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Energy expressions in density-functional theory using line integrals
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In this paper we will address the question of how to obtain energies from functionals when only the
functional derivative is given. It is shown that one can obtain explicit expressions for the exchange-
correlation energy from approximate exchange-correlation potentials using line integrals along paths
within the space of densities. The path dependence of the results is discussed and criteria for path in-

dependence are given. Derivations are given of upper and lower bounds to the exchange-correlation en-

ergy in terms of the exchange-correlation potential at the beginning and the end point of a certain path.
We further express the kinetic part T„, of the exchange-correlation energy in terms of a line integral and

derive a constraint on approximate correlation potentials. We show how to use the line-integral formal-

ism to derive the requirements that exchange-correlation potentials must fulfill in order to make the
exchange-correlation functional satisfy some symmetry property such as rotational and translational in-

variance and scaling properties. Finally, we will discuss the use of line integrals along a path in density

space to obtain energy difFerences, notably, the bonding energies of molecules, from exchange-
correlation potentials. These last results generalize the transition-state formulations of Slater and

Ziegler.

PACS number(s): 31.15.Ew

I. INTRODUCTION

In the last few years density-functional theory [1] has
been successfully applied with increasing accuracy to sys-
tems ranging from atoins and molecules [2—4] to surfaces
and solids [5]. Especially, the introduction of the so-
called generalized gradient expansion approximations
(GCiA's) [6—10] for the exchange-correlation energy has
constituted a great improvement over the local-density
approximation (LDA) in the calculation of, for instance,
molecular bond energies. In view of the accuracy of the
GGA energy expressions for the exchange-correlation
functional and their improvement over the LDA energy
expressions, it is surprising that the GGA exchange-
correlation potential gives little improvement over the
LDA exchange-correlation potential [11,12] and has but
a small inhuence on the density. For this reason calculat-
ing the GGA corrections from an LDA density yields al-
most the same results as an inclusion of the GGA poten-
tials in a self-consistent calculation [13]. This fact is also
rejected in the LDA+ GGA eigenvalues being very close
to the LDA eigenvalues, i.e., they are much too small for
finite systems such as atoms and molecules and also for
surfaces. As the eigenvalue of the highest occupied
Kohn-Sham orbital has been proven to be equal to the
ionization energy of the system [14,15], the LDA gives
electrons that are too weakly bound. This latter fact is
due to the LDA exchange-correlation potential having
exponential decay instead of the correct Coulombic de-
cay. One way to improve the one-electron energies and
the density (and related quantities such as dipole mo-
ments) is to directly approximate the exchange or
exchange-correlation potential instead of the exchange or
exchange-correlation functional. Over the years several
potentials (not only within density-functional theory)

have been proposed. Well known is the average Hartree-
Fock exchange potential proposed by Slater [16,17]. A
so-called optimized effective potential (OEP) and an ap-
proximation to this was suggested by Sharp and Horton
[18] and by Talman and Shadwick [19]. This potential
received considerable attention within the context of
exchange-only density-functional theory or the optimized
effective potential model (OPM) and was shown to give
one-electron energies close to the Hartree-Fock ones. An
approximation to this potential was recently proposed by
Krieger, Li, and Iafr ate [20] and Cxritsenko, van
Leeuwen, and Baerends [21]. Also within the weighted
density approximation (WDA) method approximate ex-
change potentials with the correct asymptotic behavior
have been used [22—24]. A cruder way to improve the
asymptotic behavior of the exchange potential was given
by Latter [25] within the context of the Thomas-Fermi
model, which, due to its simplicity, has found widespread
use in atomic structure calculations. Much less work has
been done regarding the full exchange-correlation poten-
tial. An approximate exchange-correlation potential has
been proposed by Harbola and Sahni [26]. This
exchange-correlation potential v„,(r) has been defined as
the work done by bringing an electron from infinity to
point r against the force of the electric field of the
exchange-correlation hole. However, to insure path in-
dependence for nonspherical systems like molecules one
must only consider the irrotational part of this electric
field [27]. A gradient approximation to v„, has recently
been proposed in Ref. [12] that was shown to give very
good ionization energies as calculated from the highest
occupied Kohn-Sham orbital.

