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Aharonov-Casher phase in an atomic system

Karin Sangster and E. A. Hinds
Physics Department, Yale University, Xeu Haven, Connecticut 06520

Stephen M. Barnett, Erling Riis, and A. G. Sinclair
Department ofPhysics and Applied Physics, Uni Uersity of Strathclyde, Glasgow G4 ONG, Scotland

(Received 22 September 1994)

We describe an experimental configuration suitable for observing the geometric phase of Aharonov
and Casher in atomic systems. Using this we have been able to show experimentally that the Aharonov-
Casher phase is both independent of velocity and proportional to an electric field and we have verified
the predicted size of the effect with an accuracy of 2%.

PACS number(s): 03.65.8z

I. INTRODUCTION

In 1984, Aharonov and Casher [1] considered a parti-
cle with magnetic dipole moment p being taken on a
closed path around a charged wire. They predicted that
the wave function of the particle should acquire a phase
shift

b,@~c= /AXE dr,1

Ac

where E is the electric field at the site of the dipole due to
the wire. When the wire carries a constant charge per
unit length A and when the component p~ of p along
EXdr is constant around the loop, the accumulated
phase b,@Ac is equal to p Ai/ Eho'c independent of the
path. This result is independent of the (constant) cross
section of the wire, the path which encloses it, and the ve-
locity of the particle. In this restricted sense, the
Aharonov-Casher (AC) phase is a geometric one, analo-
gous to the Aharonov-Bohm effect [2] in which a charged
particle acquires a path-independent phase when taken
around a tube of magnetic Aux. In the Aharonov-Bohm
case, there are no such restrictions because the Aux en-
closed by the path is uniquely defined and the charge has
no additional degrees of freedom analogous to the orien-
tation of the magnetic moment. It is a characteristic
feature of both these effects that the phase shift is in-
dependent of the velocity of the particle [3] and that
there is no force on the particle [4].

The AC effect was first tested in a neutron interferome-
ter [5], where a beam of neutrons was coherently split, as
illustrated in Fig. 1(a), allowed to encircle a line charge,
and then recombined to give an interference pattern. The
measured phase shift was 2.11+0.34 mrad, compared
with the predicted value of 1.52 mrad. Although the ob-
served phase was nearly two standard deviations above
the theoretical value, the experiment did seem to confirm
the existence of the effect. However, there was no experi-
mental verification of the two most notable features: ve-
locity independence and proportionality to an electric
field. Subsequently, there were suggestions for observing
the AC effect in similar interferometers using atoms in-
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FIG. 1. Experimental configurations for observing the
Aharonov-Casher effect. (a) Geometry of the original measure-
ment using a neutron interferometer, in which the two interfer-
ing states encircle a charge and have the same magnetic mo-
ments. (b) Geometry described here. Particles travel in a uni-
form electric field in a coherent superposition of states a and b
with different magnetic moments p, and pb. The two states are
oppositely shifted by the Aharonov-Casher phase as they travel
through the field.

stead of neutrons [6], but the first results using atoms and
the first tests of the velocity and field dependence were
obtained by a different technique and were recently de-
scribed in a preliminary publication from our laboratory
[7]. This paper gives a fuller account of that work to-
gether with substantial additional results which lead to a
more stringent test of the theory.

The scheme shown in Fig. 1(a) involves two coherent
beams with the same magnetic moment traveling on
diferent paths around a charged wire. The beam on path
a acquires an AC phase shift

fAXE(r, ) dr, .1

Ac

A similar expression applies to path b and the net accu-
mulated phase differenc AN=4, —4& is given by Eq.
(1). It is not necessary for the paths to enclose a line of
charge in order to observe the AC effect; indeed, Casella
has noted [8] that @, and @b can be made different by a
simple arrangement of capacitor plates, which ensures
that the electric fields have opposite polarity on the two
paths. In Ref. [7] we pointed out a third possible
configuration, shown in Fig. 1(b), where the two coherent
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beams have diferent magnetic moments (p, and pb ) and
are not spatially separated; they pass through the same
electric field. In this arrangement the AC phase shift be-
tween the two arms of the interferometer is given by

(3)

For simplicity we assume, as shown in Fig. 1(c), that the
beam travels a distance I. along the y axis and that E lies
in the z direction; then the x component of the magnetic
moment is the only relevant one and

1~@Ac= ([P ],—[P„]b)EL .
Ac

(4)

1 1—f (p Bdt)„=
& f (p XE dr)i, b=&b&c,

Ac

The loop corresponding to the two paths in the inter-
ferometer does not now enclose any line charge and
therefore appears different from the situation considered
by Aharonov and Casher. We have taken advantage of
the fact that p in Eq. (1) need not be fixed with respect to
EXdr in order to obtain a nonvanishing path integral. It
is worthwhile to note, however, that path a of Fig. 1(b)
can be continuously deformed at constant A4~c to re-
cover the geometry of Fig. 1(a) by passing over the end of
the line charge or, if it is infinitely long, through an
infinitesimal cut in the line. This is possible because the
AC phase is not geometric, except when the direction of
p is constrained, as discussed in the opening paragraph.

It is by no means necessary to use neutrons; any neu-
tral particle with a magnetic moment should exhibit the
AC effect; all that is required is a convenient way of pre-
paring the magnetic moment in a coherent superposition
of two states with different values of p and detecting the
accumulated AC phase difference. We have chosen to
use Ramsey's method of separated oscillatory fields [9], in
which the first field prepares a coherent superposition of
two spin states ( [p ], and [p ]b ) and the second probes
the phase that has evolved between them. Thus the ex-
periment involves magnetic resonance in the presence of
an electric field. When the electric field polarity is re-
versed, the sign of the AC phase changes and this appears
as a phase shift of the Ramsey resonance line.

