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Analysis of the Klein-Gordon Coulomb problem in the Feshbach-Villars representation
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We consider the problem of a massive charged scalar particle bound in a given external Coulomb field
of charge Z with varying strength parameter a=Za' (a'=137 ') in the Feshbach-Villars (FV) represen-
tation. It is shown how the expansion in a of the momentum space integral equations can be handled to
reproduce the exactly known spectrum up to some given order in a. In particular, it is shown in detail
how the O(a ) contributions to the ground-state energy that arise in the truncated FV equations from
the kinetic and potential energies are canceled by virtual pair contributions. The findings are of
relevance to quasipotential approaches to the relativistic few-body problem.

PACS number(s): 03.65.Pm

I. INTRODUCTION

In this paper we consider the seemingly trivial problem
of a massive spin-0 particle bound by an external
Coulomb field. The problem has an exact solution that is
presented in many textbooks. We are, however, interest-
ed in analyzing the problem using an alternative forrnula-
tion of the Klein-Gordon equation, namely the
Feshbach-Villars (FV) representation [1].

The motivation for this obviously more complicated
undertaking of solving a pair of integral equations in
momentum space is twofold.

(i) The FV formulation admits an interpretation of the
two wave functions that appear as the particle- and an-
tiparticle states in the free-field limit. Thus, one can in-
terpret the appearing contributions and isolate virtual
pair effects. It has been shown formally in the Dirac-
Coulomb problem both at the level of quantum mechan-
ics and field theory that, as a result of covariance (Z
graphs in time-ordered perturbation theory), the Dirac
equation contains the e6'ects of virtual electron-positron
pairs [2]. These pairs are related to the exchange of
Coulomb photons. Virtual pairs associated with vacuum
polarization are not considered here, as we do not include
the exchange of transverse photons. In this contribution
we demonstrate explicitly how the pair contribution is re-
quired to remove, in the energy, a dependence on an
uneven order in the coupling constant a=Zan', where
u'= 137 ' is the fine-structure constant and A is the nu-
clear charge. An O(a ) contribution is apparently
present in the FV equations, both due to the kinetic-
energy operator E =c+p +m c and the potential ker-
nel.

(ii) Relativistic few-body problems are treated com-
monly by quasipotential approaches that use the kinetic-
energy operator E in momentum space, e.g. , Refs.
[3—11]. The strange result, that this operator gives an
odd-order O(a ) contribution in the positronium spec-
trum, has been known for some time [11],but a proper
analysis has not been performed. It was conjectured in
the Dirac-Coulomb case that this contribution would be
canceled by virtual pair effects [11]. A proper way of re-
moving the unwanted O(a ) contribution in a quasipo-
tential approach, therefore, is of interest.

We chose the sin-0 particle problem for a start, as the
FV representation is established in this case and a quasi-
potential approach is known to have a common lowest-
order O(a ) accurate limit [4]. The method can, howev-
er, also be used for the fermionic case [3].

II. THEORY

Our aim in this contribution is to elucidate the origin
of all the corrections of order a as well as some higher
ones to the total energy and work out a method for their
evaluation. As a model system we consider a massive
scalar particle in the external Coulomb field described by
the Klein-Gordon equation. The momentum-space
particle-antiparticle representation of the Klein-Gordon
equation [1] resembles the main features of the relativistic
equations derived in various approaches [3,11], being at
the same time relatively simple and exactly solvable.

In the Feshbach-Villars representation [2], the Klein-
Gordon equation for the s-wave state of a particle in the
static Za'/r field—reads (A'=c =m = 1)
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Here E is the total energy of the particle,
a =Za' =Z /137 is the coupling constant, and
co =+I+p . The functions u (p) and v (p) represent
amplitudes for the particles and antiparticles in the field-
free limit, respectively. The energy E, known from the
exact solution of the Klein-Gordon equation in the coor-
dinate representation, is given by
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To obtain the first-order correction in perturbation
theory, we make use of the approximations
u (p ) = u ' '(p /a ) and

I.et us introduce the scaled variable x=p/a. The
Schrodinger equation for the nonrelativistic Coulomb
particle

This yields
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follows from (1), when the limit a~O is taken for fixed
x =p/a:
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Equation (3) has the ground-state solution
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The term of order a is given correctly by Eq. (13). The
next-order correction, a, is found in all three terms,
E1 E1, and E",". Yet, these a corrections fail to repro-
duce the exact result (2), as their sum does not vanish:

Combining Eq. (la) and Eq. (3) for x =p/a we write
out the exact expression for the correction to the energy
as

a2/2+Ek +Euu +Euv (7)

where we have isolated a "kinetic-energy" contribution
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order that u ' '(p/a) be normalized as
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The reason for this discrepancy is that the a correc-

tions presented in Eqs. (13) and (14) are incomplete. One
can show that the second-order (and possibly higher-
order) perturbation theory corrections to the quantities
E 1 and E ",

" include additional terms of order a, which
come from the region of finite p. However, the corre-
sponding corrections to E1' are of a higher order.

Thus, the nonrelativistic Coulomb wave function ap-
pears not to be a suitable zero-order approximation to the
exact solution u (p) for calculating the corrections (8) and
(9). We show that it is possible to remove a number of
terms of o (a ) by redefining the zeroth-order wave func-
tion in the region of finite p. For this purpose, we may ig-
nore the coupling between u (p) and v (p), as the sole con-
tribution of order a from v (p) is given by the first-order
correction in Eq. (15).

