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Semiclassical theory of Rydberg-wave-packet interferometry
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A semiclassical approximation is derived for the autocorrelation function describing the excitation
and detection of Rydberg wave packets by pairs of phase-locked laser pulses. The resulting expression
is in terms of a sum over Kepler trajectories, and provides a direct explanation of the periodicity
and spreading of the wave packet at short times when the evolution is classical. More surprisingly,
this solution also provides an accurate description of the complex revival behavior of the wave
packets, which is nonclassical. The phases of the wave packets, which are detected by the pulse-
locking scheme, are also accurately given by analytical expressions derived from the semiclassical
sum. The phases of the wave packets at short times have a simple interpretation as the phases of
Bohr-Sommerfeld, and are related to Berry's phase. The semiclassical expression for the phases of
the nonclassical revival wave packets is simpler than the corresponding quantal solution.

PACS number(s): 03.65.Sq, 32.80.Rm

I. INTRODUCTION

Wave-packet states in Rydberg atoms are a matter of
current experimental and theoretical study, due to their
usefulness for studying the classical limit. Such states
are deemed quasiclassical because the uncertainty in one
or more coordinates of the electron can be reduced to
close to the minimum value, leading to subsequent be-
havior that has many characteristics in common with the
classical system. The simplest of these states is the ra-
dial wave packet excited with a short laser pulse with no
other external fields present [1—7]. These states are well
localized in the radial coordinate due to the superposi-
tion of many eigenstates with different principal quantum
numbers. However, they are not localized in the angular
variables because the states in the superposition all have
the same angular momentum. This can be overcome by
using external fields to mix the angular states. An exam-
ple of this is the angularly localized wave packet [8] that
is excited with a laser pulse in conjunction with a radio
frequency field. These wave packets are localized only in
the angular variables as the states in the superposition
all have the same principal quantum number. A method
to prepare a wave-packet state well localized in all three
dimensions has been proposed by Gaeta et al. [9].

The primary issue regarding these quasiclassical states
is the relationship between their dynamics and some un-
derlying set of classical trajectories. The ionization of
the angularly localized wave packet studied by Yeazell
and Stroud [8] was properly accounted for by modeling
the ionization of an ensemble of Kepler trajectories with
the same energy and angular distribution as the wave
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packet. Turning this approach on its head, Gaeta et al.
[9] developed a method to create three-dimensionally lo-
calized wave packets by considering the effects of a short
electric pulse on an ensemble of circular orbits intended
to model the initial circular-orbit eigenstate. The com-
mon feature in both of these models is that the dynam-
ics of the ionization process and wave-packet formation,
respectively, occurred on a relatively short time scale.
The dynamics of the radial wave packets, as well as wave
packets localized about a circular [10] or elliptical [ll] or-
bit, can also be understood on short time scales by using
an ensemble of classical trajectories with the appropri-
ate initial conditions. For a number of orbital periods all
of the trajectories remain close to one another as they
travel around their Kepler ellipses, except when they ap-
proach close to the nucleus where small differences in ini-
tial conditions are magnified. However, this model breaks
down at longer times because small initial uncertainties
in position grow with time due to the nonlinearity of the
Coulomb potential. After a number of classical periods,
the wave packet spreads so much that it is delocalized
about the classical orbit, and quantum mechanical in-
terference effects become important [10—12]. These in-
terference effects can be accounted for with the use of
sums over classical-path amplitudes [13,14], maintaining
the close connection between the wave-packet dynamics
and the corresponding classical ensemble.

A most interesting phenomenon occurs at times when
the delocalized wave-packet state revives back into a well-
defined wave packet, or into a set of symmetrically dis-
tributed wave-packet replicas [10,12]. The revivals into
multiple copies of the initial wave-packet state occur at
certain &actions of the period for a full revival, and thus
are called fractional revivals. During these &actional re-
vivals, the wave function consists of a macroscopic su-
perposition of identical wave-packet states which are dis-
tinguishable. The coherence between these &actional
revival wave packets can be expressed by the superpo-
sition coefBcients which have been calculated by Aver-
bukh and Perelman [12]. The phases of these amplitudes
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can be measured using sequences of phase-locked pulses
[15]. This technique involves a wave-packet interferome-
try [16,17]. The various laser pulses excite identical wave
packets at different times, and the interference among the
wave packets determines the final signal. The nature of
the interference depends upon the evolution of the first
wave packet during the time before the second pulse ar-
rives, and upon the phase relationship between the two
pulses. It is this dependence on the optical phase which
can be used to measure the fractional wave-packet phases
[18,19].