In view of the fact that correct one-electron energies,
the asymptotic Coulombic behavior, and the atomic shell
structure can be reasonably obtained by approximate po-
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tentials, it is an interesting question of theoretical and
practical importance whether we can calculate good ex-
change and correlation energies from these approximate
potentials. This is also of importance since it is possible
to test the quality of approximate exchange-correlation
potentials by comparing them with accurate ones con-
structed from accurate densities. It is, for instance, an in-
teresting question how certain features in the exchange-
correlation potential (such as the bond midpoint peaks in
molecules [28,29] related to the left-right correlation
effect) contribute to the exchange-correlation energy.
This requires an understanding of the relation between
potential and energy expressions. A further understand-
ing of the features displayed in the Kohn-Sham potential
might then also lead to more improved expressions for
the exchange-correlation energy. If we want to assign
some energy expression, for instance, to the model poten-
tials considered above, we immediately run into some
theoretical difficulties because none of the potentials con-
sidered, with the exception of the OPM potential, is a
functional derivative of some energy density functional.
However, for approximate exchange potentials that satis-
fy the exchange scaling property it is still possible to as-
sign an exchange energy using the Levy-Perdew relation
[21,20]. However, such a relation is not available for the
exchange-correlation potential due to the unknown scal-
ing properties of the correlation functional. In Sec. II of
this paper we will show how to use line integrals to calcu-
late the exchange-correlation energy from an exchange-
correlation potential. We also discuss some criteria of
path independence. In Sec. III we discuss some bounds
on the exchange-correlation energy in terms of the
exchange-correlation potential and we give a line integral
expression of the kinetic part T„, of the exchange-
correlation energy. In Sec. IV we derive some constraints
on the correlation potential. In Sec. V we derive some
properties with respect to rotation, translation, and scal-
ing of the exchange-correlation energy from given prop-
erties with respect to these symmetries of the exchange-
correlation potential. In Sec. VI we will address the ques-
tion of how to calculate molecular bond energies from
given potentials. Finally in Sec. VII we will present our
conclusions.

II. LINK INTKGRALS AND PATH DKPKNDKNCE

In this section we will discuss the problem of obtaining
energies from approximate potentials. The exchange-
correlation energy for a system with Coulombic two-
particle interactions is, within density-functional theory,
usually defined as

p(ri )p(r2)
E„,[p]=F[p] T, [p]—

—,
' fdr, d—r2

1 2

where the universal functional F is as usual defined by a
constrained search [30,31] over all antisymmetric wave
functions yielding density p:

F[p]=min &g~f'+@'~P&, (2)
f~p

where f is the kinetic energy operator and @'is the inter-

particle interaction operator. The Kohn-Sham kinetic
energy T, [p] is the kinetic energy of a noninteracting
particle system with the same density as the interacting
system defined by

T, [p]= min & 0, I ~lit, & =&6, [p]l &lk, [p] &,
p

where we search over all Slater determinants yielding
density p and P, [p] is the Kohn-Sham determinant. fhe
exchange energy functional is usually defined as [32]

E [P]=&p, [p]l@'lp, [P] & —,f d
1 2

(4)

in which v„, is the functional derivative of E„:
5E„,

u„,([p];r)=
5p r

If we take, for instance, the straight path from zero to p
defined by y(t )=tp and we have E„,(0)=0 (which must
be the case for any physically acceptable exchange-
correlation functional), then dy/dt=p and it follows
that

E„,[p]=fdrp(r)s„, ([p];r)

in which c„,is defined as
1

s„,([p];r)—: dt v„,([tp];r) .
0

(8)

(9)

This thus yields an explicit expression of the exchange-
correlation energy in terms of the exchange-correlation
potential. It should be remembered however that in this
expression v„, is a functional derivative. Suppose howev-
er that we only have an expression of v„„for instance, in
terms of the density and its gradients. Then we can
define the line integral of v„, along a path y in the space
of densities as

f v„,=—f dt f rdv„, ([ (yt)];r)
y 0 di

(10)

As we can see from the above formulas the outcome of
this line integral does not depend on the chosen path (ex-
cept for the end points, of course) whenever u„, is the
functional derivative of some functional E„,. If one uses
approximate potentials to obtain energy expressions this

and the correlation functional by

E, [p]=E..[p) E.[p—
I .

