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Quantum-mechanical results for a free particle inside a box
with general boundary conditions
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The wave functions with the most general boundary conditions consistent with the conservation
of probability for a free particle inside a box [Phys. Rev. D 42, 1194 (1990)] are calculated. The
exact Green's functions and propagators for some special cases are obtained and a semiclassical
approach for the propagators is considered. Finally, the in8uence of the boundary conditions over
the path integral's formalism is brie8y discussed.
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I. INTRODUCTION

Quantum-mechanical systems with general boundary
conditions exhibit some interesting features concerning
bound states, the semiclassical approximation, scatter-
ing, the functional integral approach, etc. Recently, these
problems have been considered in the literature [2—4].
One of the simplest problems in quantum mechanics, a
&ee particle inside a one-dimensional box, the wave func-
tions of which are considered to have the most general
boundary conditions consistent with the conservation of
probability, was presented in Ref. [1]. Here, we discuss
this system.

In Sec. II, we calculate the Schrodinger equation, find-
ing the eigenfunctions and a general transcendental equa-
tion for the eigenvalues that, for some special cases, can
be solved explicitly. Then, the exact propagators for
these special cases are obtained by the spectral resolution
method in Sec. III. In Sec. IV, we propose a modified
Van Vleck formula in order to evaluate semiclassically the
propagators of the system. For the case of no possibility
of current flowing from one wall to the other, we obtain
the exact Green's function in Sec. V. Finally, in Sec. VI,
we discuss our results and present some remarks.

II. WAVE FUNCTIONS

For the free particle confined inside a one-dimensional
box with fixed walls at x = 0 and x = L, the
Schrodinger equation is of the form

h2 0 6
g(x, t) = ih —@(x,t),

2m Ox2 '
Ot

g(z, t) =0 ifx(0 or x) L.
Instead of forcing the wave functions to vanish at the
walls, we now study the most general boundary condi-
tions consistent with the conservation of probability [1]

p+ Pi
q

—p exp( —i0) (2)p+~. ) &«0t)) '

@g(2:, t) = [A exp(ikx) + Bexp( —ikx)]
hk2 )xexp/ — t /,2m

0«~ «L, (3)

into (2), we obtain

{pexp(i0) —[ik + p + Pl ] exp(ikL) )A

+(p exp(i0) + [ik —p —Pl, ] exp( —ikL))B = 0 (4)

and

where the 2 x 2 matrix must be Hermitian. In fact, there
is a four-parameter family of boundary conditions each
of which leads to unitary time evolution.

Substituting the following wave function satisfying (1)
(k2 = 2mE/h2):

(pexp[i(kL —0)] + [ik —p —Po])A

+(pexp[ —i(kL+ 8)] —[ik+ p+ Po])B = 0, (5)

*Electronic address: gomesoi6. unicamp. br which give the transcendental equation
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[k —p(Pp + Pl, ) —PpPI. ] sin(kL)

—k(2p+ Po + Pr, ) cos(kL) + 2kpcos(8) = 0 (6)

for positive energies and

) ~(x) t) = [exp( —px) + cg exp(px)]
ag

for the quantized energies. After lengthy but straightfor-
ward calculations we find the normalized wave function

with

(. h po+pLx exp i— t
q m 4 (16)

1
gg(x, t) = [exp(ikx) + c exp( —ikx)]a

( itlk' l
xexp( — t

/2m

(—1)s exp( —pI)Po+P~ + Po P

+ i( 1)s exp(pL) Po+PI Po PL

(7)

with

i[k + p sin(kL —8)] + [p cos(kL —9) —p —Pp]
C =

i[k + p sin(kL + 0)] —[p cos(kL + 0) —p —Pp]

and

2 sin kL
a = (1+ ~c~ )L+ Re[cexp( —ikL)]

k

for k a real number, or

a = 2LRe[c] + [exp(ikL)
sin(kL)

k

+
I
cl' exp( —ikL)] (io)

(~) 5 2 h n vr

2m" 2m L2
n = 1, 2, 3, . . . , (12)

for k an imaginary number (in this case the energy takes
negative values).