One of the purposes of this paper is to relate these
fractional wave-packet phases to the properties of the rel-
evant classical trajectories. This is accomplished with a
semiclassical theory based on the classical-path represen-
tation (CPR) of Alber and Zoller [1,3,20]. This method is
useful for studies of Rydberg wave packets excited &om
the ground state by short laser pulses, because it includes
the effects of laser polarization and the nonhydrogenic
quantum defects in alkali-metal atoms in a natural way.
In Sec. II, we derive the CPR of the phase-locked pulse
process. This is used in Sec. III to show that the phase
of the wave packet as it evolves at short times can be
related to the classical action of the mean-energy trajec-
tory while the wave packet remains well localized. A so-
lution for the semiclassical sum which is accurate for long
times is next obtained in Sec. IV, providing a basis for
investigation of the fractional revivals. This solution is
similar to that obtained for the autocorrelation function
of one-dimensional [13] and three-dimensional circular-
orbit Rydberg wave packets [14], which use the semiclas-
sical theory of Tomsovic and Heller [21]. Analysis of the
accurate sum in Sec. V reveals that the fractional re-
vivals are correlated with discrete sets of Kepler orbits.
This relationship between the various sets of orbits and
the different wave-packet &actions includes the locations
of the peaks and their phases. We show how the probe
laser pulse can be adjusted to selectively emphasize one
or another of the &actional wave packets.

II. CPR FOR PHASE-LOCKED PULSE
MEASUREMENTS

The classical path representation is discussed exten-
sively in the review of Alber and Zoller [1]. Their gen-
eral theory handles more complex alkali atoms as well
as hydrogen, and the extension of the following anal-
ysis to those cases is straightforward. This semiclassi-
cal approach has been used previously to treat Raman
transition pump-probe processes. In that case, the re-
sponse is proportional to the magnitude of a semiclassical
sum. We apply the method here to a pump-probe process
which uses identical pump and probe pulses. This phase-
sensitive pump-probe process has some advantages with
regards to the signal obtainable in experiments, provided
that the relative phase between the two pulses is prop-
erly controlled. When this is implemented by using pairs
of phase-locked pulses, the evolution of the phase of the
wave packet can be measured. In the sections following

this one, we show that this phase has an interesting con-
nection to the semiclassical dynamics of the wave packet.
First, we give the results of this measurement technique,
then we derive its classical-path representation.

We consider excited states created by laser pulses
which are tuned from the atomic ground state ~g) to an
energy e in the Rydberg series. If the laser pulse is much
shorter than the classical period of a classical electron
with energy e, a number of Rydberg states ~n) are ex-
cited. This can been seen from the fact that the energy
level spacing of the Rydberg levels is inversely related to
the Kepler period of a classical electron at that energy.
For a laser pulse which arrives at time ti, the excited
wave packet is accurately represented by

@wp(r, t, ti) = i exp(iu„ti) exp( —iet) ) 0 E(b )

x rp„(r) exp [
—ib„(t —t, )], (1)

provided that the pulse is weak in the sense that most of
the population remains in the ground state. The Rydberg
wave functions are given by p„(r) = (r~n). The carrier
&equency of the laser pulse is denoted by ~„, and peak
field strength and polarization are given by the vector
go. The matrix elements of the field interaction between
the ground and excited states are designated by the Rabi
frequencies 0 = (n~d. ge~g), where d is the dipole oper-
ator. The Fourier transform of the laser pulse envelope
f(t) is given by E(b ), and b„= e'„—e is the difFerence
between the mean energy c = w„+ r~ and the energy
levels e = —1/(2n2) (atomic units).