The AC phase shift has an interesting interpretation
when viewed from the rest frame of the atom. Here there
is no displacement (dr=0), but there is a motional mag-
netic field arising from the laboratory frame electric field.
From this point of view then, the AC phase shift is the
integral over time of the motional Zeeman energy:

although some early data ascribed to the motional Zee-
man e8'ect do suggest linearity in the electric field [10].
In EDM beam experiments, the effect is usually
suppressed as much as possible with the help of a mag-
netic bias field parallel to the strong applied electric field.
This forces the magnetic moment to be quantized parallel
to the electric field, ensuring that AXE=0. The bias
field can either be a carefully aligned external field [12]
or, in the case of a polar diatomic molecule [11],it can be
the internal magnetic field of the molecule.

We observe the AC phase using the Auorine nuclei in a
thallium fiuoride (TlF) molecular beam in a strong
(10—30 kV/cm) external electric field E. The molecules
are in the electronic and vibrational ground states 'X+,
v=O, and in the first excited rotational state J=1. The
rotational states are strongly mixed by the applied elec-
tric field, so J is not a good quantum number, but it
serves adequately to identify which rotational state we
use. Within the J=1 manifold there are 12 hyperfine
sublevels corresponding to the magnetic quantum num-
bers of the rotation (m&=0, +1), Tl nuclear spin
(mri =+—,

' ), and F nuclear spin (mF =+—,
' ). In a strong

electric field, these separate into four mJ=O and eight
mJ =+1 states, the latter being the relevant ones for our
experiment. Figure 2 shows the energies of the eight
states and labels them 1 through 8. We also show the
transitions 2-3 and 6-7 that were studied in this experi-
ment, which correspond closely to simple Aips of the
Auorine nuclear spin.

Using techniques that are described more fully below
and elsewhere [11],we first prepare the molecules in the
initial state a (a =2 or 6). The beam then passes through
the first of two Ramsey loops [9] in which an rf magnetic
field near-resonantly excites a coherent superposition of
the states a and b (b =3 or 7) with roughly equal ampli-
tudes. This loop is effectively the beam splitter of our in-
terferometer, providing the required coherent superposi-
tion of magnetic moments p, and pb. The molecules
travel in this state for a distance I. before reaching the
second rf loop which plays the role of the recombining
beam splitter. The rest of the apparatus then determines
what fraction P of the molecules made the transition
from a to b. Close to resonance, the Ramsey fringe pat-

69. 0.

57. 5

where the subscripts atom and lab refer to the atom and
1aboratory frames of reference, respectively. The magni-
tude of the shift is, of course, the same in any frame of
reference. The motional Zeeman effect has been recog-
nized as a source of systematic error [10] in atomic beam
experiments [11,12], which test time-reversal symmetry
by looking for a permanent atomic electric-dipole mo-
ment (EDM). However, this connection with the AC
phase has been overlooked until now and the effect has
therefore escaped thorough experimental investigation,

FIG. 2. Energy levels for the eight I J= 1, I mz I

= 1 ) states of
thallium fluoride in an electric field of 20.0 kV/cm. The two
transitions marked (2-3 and 6-7) correspond closely to fluorine
spin flips and were used for the experiments described here.
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tern has the usual form [9]

P =
—,
' 1+cos (co —coo)—+5+6,4'I

(6)

where co is the rf frequency, coo is the resonance frequen-
cy, v is the beam velocity, 5 is the phase difference be-
tween the two rf fields, and AN is any additional phase
shift between the two states a and b in the interferometer,
such as the AC phase.

Since the molecule in external electric field is cylindri-
cally symmetric around the field direction z, the expecta-
tion value of the transverse magnetic moment p„ is zero
in any of these states. It follows from Eq. (4) that the AC
effect is completely suppressed. While this is a great ad-
vantage in the search for an EDM, where the AC effect is
a potential source of systematic error, it is obviously an
obstacle to be overcome in the present context. In order
to study the AC phase, we must rotate the magnetic sym-
metry axis so that the magnetic moment of the molecule
can have a nonzero projection p . This is done by apply-
ing a uniform magnetic field B along the x axis, as shown
in Fig. 3.

To summarize, the experiment involves a radio-
frequency transition between two hyperfine sublevels a
and b of the T1F molecule, which are separated in energy
by %coo. A magnetic field B induces transverse magnetic
moments [p„], and [p„]b and a strong electric field E,
induces an AC phase shift between the two levels (in ad-
dition to the usual coot due to the energy difference be-
tween the levels). When either applied field is reversed,
the AC phase changes sign, allowing us, with the help of
Eq. (6), to deduce h4 from the measured changes in the
transition probability P. This experimental phase shift is
compared with a theoretical prediction (based on Eq. (4)
together with the calculated value of [p„],—[p, ]b ) in
order to test the validity of the theory.

II. RELATIVISTIC ANALYSIS
OF THE AC EFFECT

We have noted that the AC phase shift has an appeal-
ing interpretation, when viewed in the atomic frame, as a
Zeeman shift induced by the motional magnetic field.
This appeal to relativity is interesting as the molecule has
a velocity very much less than the speed of light and the
AC phase shift is predicted to be a velocity-independent
effect. Furthermore, the original derivation of the AC
phase was based on the nonrelativistic Schrodinger equa-
tion. It is worthwhile to see how the AC shift arises
within a relativistic analysis and to ask whether its pre-
dicted velocity independence still holds at velocities
within the relativistic regime. Relativistic analyses based
on the Dirac equation for a magnetic dipole have been
given by others (including Aharonov and Casher them-
selves [1] and Hagen [2]); however, the geometry of our
experiment, with constant electric and magnetic field,
permits a particularly simple treatment.