Therefore this quantum-mechanical problem has an
analytical solution once the quantized energies have been
obtained numerically &om (6). However, for some special
cases this transcendental equation can be solved exactly.
Now, we investigate these cases in more detail.

A. 2p+ Pp + Pr, ——0 and
8 = (s+ i)m, s = 0, 1,2, . . .

The transcendental Eq. (6) reduces to

(2k + Pp + PI ) sin(kI ) = 0,
which leads to the following quantized energies:

aq = 2LRe[cq]

+ [exp( —~L) + Ical'exp(~L)l
sinh(pL)

y

for negative energies.

B. p=O

(k —pppl, ) tan(kL) = k(pp + pl, )

With the help of (7)—(10) we obtain the energy eigen-
functions

@(&)
( t)

where

ik —Ppx exp(ikx) + exp( —ikx)ik+ Pp

f ihk' )
xexp/ — t

/2m )

2
(po+ pL, )(k'+ popI, )

(P ) (p2 + k2) (p2 + k2)

(20)

(21)

for k real, or

In this case, the boundary condition (2) decouples and
reads @'(O, t) = Ppg(O, t) and g'(L, t) = Pl.g(L,—t). In
other words, there exists no possibility of current Qowing
from one wall to the other.

The transcendental Eq. (6) becomes

and

(A) ~ 2 .
h 2 Po +PLEb, ——— q with

OUIl 2

The corresponding energy eigenfunctions are of the form

f ik —Pp ) sin(kL)
a(p p) = 2L

~
.„~+ exp(ikL)

qi + p)
t'k —Pp1

'
exp( —ikL)(i + p)

(22)

with

1

g(1+ lc-I')L
x [exp(ik x) + c exp( —ik x)]

r 'n~2n2 i
x exp(—2mL2

+ ( 1)n+s Po+Ps.
]

Po Pr, —

i[k ( 1)n+s Po+Pr.
] + Po Po—

(14)

(~) Q 2 5 n vr

n;(a) n = 1, 2, 3, . . . , (23)

for positive energy, with the eigenfunctions

for k imaginary.
We now consider the following special cases: (a) Pp +

PL, = 0, (b) Pp ——oo and PL, = 0, and (c) Pp
——0 and

L, =OO.
For the case (a), we have from (19)—(22)
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@(.() )(x, t) = exp(ik„x)

"~ +ipo
1 o

( ihk2 )
x exp

I

— "t
/2m )

(24)

@(B) g(B) ( + 2)
n;(b) n;(c) 2m L2

and the energy eigenfunctions

(gy) 1 ( (n+, )~
vP„(~)(x, t) = exp

~

i 2 x
~

(27)

which are more general than the two well known solutions
for Po ——0 and Po ——oo [for Po ——oo, Eqs. (23) and
(24) are still valid but with Pg being +oo], and

( (n+ -')vr
+exp~ i — ' x

~).

(&)&b...d
= — po2m

(25)
X exp

'n(n + —,')'~2 .
2mL2 (2S)

for negative energy, with the eigenfunction

po

sinh(PoL) ( 2 p
exp po~ x ——

~

(ihpz )
xexp/ t

/( 2m
(26)

where the plus sign stands for the case (c) and the minus
sign for the case (b). There are no negative values to the
energy in these two cases.

We should remark that the special cases considered
above are all the possible cases having an analytical solu-
tion for Eq. (6). Any other condition for the parameters
p, Po, PL„and 8 can be solved only numerically.

If Po ( 0 (Po ) 0), (26) is a state bounded to the wall
in z = 0 (x = L). Equations (14) and (16) with p = 0
reduce respectively to (24) and (26), as they should.

For the cases (b) and (c), a careful analysis of the
Schrodinger equation shows that in (19) we can as-
sume PoPI, = 0. Thus we find the quantized energies
(n = 0, 1, 2, . . .)