A second laser pulse, identical to the first, arrives at
time t2 and excites another wave packet which is the
same as the first wave packet, except for the evolution of
the first wave packet and a phase factor which accounts
for the optical phase difference between the pulses. The
final population in the Rydberg series after the second
pulse has passed depends upon the interference between
the two wave packets. This population can be measured
with a swept electric field that ionizes all excited states.
The measured population is P(tg) = P, + P~(tg),
which depends only on the delay between the two pulses,
tg ——t2 —ti, not the absolute times ti and t2. The average
population P is the incoherent sum of the population of
the two wave packets and the interference population P~
depends on the interference between the two wave pack-
ets. Details of the calculation will be published elsewhere
[15], we give the important results here. Assuming that
the two laser pulses are phase locked, the contribution
to the population due to the interference of the two wave
packets is given by Pc (tg) = P „,CI, (tg, est, Pg), with the
phase locked autocor-relation function defined by

cc(ta age,'4e) = «',(&(&a; &ge) exp( ice) ). (2)

Here &Pg is the relative phase difference at which the two
laser pulses are locked and up is the &equency at which
the phase is locked. This &equency does not need to
coincide with co&, but is assumed to be within the laser
bandwidth. The phase-locked autocorrelation function
depends on the optical phase Pg and the autocorrelation
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function of the wave packet in the rotating frame at e~g ——

(dg + E'g)

(@wp(0; &ge) l@wp(tz , &g'r))

The wave packet in the rotated frame is given by

gwp(r, t; est) = i ) B„P(6„)p„(r)exp[ —i(s„—age)t] .
n

(4)

It would seem natural to choose the rotated &arne to
be at c, but as we shall see in Sec. V there are other
appropriate rotated &ames. The peaks of the autocorre-
lation function in Eq. (3) have the same form as the pulse
envelope f(t) so long as the wave packet remains well lo-
calized, as we shall see in the next section. However, the
phase of the autocorrelation function at its peaks is very
sensitive to its mean energy. This phase has a simple
semiclassical interpretation, and will also be discussed in
the next section.

We now find the classical-path representation [1,3,20]
of the phase-locked pulse excitation. Using the resolvent
G+(s) = [s —H + i0] in Eqs. (3) and (4), the wave-
packet autocorrelation function becomes

trajectories starting at the surface r corresponding to
the-outgoing Coulomb waves at energy c is propagated
using classical equations of motion [24,25]. The incom-
ing Coulomb waves are then expressed in terms of the
semiclassical propagation as a sum of classical-path am-
plitudes involving trajectories which return to the core.
The amplitude of the incoming wave due to a particular
trajectory is a product of the amplitude of the initial out-
going wave at the point of departure &om the surface r
and a semiclassical amplitude. This semiclassical ampli-
tude has a magnitude which depends upon the stability
of the trajectory versus initial angle of departure from
r, and represents a density of nearby trajectories. The
phase of the semiclassical amplitude depends upon the
classical action and Maslov index of the trajectory. The
Maslov index is related to the phase accumulated by the
wave when it travels thru a caustic point.

The total wave function is then found by matching this
incoming wave with the wave function generated by the
laser. The self-energy is calculated &om this wave func-
tion, and is now represented as a sum of classical-path
amplitudes. For the case of hydrogen with no external
fields, the classical-path representation of the self-energy
is

exp[iSi (s)]
1 —exp iSi(s)

C(td eee) = e(eep „,) exp(ieeeee) f de ~p(e —e)~

xZ(s) exp( —istic). (5)

= —il'(s) ) exp ikSi(s),
k=1

(6)

The self energy of the -initial state lg) is given by Z(s) =
(gld. goG+(s)d (elg) and is a two-photon transition ma-
trix element &om the perturbation theory of two-photon
processes. Although the transition &om the ground state
to the Rydberg series under consideration is a single-
photon transition, the pump-probe process itself is a two-
photon process because there is interference between the
possibility of an excited state absorbing a photon from
the first or second laser pulse. The self-energy is re-
lated to the wave function lU, ) = G+(s)d. golg) which is
seen to satisfy the inhomogeneous Schrodinger equation
(s —H —i0) lU, ) = d.golg). Once this equation is solved,
the self-energy is readily obtained.