Suppose we have a parametrization y(t) of a set of
electron densities starting at y(0)=p, and ending in
y(1)=pz. Suppose further that we have an exchange-
correlation energy functional E„,[p]. Then we have

dE„
[p2] —E..[pt]= f «d

&E..[y(r)] dy(t)
5P(r) dt

= f dt fdru„, ([y(t)];r)
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'6 E„6E„,
5p(r)5p(r') 5p(r')5p(r)

(12)

To prove this we only have to show that a v„satisfying
the above relation is the functional derivative of some
functional E„,. Suppose we define the functional E„, by
integrating u„, along the straight path y(t)=tp:

E„,[p]—:fdrp(r)c, „,([p];r), (13)

in which E„, is defined as in Eq. (9). If u„, satisfies condi-
tion (11) then u„, is the functional derivative of the above
defined functional E„, and hence path independent. This
is readily shown by differentiation of the above Eq. (13).
This yields

5E„, 5E„,([p];r')"' =e„,( [p];r ) + f d r'p(r')
5p r 5p r

5u„,([tp];r')
=E„,([p];r)+f dt fdr'p(r')

0 5p r

Now using condition (11)yields

5E„, ~ 5v„,([tp];r)"' =E„,([p];r)+f dt f dr'tp(r')
5 tpr'

du„, ([tp];r)
=e„,([p];r)+f dtt

0 dt

(14)

way, one has to make sure that the result does not depend
on the path y. One therefore needs some criteria to
determine whether v„, yields path-independent line in-
tegrals. This is, for instance, the case when

5u„,(r) 5v„,(r') =0
5p(r') 5p(r)

which is a vanishing curl condition that is equivalent to

to be on the path y and in the second integral on the sur-
face S. From this equation we can see that if relation (11)
is satisfied, then the integral of v along any closed path is
zero and hence the line integral of v is path independent.
On the other hand, if the line integral is zero for any
closed path, then we obtain the integrability condition
(11).

III. EXCHANGE-CORRELATION ENERGY AND THE
KINETIC PART: BOUNDS FROM POTENTIALS

The present forma1ism can be used to obtain energy ex-
pressions from approximate potentials using line in-
tegrals. In order to obtain sensible results from such a
calculation one has to make sure that any approximate
u„, is either a functional derivative [for instance, by re-
quiring the integrability condition (11)] or that the ap-
proximate potential is a good approximation to the exact
potential for every density along the integration path.
This favors in practical applications some paths over oth-
er paths. For instance, the path defined by y(t ) =tp has
the disadvantage of not conserving the particle number,
which can therefore be fractional, giving theoretical
problems if one wants to assign a potential to the corre-
sponding density. Another more appealing path choice is
the following:

If we let the path parameter t run from 0 to 1, then we
are integrating from 0 to p. The most important feature
of this path is that it is particle number conserving; thus,

f y(t)dr= fp(r)dr=A

along the path. For hydrogenlike atoms, for instance, we
have

1
=E„,([p];r)+f dt [tv„,([tp];r)] ( )

(tZ) —tzi (20)

—f dtu„, ([tp];r)=v„,([p];r) .
0

Hence, u„, obeying condition (11) is the functional
derivative of the straight path E„, defined in Eq. (13) and
therefore yields path-independent line integrals.

We will now give another criterion for path indepen-
dence related to Eq. (11}.In order to do this we recall the
Stokes theorem in vector calculus, which states for a vec-
tor field v in n-dimensional space

y f u, dx, =y f Bvk
dx; dxkBx.

f fdr u5p(r) = f f fdrdr'

X 5p(r)5p(r'),

5u(r')
5p(r)

in which in the first integral the variations are restricted

in which y is a closed curve which is the boundary of sur-
face S. A generalization of this theorem to function
spaces would be

in which Z is the nuclear charge. So if we let t approach
zero, then the density y(t ) becomes increasingly diffuse
and approaches zero in every point of space while keep-
ing its normalization. Our main task is now to construct
for the case of many-electron systems exchange-
correlation potentials which approximate the exact
exchange-correlation potential along this path. Applica-
tion of Eq. (6) for this path leads to the following expres-
sion for the exchange-correlation energy:

E„,[p]=f dt f dru„, ([y(t)];r}

X[3t p(tr)+t r V„p(tr)]

= f dt f dr —v„, [y(t)];—r [3p(r)+r Vp(r)]
1

0
' t

(21)
in which we performed the substitution tr~r. Before we
go on to discuss the exchange-correlation potential let us
first discuss the simpler case of the exchange potential
alone. Suppose we have an approximate exchange poten-
tial v, for instance, of the form

u, (r)=p' '(r)f(x, y), (22)
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where