Our starting point is the Dirac Hamiltonian for a free,
spin- —, particle with rest mass m, which can be written as
a 4X4 matrix composed of a 2X2 blocks

i o"E/c
o'B

—e B
V=u

i rJ.E/c—
The quantities pB and pE/c are exceedingly small in
comparison with mc, even if m is as light as the electron
mass and p is as large as the Bohr magneton. This allows
us to treat V as a small perturbation to Ho in any realistic
situation and in particular in our experiment where the
mass and magnetic dipole moment are those of the
fluorine nucleus.

Ho has two eigenvalues +ho, given by

A' =+c+m c +p

1mc o. .pc
o'pc —1mc

where 1 is the unit matrix, the components of u are the
Pauli matrices, p is the linear momentum, and c is the
speed of light. If the particle is uncharged, but has mag-
netic dipole moment p, then the interaction with external
(laboratory frame) electric and magnetic fields E and B
can be expressed by the addition to Ho of the interaction
term [13]

and for each eigenvalue there are two degenerate eigen-
states corresponding to spin up and spin down. The two
positive-energy eigenfunctions can be written as a 4X2
matrix in the form

M= 1

+2@o(6'0+me )

1(6'0+me )

o 'pc (10)

FIG. 3. Field configuration for this experiment. Thallium
Auoride molecules prepared in a coherent superposition of op-
posite spin states travel through an electric field. The natural
alignment of the spins is along the electric field (z axis), so a
magnetic field B is used to give them a perpendicular com-
ponent.

In the nonrelativistic regime, with mc »pc, these
reduce to two-component eigenstates of the Pauli opera-
tor o., ; however, we will work with the fully relativistic
free-particle eigenstates of Eq. (10) as we wish to examine
the relativistic properties of the AC phase shift. We will
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use degenerate perturbation theory to calculate the
energy-level splitting of these two states which results
from the applied fields. In our experiment, the fields are
uniform, so the matrix elements of the perturbation V are
diagonal in p. This means that the new states are also
eigenstates of momentum. Hence the shifts of the
positive-energy states with momentum p are given by the
eigenvalues of the 2 X 2 matrix

A=M VM .

After some algebra, and after using the identity

a.nb cr =a-b+ia Xb cr,

one finds that 4 can be written as

(12)

pXE.o. c B.po"p
@p 6p(bp+mc )

(13)

Diagonalizing this 2X2 matrix leads to the eigenvalues
+56, where

r

(5g)2 2 B p XE c (Bp)
@2

The easiest way to see this is to notice that 6 is diagonal,
with eigenvalues given by (56 ) above.

Our molecular beam is not, of course, in a pure state of
momentum p since thermal equilibrium in the oven pro-
duces a broad statistical mixture of momenta satisfying
the Maxwell-Boltzman distribution. More precisely, we
have a mixture of states, each with a narrow coherent
momentum spread hp, comparable with A/bx, where Ax
is a characteristic dimension of the source. Hence the
quantity p/bp in Eq. (14) should be replaced by the ap-
propriate expectation value for a wave packet of width
Ap formed by superposing positive-energy eigenfunctions
of Hp+ V. These in turn can be expressed in terms of the
positive-energy eigenfunctions of Hp, the free-space
Hamiltonian, because within our degenerate perturbation
theory, V does not couple the positive- and negative- en-

ergy eigenstates of Hp. For any such positive-energy
wave packet, the expectation value of p/8p is related [14]
to the group velocity v:

b4=25ht/R= y Bj-2p
'2 1/2

+(B )

(17)

where we have chosen to break up B into components
parallel (B~~) and perpendicular (Bj ) to v. The full
phase-shift relevant in our experiment is obtained by
averaging Eq. (17) over the thermal velocity distribution.
The part of this phase shift associated with the electric
field is the Aharonov-Casher phase. This is clearly in-
dependent of the velocity of the molecules because the
distance traveled (in the laboratory frame) L =ut is the
same for all the molecules. As we have carried out a fully
relativistic analysis, without restricting the velocity, we
conclude that the Aharonov-Casher phase shift is fully
independent of velocity.

A particular simple interpretation appears if we notice
that the two terms in parentheses are the perpendicular
and parallel components of the magnetic field B' viewed
from the rest frame of the molecule. Similarly, the
elapsed time in that frame of reference is t'=t/y, while
the phase shift remains invariant; 6@' is the same as AN.
With these substitutions, Eq. (17) becomes

ae = "Bt2
(18)

and we see that in the rest frame of the particle, the full
interaction (to all orders in u/c) gives rise to nothing
more than the Zeeman shift. The expression for 6@ in
terms of the laboratory fields is simply that required by
special relativity.

One of the remarkable features of the Aharonov-
Casher phase shift is that it arises even though there is no
force acting on the particle to accelerate or decelerate it
[4]. It shares this features with the more familiar
Aharonov-Bohm effect [2]. There has been some contro-
versy on this point [15], so it is worthwhile showing that
the molecules in our experiment do not experience any
force. Equation (15) shows that the group velocity is pro-
portional to the average, over a positive-energy wave
packet, of the momentum divided by the energy. Hence
the acceleration is

(56') = B—
2

'2
(B v)

2
(16)

The spread Ap of the wave packet is sufficiently small
that (p/6p) =((p/6p) ) to an excellent approxima-
tion. Hence Eq. (14) can be rewritten as

which is clearly zero as the Hamiltonian H Hp+ V
commutes with the momentum. This result seems quite
natural since our fields do not vary in space (or time) and
we would not expect a dipole to be accelerated by a uni-
form field.