The state lU, ) is determined in several steps. At
small values of the radius, the wave function is given by
Coulomb functions. For atoms with a complex core, the
boundary conditions are matched at r ~ 0 with quan-
tum defect methods [1],whereas for hydrogen a standard
Green's function method sufEces. At this step the outer
boundary condition is satisfied by an outgoing Coulomb
wave which takes into account the fact that the wave
function is being excited by a laser. At some suitable
intermediate radius (r 50ao), which is outside the
atom-laser interaction region, but still small on the scale
of the classical orbits at the energy being considered, the
WKB form of the Coulomb functions can be used.

At this point the theory of Maslov and Fedoriuk
[22,23], which uses a semiclassical approximation to the
Green's function G(q, q', s'), can be applied to the prop-
agation of the wave function. An initial manifold of

when we restrict the two laser pulses to be well separated
from each other. [1] The energy normalized Fermi Golden
Rule (FGR) transition rate I'(s) is closely related to the
density of states and the square of the Rabi &equency
0„ for energies e = e . It is a smooth extrapolation of
the FGR ionization rate above threshold, and is approxi-
mately independent of energy [1]. The classical action of
a trajectory at energy e after one Kepler period is given
in atomic units by Si(s) = $p . dq = 27rv. The action
variable v is related to the energy by s = —1/(2v ), and
corresponds to the principle quantum number n of the
quantized hydrogen atom. This expression has poles for
integer v = n; thus, it can be directly related to Bohr
quantization.

The solution for the self-energy in Eq. (6) can now be
put into Eq. (5) to get the semiclassical approximation
to the autocorrelation function, C(tg, sgr) = C„(tg', sgr).
Taking the laser pulse to have the Gaussian form f (t) =
(sr'. 2) i) 4 exp( —t2/2r2) and pulling the FGR transition
rate at the mean energy I'(s) out of the integral results
in

Csc(td& ssr) — exp(issstd) ) exp I
—(E —s) 7„

+iS), (s) —istic] ds, (7

where we used P, —21'(s'). All that remains to be
done is to evaluate the integral. This requires making
an approximation to the classical action Sg(c) = kSi(e').
For short times an approximation about the mean energy
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FIG. 2. Wave-packet recurrence peak phase dependence
on mean energy. Accurate numerical integration of the
autocorrelation function for mean energies corresponding
to (a) P = 100 (solid line), 100.5 (dashed line), and
(b) P = 100.25 (solid line), 100.75 (dashed line). The depen-
dence of the phase on the central-orbit energy is in complete
agreement with that predicted by the semiclassical theory.

IV. MULTIPLE PATHS IN THE NONCLASSICAL
REGIME

The breakdown of the solution in Eq. (10) is due to the
approximation involved in evaluating the integral Eq. (7),

ulation, is identically zero. At this energy there will be a
sign change every period, which creates the appearance
in the response of a wave packet with twice the period
that it should have.

Solutions to the classical-path representation obtained
by linearizing the dynamics about the mean energy have
been used previously to describe the pump-probe re-
sponse for Rydberg atoms in external fields, using dif-
ferent pump and probe pulses [1,20,26]. In those cases,
the nonclassical nature of the semiclassical phases mani-
fests itself when different classical-path amplitudes inter-
fere with one another. This occurs because closed orbits
leaving the atomic core at different angles can return to
the core at the same time, but having different values of
classical action. In light of the results of this section, the
phase-locked pulse technique could provide more detail
about the properties of such systems. Even in the case
of no external Gelds, however, interferences between dif-
ferent classical-path amplitudes occur. As we see in the
next section, this in fact defines the nonclassical regime
of the radial Rydberg wave-packet evolution. To investi-
gate that requires a new approach to the solution of the
integral in Eq. (7).

not the semiclassical method itself. The form of this in-
tegral suggests the use of the stationary-phase method
when td becomes large enough, and that is the approach
used previously by Alber et aL [3] and Alber and Zoller
[1]. However, they did not use this result to investigate
the fractional revivals of the wave packet, as we shall in
the next section. Furthermore, a little reHection on the
results of the last section and the relevant classical dy-
namics leads to an improvement which is good for both
long and short times.