(,)
IVp r

I

4/3(i. )

and

(23)

y(r)= V p(r)
(24)

5/3( r )

are dimensionless functions. This approximate potential
satisfies the following well-known scaling property [33] of
the exchange potential:

u„([p, ];r)=tu ([p];tr),

in which p, =y(t) is just the path of Eq. (18) [in the fol-
lowing we will, for notational convenience, use p, instead
of y(t) for this particular path]. Let u„denote the exact
exchange potential being the functional derivative of the
exact exchange functional. The difference between the
exact exchange energy E„[p] and the approximate ex-
change energy E„[p] using the line integral of Eq. (21)
and scaling property (25) is then given by

E.[p] E„[p—]=f u. f—V„=fdr(v„([p];r) u„—([p];r))[3p(r)+r Vp(r)] .
r r

(26)

For a correctly scaling approximate exchange potential
the difference in the two line integrals thus depends only
on the difference between the two potentials at the end
points of the path and can be made arbitrarily small by
better fits of V„ to v at this end point. This can be done,
in practice, for instance, by fitting to the so-called opti-
mized effective potential (OPM) [20,21]. To show that if
V„ is not a functional derivative we can make the
difference in the line integral of v and v arbitrarily
large, we consider the following path:

y(t ) =t'p(tr+(1 —t )R), (27)

+t r V„+(, , )Rp(tr+( I t)R)—
t R.V„+(, , )Rp—(tr+( I t )R) . —(28)

Integrating along this path (which can easily be checked
to be particle number conserving) yields, using the fact
that both the exact v„and the approximate potential v

satisfy some translational invariance property [see Eq.
(65) of Sec. V],

f v„—f V. = fdr[u (r) —v„(r)][3p(r)+r Vp(r)]
y y

—R f dr[u (r) —u„(r)]Vp(r) . (29)

We see that this expression can be made arbitrarily large
by choosing an arbitrarily large R (which amounts to
choosing a difFerent path) if the difference between v and
v is not zero.

Things are more complicated if we want to calculate
the total exchange-correlation energy due to the fact that
we do not know the scaling properties of the correlation
potential. This means that we cannot calculate the
exchange-correlation energy directly from the knowledge
of v„,([p];r) alone; we must also know u„, along some
path y(t) in density space. However, some useful ine-
qualities can be derived from the knowledge of v„,([p];r).
Averill and Painter [34] and Levy and Perdew [32] have
derived the following useful relation:

in which. R is an arbitrary vector in three-dimensional
space. We have

dy(t) =3t'p(tr+(1 —t )R)
dt

E„,[p]=fdr u„,([p];r)[3p(r)+r.Vp(r)] —T„[p],

where

(30)

T..I:s ]=T[p]—T, I:pl (31)

dE, [y(t)]
E,[p], — (33)

which is a useful relation that can be used to obtain the
kinetic-energy part of the exchange-correlation energy
from approximate exchange-correlation or correlation
functionals such as those used in LDA and CxCiA. Rela-
tion (30) is also useful to obtain an upper bound to the
exchange-correlation energy from the knowledge of the
exchange-correlation potential. From the definitions for
T[p] and T, [p] we can deduce the well-known result [1]

T, I p]= &&, [p]l&lg, [p] &
~ &g[p]l&l@[p] & =T[p]

(34)

and thus T„,[p] ~ 0 and we find the following inequality:

E„,[p] ~ f dr u„,([p];r)[3p(r)+r.Vp(r)], (35)

which provides an upper bound to E„,. A similar in-
equality can be obtained for the correlation functional E,
(with corresponding correlation potential v, being the
functional derivative of E, ) by subtracting the Levy-
Perdew relation (26) for the exchange from Eq. (30),
which yields

is the kinetic part of the exchange-correlation energy.
The kinetic energy T[p] is as usual defined by

T[p]=
& g[p] I &lg[p] &, (32)

where f'is the kinetic-energy operator and g[p] is the an-
tisymrnetric wave function yielding density p and minim-
izing the universal functional F[p]. As can be inferred
directly from Eq. (6) using the scalar path (18), it follows
from Eq. (30) that equivalently

dE„,[y(t)] —E..[s ]dt
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E,[p]=fdr v, ([p];r)[3p(r)+r.Vp(r)] —T„,[p]
~ fdr v, ([p];r)[3p(r)+r.Vp(r)] . (36)

v„,([p];r)=f dt —v„, [y(t)];—
0

(44)