III. THEORY OF THE AC EFFECT IN TlF

The change in the positive-energy eigenvalues +56', given
by this equation, is correct to alI orders in u/c. Correc-
tions to 58 of higher order in p are smaller than this by
factors pB /4p or pE /@pc and are therefore negligible.

The phase shift 6@ accumulated between the states
after a time t is

Equation (4) shows that in order to calculate the ex-
pected AC phase shift of a transition between levels a and
b in T1F, we need to know the difference [p ],—[p„]b
between the magnetic moments induced in the states a
and b by the transverse magnetic field B ( —1 G). Before
proceeding to a detailed numerical computation of this,
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we will develop the following simple analytical model
which gives some useful physical insight into the prob-
lem.

We are interested in the case when the external electric
field produces very strong mixing of the rotational levels,
which means that the rotational angular momentum is
coupled much more strongly to the electric field axis z
than to any of the other angular momenta. In this high-
field regime, the two transitions we have studied (a-
h =2-3 or 6-7) are quite well described as fluorine nuclear
spin flips and the a-b transition frequency, which we call
cup, indicates that there is a magnetic field Bp of strength
iilco/2pF at the site of the fluorine nucleus due to the vari-
ous hyperfine i.nteractions, as shown schematically in Fig.
4. This field is directed on average along the symmetry
axis z, defined by the strong external electric field. When
the transverse field B is applied, the magnitude of the
net magnetic field increases to QB

&&
+B and the

fluorine nuclear spin flip frequency is given by

co =co +o(2p„B„/A') (20)

2p„/h =4.00726(8) kHz/G . (21)

The difference between the induced transverse magnetic
moments of the spin-up and spin-down states is given by
the derivative of the energy difference, iris')co/t)B„:

where p„ is the nuclear magnetic moment of fluorine and
[9]

FIG. 4. Simple model of the transverse magnetization in-
duced by B,. When a transverse magnetic field B is added to
the internal field Bp due to hyperfine interactions, the net field is
rotated by an angle O. Hence the fluorine nuclear spin acquires
a component p sinO along the x direction.

well as the fluorine) to be polarized by B„,thereby caus-
ing Bp to change with B . Also, to the extent that the in-
duced thallium polarization is different for levels a and b,
it contributes directly to the differential transverse mag-
netic moment. Nevertheless, we find that this model pro-
vides an excellent approximation and that these omis-
sions can be corrected with high accuracy if we simply
replace the bare fluorine moment p„ in Eqs. (11) and (13)
by a suitably "shielded'* moment p'.

For our detailed theoretical prediction of the AC effect
in T1F, we treated the molecule as a rigid rotor with the
effective Hamiltonian [16]

[p„],—[p„]b=2pF"t/ 1 —(aio/co) (22) H =hBp J —p,&.E+Hz+Hsz +Hss (23)

which is nothing more than 2pFsin0 (see Fig. 4).
This simple model is essentially a two-level picture. In

fact, the presence of other levels allows the Tl nucleus (as
I

in which the first two terms are the rotational energy and
the Stark interaction, respectively. The last three are the
Zeeman, spin-rotation, and spin-spin interactions

T1 F

Hsit =c,(IT] J)+c2(I„J

(24)

(25)

Hss —5c3
3(IT) J)(I„J)+3(IFJ)(ITi J)—2(ITi I„)J

+c4 ITi I„(2J +3)(2J —1)
(26)

co =coo+(2p'B /A) (27)

with p' being constant to better than 0.2%%uo when the
fields B and E, are varied anywhere in the ranges
0.3—2.0 6 and 10-30 kV/cm, respectively. The shielded

The values of the constants [9,16,17] are given in Table I.
The frequencies of the a-b transitions in external fields E,
and B„were computed by diagonalizing this Hamiltonian
using a basis set that included rotational states up to
J =7 (higher rotational states did not change the result).
This detailed calculation of the eigenvalues showed that
the frequencies of transitions 2-3 and 6-7 are indeed well
described by an equation having the form of Eq. (20), but
with a shielded moment p' replacing p„. Specifically we
found that

TABLE I. The relevant interaction constants for 'TlF in
the electronic and vibrational ground state.

Bp =6 667 355.0(3) kHz

p,)/h =2128.5(4) kHz/(V/cm)
pJ /h =+0.038( 15 ) kHz/G
p2p5 /h = 1.2403( 3 ) kHz/G'

T1

pF/h =2.003 41(15) kHz/G'
ci /h =126.03(12) kHz
C2/h =17.89(15) kHz
c3 /h =0.70(3) kHz
c4/h = —13.30(72) kHz

'From the Dunham constants given in Table 2 of Ref. [16].
"Reference [17].
'Reference [9].
Reference [16].
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moments calculated in this way are given by

2pz 3/h =3.95(2) kHz/G,

2@67/h =3.86(2) kHz/G . (29)

IV. APPARATUS

A. Overview of experiment

A schematic of our T1F molecular-beam machine is
shown in Fig. 5. The beam is produced by a supersonic
jet source of TlF which increases our signal-to-noise ratio
compared with an e6'usive beam by increasing the frac-
tion of molecules in the lower rotational and vibrational
states. After emerging from the source, molecules in the