The classical analog for the excitation of a wave packet
by a laser pulse is obtained by launching a classical en-
semble of Kepler electrons &om the nucleus, with the
starting times of the members of the ensemble distributed
about the arrival time of the pulse. The energy distribu-
tion of the classical ensemble must also mimic that of the
excited wave packet. The classical ensemble spreads as it
evolves, due to the variation of the Kepler period T, (e)
with energy e. At long enough times, the faster trajecto-
ries will lap the slower ones. At this point the ensemble
will be spread entirely about the classical orbit. It makes
sense to consider only the subset of trajectories which
are in the vicinity of the nucleus when the second pulse
arrives, as these are the ones that should be relevant to
the response. This follows from the dependence of the
response on the wave-packet location when it is still well
localized.

The trajectories in the vicinity of the nucleus when
the second pulse arrives will be very close to an integer
repeat of their periods, so it is useful to account for the
contributions of all the trajectories near a given repeat of
their periods in terms of the one which exactly repeats its
period at time td, . The kth reference trajectory is, thus,
determined by the condition k7g = t~, where 7g = T,(sI, )
is the orbital period of this trajectory. The reference tra-
jectory energies eA, satisfy the stationary-phase condition
for the integral in Eq. (7). The action variable of the kth
reference orbit is

q2~k j
The classical actions of the nearby trajectories are de-

termined by the Taylor series given in Eq. (8), evaluated
at energy s&. Using this in Eq. (7) and performing the
Gaussian integral as in the last section results in

ein/4 ( (&s &)2 y
C,.(&g., sgr) = exp(isget~) ) exp ~—

)

x exp (i8~ (tq) —i sf, td),

where Q = 1/r„+ i/g& and g&~
—(&~(e&). The clas-

sical action of the kth reference orbit is denoted by
SA, (tg) = Sg(sl, ). We note that the phase in the right-

most exponential is the full action 7Zq(td) = I "dtCq =
SI,(tg) eI,td, where Zl, is t—he 'Lagrangian of the kth refer-
ence orbit. This action plays a role in the time-dependent
semiclassical theory used previously [13,14] to calculate
the autocorrelation functions of Gaussian wave packets
in the Coulomb potential. The result in Eq. (12) is of
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ence. For simplicity, we consider &actions of the revival
period such that f = 1/my, where my is an integer. To
facilitate the solution for the times of total constructive
interference, it is useful to have an expression for the ac-
tion of each reference trajectory relative to that of one
which is close to the mean energy. The first step is to Gnd
a time t~ = kyT, (E ) at which the mean-energy orbit itself
is a reference orbit. To keep this time within a Kepler
period of the &actional revival time, a convenient choice
for the integer kf is

Trev

T, (s) 3m'

where the Hoor brackets denote the largest integer smaller
than the quantity enclosed. For times td, g kyT, (s) the
mean-energy orbit is not a reference orbit, but the energy
of the reference orbit given by ky7~ = t~ is close enough
to the mean energy that we can safely expand about it
rather than the mean energy, for times within a classical
period of fT„„

The action variables v& of the nearby reference orbits
can be found &om that of the kf th reference orbit with
the help of 7i, = 2vrv&s = T~&[1+ 3(vi, —vi~)/vt ~]. This
is used along with k7i, = kgb~ to get

n= [vJ . (20)

Across the interval kyT (s )( tg-( (kg+ 1)T,(e'-), there
are mf equally spaced times at which the reference orbits
will satisfy Eq. (19). This can be seen from the reference
orbit spacing given by Eq. (16) and a simple linear ex-
trapolation of the orbits vA,

&
across the interval. The

&actional revival autocorrelation peaks are centered at

4 =
I
kf+ + IT(&=)

t' v. j &

2m' mf )
j = 0, 1, 2, . . . )mf —

) (21)

corresponding to the reference orbits,

course the Bohr orbits. Although the role of the Bohr or-
bits might be expected, the role of the half-integer orbits
is perhaps surprising.