This gives an upper bound to the correlation energy when
the correlation potential is known. To provide a lower
bound to E, in terms of potentials we use the following
relation, which is valid for systems with Coulombic inter-
particle interactions proved by Levy [35]:

This gives an explicit expression for T„, in terms of the
exchange-correlation potential. It can therefore directly
be calculated from approximate expressions of v„, or
from the knowledge of v„, along the scaling path. As a
result of the scaling property of the exchange potential
the above equation can be further split up as follows:

lim E, [p—, ]= —b [p],1

t~o
(37)

v„,( [p];r) = f dt v„[y—(t ) ];—

T„,[p] E, [p—] b[p] ~P, [p]l@'lf,[p]), (38)

where P, [p] is the Kohn-Shamm determinant. Relation
(37) immediately leads to

where b[p] is a positive functional satisfying the follow-
ing inequality: + f dt v,—[y(t)];—'

=u ([p];r)+f dt —u, [y(t)];—
0

1 dE [PT]
b[p ]=—lim E, [p, ]—=t~O t dt t=O

where

=v„( [p];r)+ v, ( [p];r), (45)

= fdr v, ([p];r)

X [3p(r)+r.Vp(r)], (39) v, ([p];r)=f dt v, [y—(t)];—
0

(46)

where

1 r
v, ([p];r)= lim —v, [p&];—

A, ~O I,

This leads to another expression for T„ in terms of the
correlation potential

T„,[pl= f dr[u, ([p];r)—u, (l'p];r)]

t=O

X [3p(r)+r Vp(r)] .

Combining relations (38) and (33) then gives

dE, [p, ] dE, [p, ]
E, [p] ~ — +

= fdr ,' I u, ([p—];r)+v,([p];r)]

(41)

X[3p(r)+r Vp(r)] .

From T„,[p] ~ 0 it follows further that

f dr v, ([p];r)[3p(r}+r Vp(r)]

~ fdr v, ([p];r)[3p(r)+r Vp(r)],

(47)

(48)

So we have now derived an upper and a lower bound to
the correlation-energy functional in terms of the correla-
tion potential. Adding the Levy-Perdew relation for the
exchange potential on both sides of the inequalities gives
corresponding bounds for the exchange-correlation ener-
gy:

fdr ,' [v„,([p—];r)+v„,( [p];r)][3p(r)+r Vp(r) ]

~E„,[p] ~ fdr u„,([p];r)[3p(r)+r Vp(r)], (42)

where v„,=u„+u, (using v =u„which is due to the ex-
change scaling property of u ). So upper and lower
bounds to the exchange-correlation energy can be given
from the knowledge of the exchange-correlation potential
at the beginning (t=0) and the end (t=1) of the scaling
path. We will now give an expression for the kinetic part
of the exchange-correlation energy. From relation (30)
and Eq. (6)

which provides a further constrain on approximate corre-
lation potentials. Further constraints are derived in the
next section.

IV. CONSTRAINTS ON v,

Using relation (49) it then follows directly from

[p ]=«.[p]+E, [p, ]

that

E„[p]= lim E„,[p, ] . —1

t~~

(50)

(51)

We now will derive some constraints on the correlation
potential. Levy has proven the following useful relation
[35], which is valid for systems with repulsive Coulombic
interparticle interactions:

(49)

where

—u„,([p]:r)j [3p(r)+r.Vp(r)], (43)
Equation (49) immediately leads to a constraint on the
correlation potential. If we use the scaling path we find
the following line integral:



51 ENERGY EXPRESSIONS IN DENSITY-FUNCTIONAL THEORY. . . 175

E, [p&]=f dt fdr —v, [p, ];— [3p(r)+r Vp(r)] .

Application of Eq. (49) then immediately gives

(52)

our path parameter t but that the potential v„, has some
symmetry property under such changes. Using Eq. (6) we
then can deduce some properties of E„,. In the following
we will apply this idea to rotation, translation, and scal-
ing properties of E„,.