The intervals predicted by the Hamiltonian in Eq. (23)
agree well with the hyperfine transition frequencies we
observe in our own apparatus in a low field. However, in
a strong external electric field, we find that the transition
frequencies do not coincide exactly with the theoretical
predictions. For example, in a field of 20 kV/cm and
zero magnetic field, the calculated positions of the 6-7
and 2-3 transitions are 11.45 and 21.35 kHz, respectively,
whereas the measured frequencies are 11.03 and 22.17
kHz. We believe that this is due to a modification of the
hyperfine constants resulting from admixed excited elec-
tronic states, that is, the hyperfine constants change when
the molecule is stretched by the electric field. The uncer-
tainties given in Eqs. (28) and (29) are due to our corre-
sponding uncertainty about the correct values of the
hyperfine constants in a strong electric field. Fortunately,
however, this Stark shift of the hyperfine constants leads
to uncertainties in pz 3 and p6 7 that are less than 1%.

From the derivative of Eq. (27), we conclude that

([p )3
—[p ]2)/h =3.95(2)+I—(neo/co) kHz/G (30)

and

([p„]7—[p„]6)/h =3.86(2)+1—(coo/co) kHz/G . (31)

A comparison of these results with Eqs. (21) and (22)
shows that the net e6'ect of the other levels in the mole-
cule is to reduce the pF of the two-level approximation by
a few percent. Our predictions for the Aharonov-Casher
phase shift are obtained by substitution of Eqs. (30) and
(31) into Eq. (4).

~
J= 1, mz =0) rotational state are focused by an electro-

static quadrupole lens. These molecules are in four rnag-
netic substates according to the orientation of the two
spin- —,

' nuclei. They subsequently enter a region of con-
stant, parallel magnetic and electric fields, labeled as the
polarizer in Fig. 5, where an rf transition is driven from
one of the four focused substates to one of the eight mag-
netic substates of the

~
J= 1, m+ =+1) manifold (see Fig.

2). Since the molecules are prepared in a single magnetic
sublevel, the fluorine nucleus is now polarized.

The molecules continue on to the main interferometer
region, where we apply a large electric field (E,=5—30
kV/cm) in the z direction and a magnetic field (8, —1 G)
in the x direction. Both fields are transverse to the
molecular beam as shown in Fig. 3. As we remark in the
Introduction, Ramsey's method of separated oscillating
fields [9] provides the interferometer for our experiment.
The first NMR loop generates an rf magnetic field in the
y direction, which coherently splits the beam between
two states of opposite fluorine nuclear polarization.
These are allowed to evolve in the electric and magnetic
fields for a distance L (-2 m), before being recombined
by the second loop.

Finally, the molecules are analyzed by a second
polarizer —quadrupole-lens combination (Fig. 5). Those
in which the fluorine nuclear spin has not flipped are re-
turned by the analyzer to their original state in the

~
J= 1,

m&=0) manifold and are then focused by the quadru-
poles onto a hot wire detector (oxygenated tungsten). By
contrast, molecules whose fluorine nuclei have flipped in
the Ramsey resonance region are not resonant with the rf
field in the analyzer and cannot make a transition back to
the ~J=1, mJ=O) manifold. As a result, they are de-
focused by the second quadrupole and the Ramsey reso-
nance appears as a decrease of the detected beam intensi-
ty.

Those parts of the apparatus which are particularly im-
portant to the Aharonov-Casher experiment are dis-
cussed in the following sections. A more complete dis-
cussion of the general operation of this T1F beam
machine is given in Ref. [11].

B. Quadrupoles

In a strong electric field this polar molecule is well de-
scribed as a rigid rotor with electric-dipole moment p, &

QUADRUPOLE

LENS
QUADRUPOLE

~ LENS

JET
SOURCE

POLARlZER NMR LOOPS ANALYZER

H0T
Wl RE

FIG. 5. Schematic view of the experiment. TIF molecules in rotational state
~
J= 1, m J =0) are focused by the electric quadrupole

lens and make an rf transition in the polarizer to a single magnetic hyperfine sublevel of rotational state
~
J= 1, ~

m J ~

= 1 ). Separated
NMR loops drive a spin flip of the F nucleus. If the nucleus does not flip, the analyzer drives the rf transition back to the original

~
J =1, m~=0) state, which is focused onto the detector. If the nucleus does fiip, the molecules remain in rotational state

~
J =1,

~
m J = 1 ) and are defocused.
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[18] and (neglecting the hyperfine structure) the T1F
Hamiltonian can be approximated by the first two terms
in Eq. (23). The Stark interaction splits the rigid rotor
levels into sublevels of different

~ mz~ as we show for the
rotational states J=0, 1,2 in Fig. 6. As long as the elec-
tric field remains below the turnover point, the states
having

~
J= 1,mz =0 ) are low-field seekers and are

pushed toward the center (focused) in a quadrupole field,
whereas the

~
J= 1,m J =+1 ) states are defocused.

Each electrostatic quadrupole lens consists of four
aluminum rods 60 cm long, having a semicircular cross
section of radius 1.75 cm. The diameter of the inscribed
circle of the assembled quadrupoles is 1.16 cm. We apply
a potential difference across the rods in the range 12—30
kV, creating a quadrupole electric field whose magnitude
is zero at the center and increases linearly to —10—25
kV/cm at the edge. Normally, the same potential
difference is applied across both quadrupoles to make a
pair of lenses with equal power. Since the focal length
also depends strongly on the velocity of the molecule,
only a relatively narrow slice of the velocity distribution
in the molecular beam (hv/v -25%%uo) is focused onto the
detector at one time. The mean velocity of this slice can
be varied in order to test the velocity independence of the
AC phase simply by changing the potential on the quad-
rupoles. We note in passing that some slow molecules in
the J =2 (and higher) rotational states are also focused by
the quadrupoles. This higher rotational state background

40

30—

U
20--

has the potential to produce systematic effects which are
discussed in Sec. V B.