III. EXACT PROPAGATORS

The exact propagators can be evaluated by summing
over the energy eigenfunctions. For the parameter condi-
tions (A), we obtain the exact propagator from (14) and
(16) by (T = tb —t )

K'"'(*b *- T) =lb..'. (* tb)@'..'*. (*- t-)+):&.(")(» tb)@.(") (&- t-)
n=1

nK' 2 +8 nX zn7r
X

L
—2(—1)" '

P+ exp (xb —x )L

+ —p —2'L exp zb + xa

( ihvr'n'
xexp/ — T

/2mL' (29)

where P~ = (Po + Pl. )/2. Considering p = —P+ ——0, (29) gives the correct propagator for the case (a) in the
parameter conditions (8), or

K( ) (zb~ 2:a; T) = Kbo„„z(zby +ui T)(&) . (&)

1 . (inn ) I —iPo (inn
+ ). exP

I (~b —~ ) I+ . exP
I L (&b+~ ) I2L - (L ) "—+i, q I.

( ihvr'n'
xexp( — T

/2mL'

where

Kh „„d(xb,x~;T) = exp[Po(xb+ x~ —L)] exp
~

T
~

(B) po (iso
sinh(Po L) i 2m )

(31)

For Po ——0 and Po ——oo, the propagator (30) reduces to the well known propagators [5]
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() 1 ( ( — ) hT& ( (,+*) hT&
2L i 2L ' 2mL ) i 2L ' 2mL )

where the plus sign stands for Pe ——0 and the minus sign for Pe ——oo. Hereafter, 0~(z, r) will represent one of the
Jacobi theta functions (see the Appendix).

Finally, for the cases (b) and (c) in (B), we have

(&) (&)*
K(~) (xbl xa j T) ) 0~.(~l (xbl tb) 0~.(~) (xal ta)

exp
~

(xb —x~)
i

+ exp
i

(xb+ x ) ~

r

1

n= —oo

( ih7r'(n + —,')'xexpi — T
i2mL' )

~~(xb —*.) ~nT i r ~(xb+ x.) ~» &

2L ( 2L ' 2mL2) ( 2L ' 2mL2)02 , —
i
6 02

The propagator (29) can be written as the following forms (x~ = xb + x ):

K (xb, x~;T) = K
( )(xb, x~;T)+Kb „„q(xb,x~)T)

„+.n~) 2
( )2 ( ) P+ p

n7r /in7r ) f ih r'i'n
+ p + i exp x+ exp — T

L ( L j ( 2mL2

which is useful for p being small (p -+ 0), or

(34)

K( ) (xb, x; T) = K~ (i )(xb, x;T) + Kb )„d(xb, x; T)

1 - 1 „,.n~ 6 inir). , („.), (—) L 0+ PI

n7r ni.r ' f in7r ( ihir'n'
i P — exp( x+

i
exp( — T

IL L i L ) i 2mL'

which is useful for p being large (p ~ oo). Unfortunately, the sums in the above equations cannot be evaluated
exactly.

For sufficient small p, namely, p ( 7r/L, we can ensure the convergence of the series
nor OO' ) [&l

—l+ ( &)(
—

l] (36)
L &=p L

Thus Eq. (34) can be expanded as

2 Oo
1 ~ 1 (~+i) (~+g)(..), = —2) (,„.),+, h +(—~) 1.

L ~
—p

(37)

K("l(*„*.;T) = K~".l„,(*„.;T)+K',', ( „.;T)
Oo

+2Ly, . &+h" "+(—&)' '] ). (—&)";„.,
j=p n:—oo

xexpj x ~exp' — T i+[p + +(—p) +
]

f in7r i r ih r' 7'n
) ( 2mI2 )

i in~ ) r' n~' i'n
('" )'+' «n= —oo

1 (in7r i f ihvr n
x[p(~ & + (—p)&~ 'l] ), exp

~
x+

I
exp

~

— T
i('" )~ i L ) i 2mL' (38)



51 QUANTUM-MECHANICAL RESULTS FOR A FREE PARTICLE. . . 1815

Now, integrating in (38) the identity

dz& (n& r
~

—.exp[nz]
~

= exp[nz], (39)

we have

de
cxj (T)

I+ p-h" "+(—&)' '1(vrzi ~AT 5

( 2I ' 2mL2)

Z2

dz~
ng (T)

f
Z2

~ ~ ~

n1(T)fX dz~+
~&+1(T)

x dz2. . .
cx& (T)

(vrzi 7rhT )
q 2L ' 2mL')