We define a path y(t ) by

f dt fdr —u, [p, ];— [3p(r)+r Vp(r)]) —ao,
0

(53)

which puts constraints on approximate correlation poten-
tials. The above constraint is, for example, not satisfied
by the LDA correlation potential due to the logarithmic
divergence of the LDA correlation energy as a function
of the scaling parameter t We .can also write Eq. (51) in
line integral form giving

E [p]= lim —f dt fdr u„—, [p, ];—rA~oo A, 0

X [3p(r)+ r.Vp(r) ] . (54)

Inserting v„,=v +v, in the above equation and using the
scaling property of v we find the following constraint on
vc:

lim —f dt fdr v, —[p, ];— [3p(r)+r.Vp(r)]=0 .
1 & 1 r

A~oo A, 0

(55)

The above constraint, which is weaker than constraint
(53), follows also directly from constraint (53). The
correlation potential of the local density approximation,
for instance, satisfies the above Eq. (55) but not constraint
(53).

V. INVARIANCE PROPERTIES OF POTENTIALS

The above formalism of line integrals provides an easy
way to obtain conditions on the energy functional in the
case that the exchange-correlation potential has some in-
variance or symmetry property. Suppose, for instance,
that we vary the densities along our path y by varying

I

y(t ) =p(R(t )r), (56)

where R (t ) is a rotation in three-dimensional space
which rotates the vector r around a vector co by an angle

If the functional E„, is invariant under rotations we
have that E„,[y(t ) ]=E„,[p] is constant as a function of t
and we find

dE„,[y(t)]0=
dt

&&..[y(8)] dy(t)
5p(r) dt, =e

= fdr „u,([y(8)];r}[mXR(8)r] Va(())~{R(8)r) . (57)

= fdr

For 8=0 in particular we find

0=fdr u„,([p];r)(coXr).Vp(r)

=fdr v„,{[p];R(8)r)

X (m XR (8)r ) V~(())~(R (8)r ) .

The above Eqs. (57} and (58) yield the same result for all
densities p and all rotations R (8). We thus must have

u„,([p(R(8)r)];r)=v„,([p(r)];R(8)r) . (59)

So if we insert in v„, the rotated density, then we obtain
the same value in point r as v„, with the original density
in the rotated point R (8)r [33,12]. Alternatively, the line
integral of Eq. (6} offers the possibilities of making state-
ments about the energy functional when we know the
properties of the potential. We can now prove the fol-
lowing statement. If a potential v„, satisfies the rotation
symmetry property of Eq. (59) and if u„, is a functional
derivative of some functional E„„then E„, is rotationally
invariant. To prove this we insert the path of Eq. (56) in
Eq. (6), which gives

E„,[p(R(8)r)]—E„,[p(r)]=f dt fdru„, ([y(t)];r)(mXR(t)r) V~(, ),p{R(t)r}
0

=f 'dt fdr u„,([p];r)(mXr) Vp(r)=.8' fdr v„,.([p];r)rXVp(r),
0

(60)

in which we in the second step used the rotation symrne-
try property of Eq. (59) and carried out a substitution
R (t )r~r. If we insert 8=2m. in the above formula (60),
then we are integrating along a closed path and we obtain

g v„,=2m co.f d r u„,( [p];r)r X Vp(r) . (61)

As v„, is a functional derivative the loop integral should
be zero. This is also obvious from the left-hand side of
Eq. (60) as the 2n.-rotated density is equal to the starting
density and we obtain

0= fdru„, ([p];r)rXVp(r) (62)

E„,[p{R(8)r)]=E„,[p(r)], (63)

which proves our statement.
We can carry out a similar derivation for the transla-

tion properties of the potential. If we define the path
y(t) by

for any density p. If we insert this equation back into Eq.
(60), then we obtain
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y(t ) =p(r+ tR), (64)

in which R is an arbitrary translation vector and suppose
that E„, is translationally invariant, then we have that
E„,[y(t)]=E„,[p] is constant as a function of t and we
find by taking the derivative with respect to t at t = 1 and
t =0 that

der some restrictions. If a potential satisfies relation (65)
and if v„ is a functional derivative of some functional
E„, which is bounded from above or below (the exact
exchange-correlation functional is bounded from above as
E„, 0), then this functional is translationally invariant.
If we use the path of Eq. (64) and insert it in Eq. (6) we
obtain

u„,([p(r+R)];r)=u„,([p(r)];r+R) . (65)

Thus v„, with the translated density inserted yield the
same value in point r as v„, with the original density in-
serted in point r+R [12]. Using the line integral of Eq.
(6) we now however also prove the opposite statement un-

E„,[p(r+R)]—E„,[p(r)]
= f dt J drv„, ([y(t)];r}RVp(r+tR) . (66)