C. Interferometer region

Two separated oscillating magnetic fields parallel to
the beam direction (y direction) constitute the beam
splitter and recombiner of the experiment. These are
produced by a pair of coils having 20 turns on a 22 cm di-
ameter, which are wound on a Plexiglas former outside
the Pyrex beam pipe. When the coils were used to drive
the 6-7 transition, their separation L was 2.051(6) m, and
for the 2-3 transition we used L =2.066(5) m. The reso-
nance line shape is the characteristic Ramsey fringe pat-
tern given in Eq. (6), in which a phase shift b 4& between
the atomic levels (e.g., the AC phase) can be measured as
a shift of the fringes. In addition, we use the spacing of
the Ramsey fringes together with the known coil separa-
tion L, to determine the beam velocity.

The electric field in this region is between a pair of
aluminum plates 2.45 m long, 7.6 cm high, 0.95 cm thick,
and spaced by 1.99(1) cm. The focused beam travels
down the center in a region approximately 1 cm in diam-
eter, over which the average electric field is given by the
infinite, parallel-plate formula V/d to better than 0.1%.

The vertical magnetic field B is generated by wires
which run parallel to the beam, one on each side of the
Pyrex beam tube. In addition, wires running along the
top and bottom of the Pyrex tube can be used to null out
the average horizontal magnetic field B,. The arrange-
ment of field plates, beam pipe, and magnetic field wires
is shown in cross section in Fig. 7. The entire interferom-
eter region is enclosed by a cylindrical magnetic shield
(Ad-Mu80) to reduce the effects of the ambient laborato-
ry field.

V. MEASUREMENTS

A. Method

The AC phase shift 6+Ac can be picked out by the fact
that p XE changes sign when either E, or B is reversed.

Pyrex beam tube

10—

ield plates

upport Ring

Bx coils

-10

10 20 30

Insulators

coils

Electric Field (kV/cm)

FIG. 6. Stark shifts of TlF in a high electric field for the
J=0, 1,2 rotational levels. Below 15 kV/cm the low-field seek-
ing

~
J =1, m+=0) states are focused by the quadrupole lens,

while the
~
J= 1,

~
m J ~

= 1 ) states are defocused.

FIG. 7. Cross-sectional view of the interferometer region be-
tween the NMR coils. A pair of parallel plates produces elec-
tric field E, . Wires on each side of the Pyrex beam tube carry
equal and opposite currents to generate the vertical magnetic
field B„. Similar wires on the top and bottom generate magnetic
field B,.
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TABLE II. Parameters reversed in the experiment using the 2-3 fluorine transition.

Reversal

B
E,
P

Description

current in B coil
electric field
+m/2 phase modulation

of NMR frequency
detuning of NMR frequency

from central zero crossing

Pattern

(+ ——+)
(+ ——+)

(+ ——+ —++ —)

(+ ——+)

Interval

28 min
80 s

150 ms

4.8 s

This allows us to use a form of phase-sensitive detection
in which we look for a phase shift of the Ramsey fringes
in synchronism with reversals of E, and B„. At the cen-
tral zero crossing of the Ramsey pattern, a small phase
shift appears as a proportional change in the number of
molecules hitting the detector. In order to convert this
change in count rate to an equivalent frequency shift, we
make an on-line measurement of the derivative of the res-
onance signal with respect to frequency at the zero cross-
ing. Since we know that the frequency interval between
zero crossings corresponds to a phase shift of ~, the
equivalent frequency shift can finally be converted to a
measured AC phase shift.

If the magnitude of E, changes when the electric field
is "reversed, " there is a Stark shift of the resonance fre-
quency, which could be mistaken for an AC phase shift.
Although such a shift does not change sign with the re-
versal of B„,it is nevertheless desirable to keep this effect
as small as possible. We found that commercially avail-
able high-voltage switches could cause asymmetries of
tens of volts when switching a potential difference of 60
kV and that the switch lifetime was not generally as long
as we would wish. We therefore used a computer-
controlled, motor-driven rotary switch immersed in
transformer oil (built by D. Cho), which reverses 60 kV
to within 200 mV and has worked for several years
without any problems. The polarity of the electric field
was switched as shown in Table II at intervals of approxi-
mately 80 s in the pattern (+——+ ), which was chosen
to eliminate the effect of any linear drift in the beam in-
tensity [19]. The current in the B„coil is reversed manu-
ally by interchanging the connections at the power sup-
ply, using the same switching pattern with a period of
about 28 min.

We find it useful to modulate two other quantities list-
ed in Table II as well as the E, and B„reversals. In the
most frequent reversal (called P in the table) the relative
phase between the two rf coils is switched between +n. /2
and the difference signal is taken. This produces the an-
tisymmetric line shape shown in Fig. 8, on which we set
the oscillator to the central zero crossing in order to be
most sensitive to small phase shifts of the pattern. P re-
versal was performed in the sequence
(+ ——+ —++—), which compensates for quadratic as
well as linear drifts in the beam intensity [19]. We also
modulated the frequency of the oscillator that drives the
rf coils (E reversal), stepping it between two frequencies
1.25 Hz above and below the central zero crossing. The
slope of the resonance was determined from the
difference signal, while all our other measurements were

averaged over the two frequencies. Details of the com-
puter program that controlled the experiment are given
in Ref. [11].