In view of Eqs. (19) and (16), the fractional revival
peak locations will be more clearly expressed in terms of
the periods of a given Bohr orbit near the mean-energy,
rather than the periods of the mean-energy itself. The
particular Bohr orbit used for the time scale is chosen to
be

vA, —vI, = —lmf, (16)
1.0 - '

where t = k —ky. The assumption (vy —vy&) (& vi, z
was used. The expression (16) can be used to get an
approximation to the reference trajectory energies e& by
expanding them about e&,f'

(vi —v~, )
I'ev'

(17)

The product (s& —s& )t~ simplifies using the definition
ky

tg/7i, ~
= ky and the fact that the ratio t~/T„„= 1/my

does not change significantly for times within a classical
period or so of T„„/my. The action 81, = 2vrkvA, is easily
found in terms of Eq. (16), and after a little algebra we
And

0.5-
CL)

00
~ ~
~ ~

I

27

0.8

IC

0.4-

0.0-

29.5

I

28

30

29
I

30

30.5

mf
Rg( tg) ~ 27l kgb& —'Ei td + 27rl vA,

&
+

(mod 2vr). (18)

The first two terms on the right hand side of Eq. (18) are
independent of L. For maximum constructive interference
to occur between the contributions in the sum in Eq. (13),
the terms which depend upon l must be a multiple of 2a.
This leads to the condition

0.6-
IC

0.3-

0.0-

39.83 40.17

&/'T, (8-„)

40.50

vi„+ = 0 (mod 1) .
2

This condition on the reference-orbit action variables for
the &actional revival peaks is reminiscent of Bohr quanti-
zation for the energy levels. If my is even (odd) then vga
must be integer (half integer). We call the orbits with
action variable an odd multiple of 1/2 the half-integer
orbits, and the orbits with integer action variables are of

FIG. 5. Insensitivity of revivals to small variations in en-
ergy. The real part of the autocorrelation function is shown
near the (a) first full revival, (b) one-half revival, (c) one-third
revival. In all cases the revival peaks are centered where ei-
ther the Bohr or the half-integer orbits have a multiple of
their orbital period. The mean energies of the curve corre-
spond to (a) v = 90 (solid line), P = 90.33 (dashed line),
v = 90.67 (dotted line); (b) P = 180 (solid line), v = 180.33
(dashed line), v = 180.67 (dotted line); (c) v = 360 (solid
line), v = 3600.33 (dashed line), v = 360.67 (dotted line).
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K
v, ~

——n+ —+ j —lm~,
2

j = 0, 1, 2, . . . , my —1.

(22)

The index r. = my (mod 2) indicates whether it it the
Bohr orbits or the half-integer orbits that the peaks are
aligned with. For simplicity we have used the time scale
T,(s„)of-the mean Bohr orbit even for odd my, when the
time scale given by n+ 1/2 would be more appropriate.

The revival peaks for the first full revival, the half re-
vival, and the third revival are shown in Fig. 5 for a range
of mean energies. The plots show the wave-packet auto-
correlation function as determined from an accurate nu-
merical integration of Schrodinger s equation. Regardless
of the value of n, the peaks are centered at times when
either the Bohr or the half-integer orbits have a multiple
of their orbital periods, in accordance with Eqs. (21) and
(22).

