that for the lepton-pair production problem,
classical field treatment and quantum field theory have
complementary roles. In the classical field treatment,
we assumed that the momentum transfer of the pho-
tons is much smaller than the momentum possessed by
the nuclei; therefore, this is in good agreement with the
quantum field theory where the energy and momentum
conservation is exactly satisfied at all vertices of Feyn-
man diagrams. In relativistic heavy-ion collisions, co-
herent particle production via two-photon processes does

allow us to make the same approximation because the nu-
clear form factor constrains the virtual photon momenta
where such an approximation is particularly good. Quan-
tum field theory provides guidelines for the classical field
treatment and tells us what the classical counterpart is,
especially for nuclear systems with spin, and when such
a treatment is valid. Classical field treatment also pro-
duces a clear physical picture for the classical trajectories
of heavy ions which can be tagged experimentally and en-
ables us to properly simulate the dependence of particle
production in impact-parameter space.

With the advent of higher-energy heavy-ion collid-
ers, the study of the physics of the two-photon process
emerges as an exciting new field. The process may be
used as a means of production of exotic particles — per-
haps the study of nonperturbative effects in QED. In all
cases, an understanding of the impact-parameter depen-
dence of the production is necessary and it is useful to
be able to work in regions that are beyond the validity
of the equivalent-photon approximation.
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APPENDIX: MONTE CARLO INTEGRATION
The F(q) function in Eq. (3.2) is of the form

F(q) = FO/f(ml,wz, ..y Zg, q)dz1dTo - - - dxg (A1)

where we denote these coordinates by the eight-
dimensional vector

X = {fvnaky(f)qaer(ﬁQ’gK’qu} . (A2)

These variables are related to the variables defined in Eq.
(3.2) by

k:\ _ ¢ cosqy
(qz) —e (Sin'l)’ (a3)

( g: ) = ag tanfo ( ‘;fﬁ;’fﬁ ) , (A4)
(ﬁ: ) = ag tanfg (Z?ji}lj ) , (A5)
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(A6)

ke k
(k) =) <A7>
There are only eight integrals because we find that upon
changing to the above variables, the remaining integra-
tion can be done by symmetry. Here 7,¢q, ¢k, and ¢4
lie between 0 and 7, while g and 0k lie between 0 and
/2. The variable £ is used to set the upper limit for k,
and g,. The scale factors ag and ak are taken to be

ag =w/y,ax =w/y. (A8)

Monte Carlo methods reduce the Eq. (3.2) to a summa-

tion

f(q) = Zf(xilamiZ,“-,mi87 q)Asz ) (AQ)

where A™z is the volume element of the subregion. For
a finite volume V', we divide the integral region to equal
volume elements and obtain

|4
}-(q) = N Zf(wil7mi27 weey T8y ']) )

where N is the number of subvolume elements. We can
also monitor the fluctuation of the results and, according
to the central limit theorem for large values of N, we can
write the associated error

(A10)

8= () - (H?/N, (A11)
where
(%) = _1%7 Z (i1, Tizy ooy Tisy q)
(f) = % Y f(@a, ziz, s s, ) - (A12)
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