B. Previous results and systematic eft'ect

21.6 22.4

Frequency (kHz)

22.8

FICx. 8. Typical experimental fluorine NMR pattern obtained
by switching phase between +sr/2. We plot the di6'erence in
the detected beam intensity for the two phases.

The first set of data we acquired, utilizing the 6-7 tran-
sition, has already been published in a Letter [7]. In that
work we demonstrated that the AC phase was constant
for velocities in the range 217—340 m/s, that it followed
the predicted electric field dependence in the 10—30
kV/cm range, and that the magnitude of the effect was as
predicted at the 4% level. Limited space prevented us
from discussing the two most important systematic
effects which were associated with (i) the presence of a
small magnetic field in the z direction; and (ii) a contribu-
tion to the resonance from molecules in J=2 and higher
rotational states which are focused by the quadrupoles.
Since these difBculties were important aspects of the first
experiment and provided some of the motivation for this
experiment, we now describe them.

Stray magnetic fields originating outside the magnetic
shield of the interferometer region are reduced to &1
mG in the vicinity of the molecular beam, which is suit-
ably small for our purpose. However, the coil which gen-
erates B„ is inside the shield and, since it is not perfectly
aligned with respect to the electric field, it produces a
stray field component B,. In our original (6-7) experi-
ment this stray field was approximately 40 mG when B
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was 0.4 G. On reversing the current in the coil, we saw a
large ( —80 Hz) frequency shift of the resonance due to
the Zeeman effect, in addition to the much smaller AC
phase shift. We are able to separate these two effects by
reversing the polarity of the polarizer magnetic fields,
thereby reversing the axis of quantization and selecting a
state in which all the magnetic quantum numbers of the
molecule are reversed relative to a fixed z axis in the labo-
ratory. Specifically, this reverses the p, of the fluorine
nucleus, but does not affect the induced moment p„,
which determines p XE. Thus we can change the sign of
the Zeeman shift without changing the sign of the AC
phase. In this way we were able to monitor the stray field
on line and null it out using the B, coil shown in Fig. 5.
The stray field was reduced typically to —100 pG, which
gave a Zeeman shift of -200 mHz. The phase shift cor-
responding to this frequency is comparable with the AC
phase, but is easily distinguished from it because it
remains unchanged when E, is reversed.

A more insidious systematic problem is caused by the
presence of higher rotational states in the beam. At first
glance these would not seem to be a problem since they
should only contribute to the background in the detector,
not to the signal. However, in the process of going be-
tween the polarizers (where the dominant field is magnet-
ic) and the main resonance region (dominantly electric)
the ordering of the levels changes and level crossings or
anticrossings necessarily occur. At these crossings, there
is a possibility of Majorana transitions [20] between a fo-
cused and an unfocused state, polarizing the beam and
leading to background resonances in the interferometer
region. By design, there are no such transitions in the
J= 1 states, but we have not taken into account the com-
plex level structure of all the higher rotational states. In
fact, when the rf power in the polarizers is turned off, we
do find a srna11 background resonance in the vicinity of
the 6-7 transition. The size varies from —1% to 10% of
the 6-7 transition amplitude as the quadrupole voltage
goes from 12 to 30 kV, presumably because the focusing
efFiciency for higher rotational states increases with
higher quadrupole voltage. This resonance background

is a potential source of systematic error since its ampli-
tude changes when E, or B„ is reversed. Fortunately it is
unaffected by the rf power in the polarizers, so during the
data collection in the original experiment we monitored
the background resonance by switching off the rf power
to the polarizers. This allowed us to distinguish the
spurious background signal due to higher rotational
states from the genuine AC phase shift.

C. Present experiment

The magnetic field in the polarizer (and analyzer) is
used to lift the degeneracy between pairs of states that
differ only in the sign of their magnetic quantum num-
bers. Without this field, the resonance condition for po-
pulating state 6 in the polarizer would also be the condi-
tion for driving transitions to state 5; both states would
be produced and the beam would be unpolarized. How-
ever, we found that turning off the magnetic field in the
polarizers reduced the size of the background resonances
dramatically (to (0.5% of the main resonance). We
were led therefore to a different experiment in which the
polarizers have no magnetic field in them and we select
instead state 2, a singlet which can be uniquely popu-
lated, even in zero magnetic field. The AC phase was
then measured using the fluorine spin-flip transition 2-3
against a very sma11 background of resonances from
higher rotational states.

At this point some cornrnents are needed about the
eigenfunctions of the eight mJ =+1 states shown in Fig.
2. In the strong electric field Ez of the main resonance
region and in zero magnetic field, these states form three
exactly degenerate pairs (3-4, 5-6, and 7-8) which trans-
forrn into each other under time reversal, i.e., they have
the same magnetic quantum numbers except for a sign.
The other two are singlets (levels 1 and 2) having zero to-
tal magnetic quantum number. In the presence of a
(weak) magnetic field Bz, the eigenstates are well approxi-
mated by those in the second column of Table III. These
are the states normally discussed in the literature [11].
The representation is