Just as the &actional revival peak locations are insen-
sitive to small changes in the mean energy, the phases
of the fractional revivals should also be insensitive to
small changes in the mean energy. It is best to work
in the rotated kame at czar

——c- for the phase-locked
pulse measurement given in Eq. (2). To get the phase
of each &actional revival peak in the appropriate rotat-
ing frame, it is necessary to calculate the rotated action
Qz =

Rgz (t~) + et& at ea'-ch fractional peak time tz. It

has already been shown that all of the reference orbits
will have the same actions modulo 2' at these times, so
it is simplest to consider the action of the reference orbit
with A: = ky. Proceeding as before, r& —e- is expanded
as in Eq. (17). The use of Eqs. (21) and (22) results in

(23)

To get the total phase of each peak, the phase correc-
tion of vr/4 which is present in the stationary-phase result
in Eq. (13) needs to be included. This factor comes &om
the contributions close in energy to the reference orbit.
The kactional revival phases are

vr & v. 7r
(&+ &)& .

4 ( mq) m~
(24)

This is a much simpler expression for the fractional re-
vival phases than the corresponding expression which is
based on an analysis of the eigenstate amplitudes [12,15].

These phases can be measured by the scheme given by
Eq. (2). If the optical phase Pe is equal to the phase of
the peak P~, the measurement will produce a maximum.
In [15] we show how this works for the my = 2 and 3
kactional revivals. Here, we show the my ——4 revival in
Fig. 6 and the my = 5 revival in Fig. 7. From Eq. (24),
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FIG. 6. Phase-locked autocorrelation function at I/4 re-
vival. The laser pulse is tuned to u = 360.0 (solid
line), v = 360.5 (dashed line), with a pulse length of
rz ——T (s-)/25. The response is shown for a phase-lock of
(a) @e = 0, (b) Pe = vr/4, (c) Pe = —3s'/4. For this re-
vival, the autocorrelatiou peak phases are given by Po ——7r/4,
P& = Ps = 0, and Pg ———3s/4.

FIG. 7. Phase-locked autocorrelation function at 1/5 re-
vival. The laser pulse is tuned to p = 3600 (solid
line), u = 360.5 (dashed line), with a pulse length of
7„=T, (e'„-)/25. The response is shown for a phase-lock of
(a) Pe = 7r/5, (b) Pe = —7r/5, (c) Pe = —n. . For this revival,
the autocorrelation peak phases are given by Pp = Pg = 7r/5,
Pg ——Ps = —7r/5, and Pg = —s.
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the peak phases of the I/O revival are Po ——vr/4, Pq ——

Ps —0, and P2 ———3m. /4. This is in agreement with the
phase-locked autocorrelation function shown in Fig. 6,
with the locked-phase set to each of these values. For the
I/5 revival the peak phases. are given by Po ——P4 ——vr/5,

P~ = Ps = —~/5, and P2 ———7r, which is in agreement
with Fig. 7.

VI. CONCLUSIONS

We have found accurate semiclassical solutions during
both the classical and quantum regimes of wave-packet
evolution. The solution for short times demonstrated
that even in the "classical" regime there is a quantum
mechanical phase of the wave packet which is a physical
observable, as it can be measured by a simple phase-
locked laser pulse scheme. This quantum mechanical
phase is related to the Bohr-Sommerfeld action of the
Kepler orbit at the mean energy of the wave packet. The
semiclassical treatment for the wave-packet dynamics in
the nonclassical regime is surprisingly accurate. The &ac-
tional revival behavior, although an inherently quantum

phenomena, is accurately reproduced from interferences
among classical-path amplitudes. The various fractional
wave packets are seen to correspond to discrete sets of
orbits, some of which are Bohr orbits and others which
have half-odd values of their action variable. A simple
expression for the phases of the fractional wave packets
was derived from the semiclassical solution. These phases
are directly related to the classical action of the discrete
orbits of the fractional revival wave packets.

Even though the classical dynamics for the system
studied here is integrable, the semiclassical sum exposed
a rich and intriguing interplay between the classical
and quantum systems as the wave packet evolves. The
classical-path representation examined here has been ap-
plied previously to nonintegrable systems, such as the
diamagnetic Kepler problem, for short times only. These
systems are currently of interest for the implications they
carry for the meaning of the correspondence principle. A
reexamination of these problems in light of the results
presented here promises to be fruitful for further clari6. —

cation of the classical limit of microscopic quantum me-
chanical systems.
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