Z2

K( &(xb, x;T) = Kb( l q(xb, x;T) + K( (l i( xb, x; T)

) p [&(i
—i) + ( &)(i—ii](—1)'

=0

(40)

where each n~ (T) is any one of the roots for the equation

Kin~ ) 6 in~'n') , . exp
~

n~(T)
~

exp
~

— T
(
= 0 .('" )& ( I ' ) ( 2mI2

(given by the classical actions).
In the corresponding classical system, the particle has

four classes (j = 1, 2, 3, 4) of classical paths [5] which
start &om x at time t and arrive in xb at time
tb. We classify these classes by considering which walls
(located in x = 0 or in x = L) the particle collides with
on the first and last time:

(1) the first collision with the wall in x = L and the
last collision with the wall in x = 0 or no collisions at
all;

(2) both the first and the last collision with the wall in
x=0 )

(3) the first collision with the wall in x = 0 and the
last collision with the wall in x = L; or

(4) both the first and the last collision with the wall in
X=L.
Furthermore, each class has an infinite number of classi-
cal paths which can be specified by the number of colli-
sions between the particle and the wall in x = 0 (n~+sz)
or by the number of collisions between the particle and
the wall in x = I (n~). For each class, we have, respec-
tively, eq ——0, nz ——0, 1, 2, . . .; e2 ——1, n2 ——0, 1, 2, . . .;
G3 —0, n3 ——1, 2, 3, . . .; c4 ———1, n4 ——1, 2, 3,

The classical actions are given by [5]

(41)

However, for large values of p, there is no similar expan-
sion in a convergent series for Eq. (35) so that it can be
regrouped in terms of Jacobi theta functions.

IV. SEMICLASSICAL PROPAGATORS

In the semiclassical approach, the propagator is given
by the well known Van Vleck formula [6—8]

(42)

with S,i(xb, x;T) being the classical action and p, the
corresponding Morse index.

However, due to the difFerent boundary conditions of
our system, we need to consider a more general approx-
imation to the propagator than Eq. (42). Thus we pro-
pose a modified Van Vleck formula [9—11] S„,. = (y + x + 2niL) (44)

K(xb, x;T) = )1 . 82S(
2vrih ~xb~xa

cl

.7t
x exp —S,i(xb, x;T) —i p—

1 . 02S,.
K(xb, x;T) = ) )27rih . oxb~xu0 0

i
x E& (n& Pp PL, ) exp

~

—S„,
qh

where now we introduce a preexponential factor
F~(n~. , Pp, PL, ). In (43) we have assumed that the gen-
eral boundary conditions at the walls change the usual
amplitudes in the Van Vleck formula but not the phases

In the above equation, x and y represent difFerent
quantities for difFerent classes of paths, i.e. , (1) y
xb) x — xjy (2) y —xb ) x —x~ j (3) y — xb) x —x~ I

and (4) y = —xb, x = —x .
As is well known, each time the particle hits a wall the

contribution of the classical path to the propagator suf-
fers a phase change by m (for the wave function vanishing
in this wall) or no phase change [for (0@/Bx)/@ = 0 in
this wall]. We are therefore led to write the preexponent
factors as
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+~(n~, Po, PI, ) = f~(ng Po PI.)
x exp(i[(n + s' ) pp(Pp) + n pL, (PL,)])

(45)

f~(n~, 0, 0) = f~(n~, oo, oo) = fz(n~, 0, oo) = f~(n~, oo, 0)
=1 (46)

and

with 0 ( yp(Pp), pL, (PL, ) ( 2vr. The most difficult part
of evaluating the semiclassical propagator turns out to
be the determination of f~, pp, and

Considering the special cases

(po(0) = pL, (0) = 0, po(oo) = pr, (oo) = vr,

we have from (43)—(47) (see [5] for derivations)

(47)

K(xb, x;T;0,0) = m (im(zb —x )2l (m(xb —z )L 2mL2l
27rihT E 2hT ) g hT '

7rhT )
(im(xb+ x ) l (m(zb+ x )L 2mL

(48)

for Po ——PI, = 0, and

K(xb, z; T; oo, oo) = m (im(xb za) l (m(zb z )L 2mL2l
hT ' ~hT )