~
m I, m T&, m „&, hence

~
+, +, + &

TABLE III. Approximate eigenfunctions for the eight hyperfine sublevels of J=1, mJ=+1 in
strong external electric field. The representation is ~mz, mT~, m„).
State Eigenfunctions in field Bz Eigenfunctions in field Bx

f+, +, + &

/+, +, —
&

I
—,—,+&

I
—,+, —

&

/+, —,+&

i+, —,—&+ i
—,+, +&v'2

1 i+, —,—&
—

i
—,+,+ &

1

v'2

i+, +, + &+v'2 ' ' v'2
1 /+, +,+ &— 1

v'p

i+, +, —&+ i
—,—,+ &v'2 ' ' v'2

1 f+, +,—
&
—

[
—,—,+ &

1

v'2 ' ' v'2

i+, —,+&+
i
—,+, —

&v'2
1 (+,—,+ &

—
f

—,+, —
&

1

v'2

i+, —,—&+ i
—,+,+ &v'p ' ' v'2

1 /+, —,—&
—

/

—,+, + &
1

v'2 ' ' v'2
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indicates ~m&=+1) ~m Tt =+—,
' ) ~mF =+—,

' ). However,
in the present experiment, the molecules move adiabati-
cally from the near-zero field of the polarizer into the
strong transverse magnetic field B of the Ramsey reso-
nance region. This causes the "time-reversed" pairs of
states to be mixed and to transform adiabatically into
those in the third column of the table, where one sees ex-
plicitly that transitions 6-7 and 2-3 are both fluorine nu-
clear spin Aips. One important point concerns the 2-4
transition, which in a zero magnetic field is as strong as
2-3 and degenerate with it. Our experiment would be
difBcult to interpret if this were also true in the transverse
field B, since then the resonance would involve three
levels and would exhibit complicated interference effects.
Fortunately this is not the case; with B = 1.3 G (the field
we used) the 2-4 transition amplitude is exceedingly
small, as we discuss below.

First, we measured the 2-3 resonance frequency as a
function of the current I in the B coil in order to test
the two-level nature of the 2-3 transition. The plot of co

vs I„shown in Fig. 9 verifies that the transition follows
the form of Eq. (27), and from the fit we determine that
coo/2m =22. 1677(3) kHz. In addition, as B» was varied,
we measured the amplitude of the resonance, which is ex-
pected to remain constant in the absence of any stray
field B,. This proved to be a simple way of measuring B,
because the 2-4 transition amplitude grows very rapidly
with B,. For example, a stray B, as small as 2 mG re-
sults in a 2-4 amplitude that is 5% of the 2-3 amplitude.
Because of interference between the 2-3 and 2-4 transi-
tions, this would appear as a comparable decrease in the
height of the Ramsey pattern. The observed decrease in
the resonance height was less than 2%, which refiected
the fact that the misalignment of the B coil had been
greatly reduced since our earlier experiment and now
produced less than 1 mG of stray field in the z direction
when B„—1.3 G.

Having verified the two-level character of the 2-3 tran-
sition and the absence of any significant stray B„we pro-
ceeded to test the velocity independence of the AC phase.
We set the magnetic field B to a value (1.3 G) such that

3.0

E
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0
0

0.0
175 225 275 325

Beam Velocity (m/s)

375

FIG. 10. Aharonov-Casher phase versus beam velocity. The
solid line shows the theoretical prediction based on Eqs. (30)
and (4), which has no free parameters. Points show the mea-
sured phase shifts, demonstrating the velocity independence of
the phase and confirming the predicted magnitude.

the resonance frequency increases to to/2m=22. 70(l)
kHz, which corresponds to a tipping angle (Fig. 4) of
0.215(2) rad. The potential difference across the electric
field plates was set to 40.0(4) kV, corresponding to an
electric field of 20.1(1)kV/cm. Knowing that the spacing
between the rf coils is L =2.066(5) m, we use Eqs. (4) and
(30) to predict a value for the AC phase of 2.47(2) mrad,
shown as the solid line in Fig. 10. In the same figure, we
also show the phases measured at seven different veloci-
ties ranging from 188 to 366 m/s. The weighted mean of
the experimental points is 2.42(5) mrad, in excellent
agreement with the theoretical expectation. We see no
evidence for any deviation from the predicted velocity in-
dependence.

Next, the velocity was fixed at 254 m/s while the elec-
tric field was varied from 5 to 20 kV/cm, as shown in Fig.
11. The theoretical prediction, shown once again by a
solid line, is not quite linear in E, due to a small Stark
shift of the resonance frequencies coo and ~. The experi-
mental points show the AC phase measured at four
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FIG. 9. Experimental plot showing the validity of Eq. (27) as
a description of the 2-3 transition frequency. The straight line is
a least-squares fit to the measurements.

FIG. 11. Aharonov-Casher phase versus electric-field
strength. The solid line shows the theoretical prediction based
on Eqs. (30) and (4), which has no free parameters. Points show
the measured phase shifts, demonstrating the proportionality to
the electric field and confirming the predicted magnitude.
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different values of the electric field, approximately 5, 10,
15, and 20 kV/cm. Again, there is no evidence of any
discrepancy between theory and experiment.

The most stringent check of the theory is obtained by
dividing the value of each measured phase by the corre-
sponding predicted value. A weighted average over all
the points we have measured using the 2-3 transition
gives

We have shown theoretically that this effect is intimately
related to the Zeeman effect to all orders in ulc. We
have also shown that, although it may share some of the
geometric features of the Aharonov-Bohm phase, this
phase can be observed without requiring that the parti-
cles encircle a line charge. Finally, we have studied the
phase shifts actually exhibited by molecules moving in an
electric field and we have shown that they are accurately
described by the Aharonov-Casher effect at the 2%%uo level.
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