Let us introduce the function

and a contribution that depends on the v amplitude as
well,

uo(p)=u' ' —go(p), (16)

E""=X 'f d'pu-"' ~
1 a

p +q Q)p COq
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Here N stands for the overlap integral

(co +1)
fop = (17)

with go(0) = 1. We demand that the function uo(p)
should satisfy Eq. (1a) with v(p)=0 for a~O. In con-
trast to the limiting case of Eq. (4), the variable p is now
held fixed. This gives
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With the function u(p) replaced by uo(p), Eqs. (8) and
(9) yield

and
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Furthermore, we write
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The expression 2z, +z2= —', that appears in Eq. (21) can
be calculated in closed form.

In order to derive the higher corrections to the energy
E, we have to obtain the correction to the wave function
uo(p):

dp 4 1

(+co~+ I) +co (co +1) cop

A replacement of u' '(p/a) by uo(p) in Eq. (12) has no
effect on the leading term in v (p), as well as on the term
of order a in the energy EI' of Eq. (15). Collecting now
the a terms from Eqs. (18), (19), and (20), we obtain the
correct result:

u, (p) = u ' '(p /a)g, (p) . (27)

The function g, (p), as obtained from solving Eq. (23) with
the inhomogeneous term from Eq. (26) for a ~0, reads

~co +1
8

(28)

The resulting expansion of the solution u (p) takes the
form
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We are now ready to determine the corresponding
corrections to the energy E. We find that

(26)

Let us represent the function u, (p) for a~O at a fixed

p as

u, (p)=u(p) —uo(p) .

The function u, (p) obeys the equation
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As a~O, the inhomogeneous terms U, (p) and V, (p) can
be written, after some manipulations, as

Inspection of the corrections shows that the a lna terms
given by Eqs. (19) and (30) cancel each other, quite in ac-
cord with the absence of such a term in the expansion (2).
The term —a lna in Eq. (19) is apparently independent
of the coupling between the functions u (p) and u (p). Its
counterpart from Eq. (30) seems, at first sight, to be
dependent on this coupling, since the correction u I (p) de-
pends on the inhomogeneous term V, (p) determined by
v (p). However, a closer inspection shows that this is not
the case. Equation (30) reveals that the term a lna is
governed by the behavior of the function ul(p) at small
momenta. This, in turn, is determined by the 1/p depen-
dence in the inhomogeneous term (26). It is readily seen
from Eqs. (24) and (25) that this growth comes from the



51 ANALYSIS OF THE KLEIN-GORDON COULOMB PROBLEM IN. . . 1807

(33)

This correction generates the following contribution E"
to the energy correction E2.
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Therefore we conclude that in order to obtain the spec-
trum correctly including the o. part it is not sufhcient to
treat Eq. (lb) in the lowest order in a.

first term only, u i (p) =p ' as p ~0, V, (0)=const & ao,
and is U independent. Correspondingly, the term o. 1no. in
Eq. (30) is independent of the particle-antiparticle in-
teraction.

The higher corrections, of order a, are present in all
three terms, E2, Ez", and E2'. Note that E2 includes a
special term of order n coming from the expansion of
the overlap integral (11). Estimates of the behavior of the
correction to u ( '(x) at large x show that X= I+O(a )

for cz —+0. We do not present the calculation of the com-
plete a correction to the energy E in the FV representa-
tion, but show that it depends on the U-U interaction.
Indeed, the correction b, u(Ji) associated with the u-u in-
teraction to the leading term in the function u(p) given
by Eq. (12) reads

1 a q @+1 ~p+~&
4u (iu) = — — dq —ln u(q) .co+Err o p p —

q
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with
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E"'=du +en + . . (37)

Here we imply that the energy EQQ depends only on the
particle-particle interaction and that the other part, E"",
represents the connection to the antiparticle sector. Solv-
ing the equation for the particles only [u(p) =0] gives the
correct energy E up to order a inclusively. For the ener-
gy to be calculated correctly at order n, one has to take
into account the particle-antiparticle interaction in the
first order of perturbation theory to determine d. To
reproduce the energy up to a, the erst-order account of
the interaction between antiparticles is necessary as it
enters in the coeKcient e. For Eqs. (1) the following rela-
tions are valid: a+d =0 and b =0. This result cannot be
obtained easily from the zeroth-order nonrelativistic
Coulomb wave function. Instead one has to make use of
an appropriate zeroth-order solution to the integral equa-
tion for u (p) given by uo(p) from Eq. (16). Furthermore
we note that the second term in the square brackets in
(29) is required to obtain a perfect cancellation between
the a lna contributions arising in Eqs. (19) and (30) re-
sulting in b =0 in (36).

Since the Klein-Gordon equation in the Feshbach-
Villars representation is a typical example of few-particle
relativistic equations, we believe that the results obtained
here can be generalized to other systems, such as the
Dirac-Coulomb problem and few-body relativistic quasi-
potential equations [3—11]. We remark that, in the posi-
tronium problem, quasipotential approaches that ignore
the virtual pair contribution also fail to obtain the correct
O(a ) dependence of the ground-state energy [11]. It is
possible to correct this discrepancy with a wave-function
expansion such as Eq. (29) presented in this paper

III. CONCLUSION

We have demonstrated in the FV representation of the
Klein-Gordon-Coulomb problem that the expansion of
the particle energy for small a can be represented as
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