(im(xb+ z~) l (m(zb+ x )L 2mL2l

)
(4S)

for Pp ——oo and PL, = oo. Applying the identity (A4) in the Appendix, the above equations reduce to the exact
propagators (32). For the cases of Pp = 0, PL, = oo (with the plus sign) and Pp

——oo, PL, = 0 (with the minus

sign), we have

K(xb, x;T; +) = . ) (—1)"' exp
I

(xb —x + 2niL)
m . „, (mi

)2~ihT g 2hT

( mi+ ) (—1) ' exp
I h

(xb+z~+2n2L)
i2hT )

( mi+ ) (—1)"'exp
I (

—zb+ z + 2nsL)'
Ii2hT

( mi l+ ) (—1)"' exp
I ( zb —z~+ 2n4I-)'

Iq2hT rn4 ——1

m . „(mi) (—1)"exp I (xb —x + 2nL)
27ri hT q 2hT

( mi) (—1)"exp
I

(xb+x +2nL) (50)

which can be written, in terms of the Jacobi 0 functions, as

K(z, bzT;+) = m (im(xb —z ) l (m(zb —z )L 2mL2l

E

(im(xb+z~)2l (m(xb+x )L 2II2l

Finally, with the help of the identities (A6) and (A7)
in the Appendix, we find &om (51) the exact propagators
(33).

To derive the previous results, identities (A4) and
(A6) are essential since the classical actions (44) are

quadratic in xb + x, whereas these terms appear as
linear arguments of the Jacobi 0 functions in the ex-
act propagators. As far as we know, there are no sim-
ilar identities for expressions of the more general form

g exp[in2u+inip]. Therefore the modified Van
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Vleck formula (43), a sum over classical paths but with
generalized amplitudes, cannot give the exact propaga-
tors (29) and (30). In the particular case of (30), the
terms in xb —x can be obtained &om the classical
paths (we observe that these terms come from the clas-
sical paths where the numbers of the collisions with the
walls at x = 0 and x = L are the same), but the
terms in xb + x cannot be obtained from the other
classical paths. Finally, for the more general cases, i.e.,
propagators related to eigenvalues satisfying Eqs. (6) or
(19), a semiclassical approach is impracticable since we
do not have a "good quantum number" [such as n in
k = nor/L or in k„= (n+ 1/2)m/L] to associate with
the "good classical number" (the number of collisions be-
tween the particle and the walls).

is given by the diH'erential equation

(, c]2 l
i

z + 2 ] G(xb, x; z) = b(xb —x ) .
2m ( Oxb J

(52)

0
G(xb, x; z) = PpG(xb, x; z)

&b=o

and

Moreover, G(xb, x; z) must satisfy the same boundary
conditions imposed on the wave functions; thus we have

V. GREEN'S FUNCTIONS

0
G(xb, x; z) = —PgG(xb, x; z)

&b xb ——L xb ——L
(54)

In this section we only consider the case of decoupled
boundary conditions, i.e., p = 0. The Green's function

I

Considering the ideas in Refs. [4] and [12—14], we pro-
pose the following expression for the Green's function:

m . iz+pp
G(xb, x~; z) = exp[iz ~xb —x~~] + exp[iz(xb + x )]zh2z Zz — 0

1 . iz+Pp
exp[ —izx ] + exp[izx ]Fz iz —

p

iz —ppz exp]izze] + ezp] —zzzz] )iz+ pp
(55)

that satisfies Eq. (52) (here we recall the relation
2(d /dx ) ~x~ = b'(x) [15]). Finally, by choosing

iz(po + pL, ) + (z' —pppL, )F(z) = 1 + . , exp[ —2izL],

1
~b(x) ~*.(x) =

aR

ik —Ppexp(ikx) + exp[ —ikx]ik+ p

ik+ Pox exp( —ikx) + . exp[ikx]
p

(60)

(56) with

Eqs. (53) and (54) are also satisfied.
As is well known, the Green's function has the spectral

representation

~ - ~-(xb)~:(x-)
G(Xb) Xg ) Z) a (57)

The poles are the eigenvalues of the system and the
residues their eigenvectors, which can be obtained by
(Q2/2mk2 —@ )

aR ——i lim I, „, ~
F(z)z-+b (z2 —k2 )

for k a real number, and

1 . ik —pp
pb(x) pb(x) = —exp(ikx) + exp[ —ikx]

aI ik+ Pp

ik —Pox exp(ikx) + . exp[ —ikx]ik+ p

(61)

(62)
h2

&p„(x) p„*(x) = lim (z —k„) G(x, x; z) .
2m z —+A:

(58) with

For our Green's function, the poles are given by the
particular values of z = k such that F(k) = 0, or

(k' —pppr. )tan(kL) = k(po+ pL, ), (59)

in agreement with the quantization condition, Eq. (19).
From Eqs. (55) and (58), we find

. ~ q'k+Pp) ~zz —k2~

for k an imaginary number. With the help of Eq. (59)
we 6nd, after tedious but straightforward manipulations,
that Eqs. (61) and (63) lead to the correct normalization
constants, Eqs. (21) and (22), respectively. Therefore all
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the results in Sec. II for the case of p = 0 are recovered
by the Green's function (55), as they should.

VI. CONCLUDING REMARKS

The most general boundary conditions consistent with
the conservation of probability for the wave functions of a
free particle inside a box lead to a four-parameter family
of self-adjoint extensions of the free Hamiltonian. Here,
we have discussed the quantum mechanics of this system.
First, we investigated the Schrodinger equation, finding
the normalized eigenfunctions and a general transcenden-
tal equation for the eigenvalues [Eq. (6)], which could
be solved explicitly in some special cases. These solu-
tions showed a result already pointed out in the litera-
ture, i.e. , even for repulsive potentials, general boundary
conditions introduce bound states in the system. Sec-
ond, the exact propagators for the special cases men-
tioned above were obtained by using the spectral reso-
lution method. They are written in terms of the Jacobi
theta functions O2, O3, and O4, in contrast with the
exact solution for the usual boundary conditions given in
terms of O3. Also, semiclassical propagators have been
proposed through a modified Van Vleck formula, over
the classical paths but summed with generalized preex-
ponential factors. This formula was capable of giving the
exact results only for a few cases. The main reasons for
this can be understood considering two statements. (a)
In the semiclassical approximation, the correct boundary
conditions for the propagator must be taken into account
by the phases due to the Morse index. However, more
general boundary conditions can become too complicated
to be given only by the phase factors in the Van Vleck
formula. (b) These more general boundary conditions
can bring, in a Feynman integral sense, paths without
classical analogies, but with important contributions for

I

the propagator. Finally, for the case of no current Qow-

ing from one wall to the other, we solved the differential
equation for the Green's function with the appropriate
boundary conditions, finding the correct eigenvalues and
eigenfunctions for the system, as we should.

As a final remark, we would like to make a few com-
ments about the "delicate" problem of the measure in
the path integral context. To obtain the propagator by
using directly the Feynman path integral is very dificult
to accomplish. The problem becomes worse if we im-
pose some constraints on the integrals, for example, the
presence of infinite barriers. These constraints play an
important role in the definition of the correct measure of
the path integral and consequently in the "selection" of
the paths to be summed. For a free particle on the half
line, this was investigated for the usual [16] and more
general [2] boundary conditions. In the very interesting
work of Carreau, Farhi, and Gutmann [I], a functional
integral for the present system was constructed with the
correct measure. Unfortunately, the explicit solution of
this path integral was not carried out. Here, we have
taken a more "pedestrian" approach. We have solved
the Schrodinger equation and then, with these solutions,
we have obtained the exact propagators. However, it is
instructive to discuss our results, in the light of the path
integrals, with the help of the following equivalence:

(i
17[x(t)]exp

(

—S[x(t)]
)(h

—:) Q„*(x,t ) g„(xb, t ), (64)

where 17[x(t)] denotes the measure over the paths x(t)
and S[x(t)] their actions.

Rewriting Eq. (30) as

K(&) (xb& xa) T) K+.(~) (xb1 xa( T) + Kb~&~g(xby xa'I T)(&) . (&) . (&)

1 . iPp (i nor ) ( ih~' 'n
exp

~

xb+ x exp
"~ +iPp q L ) q 2mL' (65)

or

K( ) (xb, x~; T) = K,
( )

(xb) x~; T) + Kb „„~(xb,x~) T)
OG nor

(66)

we see that, in principle, Eqs. (34) and (65) can formally
be written as

and Eqs. (35) and (66) as

K(xb, x;T) = &p[x(t)] e»
I

—S[x(t)1
I

i

r
Ki

17,„[x(t)]exp
(

—S[x(t)]
)

(67)

K(xb, x;T) = 17 [x(t)] exp
(

—S[x(t)]
))

+ &*[*(t)1exp
]

—S[*(t)]
I

qh )
(68)
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In the above equations, the path integral with the mea-
sure 17o[x(t)] gives the propagator for the case of p = 0
and Po ——Pl. ——0, and the path integral with the mea-
sure 17 [x(t)] gives the usual propagator (p = 0 and
wave functions vanishing at the walls). Then we can in-
terpret the second term in the right-hand side of Eqs.
(67) and (68) as being the contribution of the new paths,
"created" by the more general boundary conditions. We
also mention that for the cases (b) and (c) in the bound-
ary conditions (B), the propagators (33) are obtained
from the propagators (32) by the change n -+ n+ —.
Thus, instead of creating new paths for the path inte-
grals, these boundary conditions seem to do some kind
of rescaling in the measures 17 [x(t)] and 17o[x(t)].
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APPENDIX A

In this Appendix we list some of the properties of the
Jacobi 0 functions that we have used to evaluate our main
results. Good sources of definitions and properties of the
Jacobi O functions can be found in Refs. [17,18].

The Jacobi 0 functions are defined as

exp[i(nn w + 2nz)], (A2)

O4(z 7 ) = ) (—1) exp[i(7m w + 2nz)] (A3)

The following relations are essential for our purpose:

1
Os(u, r) = (—iw) 2 exp (A4)

and

03 z+ T = exp —i +z 02 z, 7 . A5

1
Oz(z, 'r) = (—ir) 2 exp

(A6)

Finally, the following simple relations are also useful:

Os(-z, r) = Os(z, 7.),

If in (A4) we consider u = z + vrw/2, we find &om (A5)

exp (i[z.(n + z ) r + (2n + 1)z] ) 04 z+ —,7. = Og z, 7.

(A1) Os(z+ vr, ~) = Os(z, r) . (A7)

[1] M. Carreau, E. Farhi, and S. Gutmann, Phys. Rev. D
42, 1194 (1990).

[2] T.E. Clark, R. Menikoff, and D.H. Sharp, Phys. Rev. D
22, 3012 (1980).

[3] C. Pisani and B.H.J. McKellar, Phys. Rev. A 44, 1061
(1991).

[4 M.G.E. da Luz and B.K. Cheng (unpublished).
[5] M.G.E. da Luz and B.K. Cheng, J. Phys. A 25, L1043

(1992).
[6] J.H. Van Vleck, Proc. Natl. Acad. Sci. U.S.A. 14, 178

(1928).
[7] C.D. Morette, Phys. Rev. Sl, 848 (1951).
[8] M.C. Gutzwiller, J. Math. Phys. 10, 1004 (1969).
[9] B.K. Cheng, in Path Integrals from meV to Mev, edited

by V. Sa-Yakanit et al. (World Scientific, Singapore,

1989).
[10] B.K. Cheng, J. Phys. A 23, 5807 (1990).
[11] B.K. Cheng and M.G.E. da Luz, J. Phys. A 25, 2033

(1992).
[12] C. Grosche, J. Phys. A 23, 5205 (1990).
[13] C. Grosche, Phys. Rev. Lett. 71, 1 (1993).
[14] C. Grosche (unpublished).
[15] S.M. Blinder, Phys. Rev. A 37, 973 (1988).
[16] R.D. Nevels, Z. Wu, and C. Huang, Phys. Rev. A 48,

3445 (1993).
[17] I.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Se-

ries and Products (Academic Press, New York, 1980).
[18] Handbook of Mathematical Functions, edited by M.

Abramowitz and I.A. Stegun (Dover, New York, 1972).