If we use the translation symmetry property (65), we have

E„,[p(r+R)] —E„,[p(r)]= f dt fdru„, ([p];r+tR)R Vp(r+tR)
1= f dt J dru„, ([p];r)R.Vp(r)=R fdrv„, ([p];r)Vp(r),

0
(67)

E„,[p(r+R)]=E„,[p(r)] . (69)

We can carry out a similar analysis for scaling proper-
ties. We then define a path

(70)
I

in which we carried out a substitution r+tR~r, which
makes the t integration trivial. The right-hand side of
this equation can be made arbitrarily large (both positive
and negative) by making R arbitrarily large. As E„, is
bounded from above or below this right-hand side of the
equation must therefore by zero, which yields

fdrv„, ([p];r)Vp(r)=0, (68)

and therefore one has

with n some positive integer. By differentiating the above
equation in t = 1 and t =A, one derives

u([A, p(Ar)];r)=A, "u([p];Ar) . (72)

This result has been derived before [33], but is presented
here to motivate our following statement. If a potentia1 v

satisfies the scaling relation (72) and is the functional
derivative of some functional E with E[0]=0, then this
functional satisfies the scaling property (71). If we use
the line integral of Eq. (6) and insert the path of Eq. (70)
we obtain

Suppose we have an energy functional E with functional
derivative v which satisfies the following scaling relation:

(71)

E[ (yA, )]—E[0]=J dt f dr u([y(t)];r)[3t p(tr)+t r V„(ptr)] .

E[y(A)] —E[0]=A,"(E[y(1)]—E[0]] . (75)

In this equation E[0] is just an integration constant. For
instance, if we add to the functional (71) an arbitrary con-
stant, then it will satisfy the above Eq. (75) and its poten-
tial will still satisfy (72). So, if we set E[0]=0, then we
obtain

E[A, p(Ar)]=A, "E[p(r)],
which proves our statement.

(76)

If we now use the scaling property (72), we have, after a
substitution,

E[y(A, )]—E[0]=f dt f dr t" 'v([p];r)
0

X [3p(r)+r Vp(r)]
gn fdr v([p];r)[3p(r)+r. Vp(r)] .
n

(74)
Hence we have

VI. CALCULATING MQLKCULAR BINDING KNKRGIKS
FRQM POTENTIALS

One of the most successful applications of density-
functional theory has been the calculation of molecular
binding energies. This is largely due to the development
of gradient corrected functionals. However, the poten-
tials corresponding to these functionals are not much im-
proved [12],proving that the functionals still deviate con-
siderably from the exact one. Since the exact functional
is unknown, whereas the exact (or at least an accurate)
potential can be obtained from an accurate density [12],
an improvement of the existing gradient corrections
might be sought in the development of better potentials
in combination with a calculation of the energy from the
potential. In this section we will discuss how to obtain
energy differences from potentials. Suppose we have a di-
atomic molecule consisting of atom A and atom B. The
total density of the molecule is given by pM=pz+4p,
where pz =p ~ +p~ is the sum of atomic densities and Ap
is the deformation density of the molecule. The binding
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+«-I px] —E..IP~ )
—

E-[Pa�])
(77)

The first term between brackets we will call hE& and the
second term between brackets we will call AE2. The
term AE, refers to an energy difference where the nuclear
framework and therefore the cusps in the density do not
change, only the density p(r) changes. An analogous sit-
uation holds for energy differences relating to ionization
and excitation energies. This division of the total bond
energy has been applied for the first time in connection
with the transition-state method for bond energies
developed by Ziegler and Rauk [36], in which b,E, is cal-
culated using a Taylor expansion of E„,[p] around the
"transition" density p T

=
—,
' (pz+ PM ). Ziegler used a Tay-

lor expansion in density-matrix elements P„,which gen-
eralized the transition-state method of Slater [39] who
used a Taylor expansion in orbital occupations. The cal-
culation of KE2 has until now been carried out using ex-
plicit expressions for E„[p] as integrals over approxi-
mate (LDA or GCiA) energy densities, the integrations
being performed by three-dimensional numerical integra-
tion. We note in passing that an analogous division in
two terms, using the intermediate density, pz is also use-
ful for other energy terms such as the electrostatic ones,
enabling one to achieve numerical precision by an ade-
quate division between analytically and numerically cal-
culated parts [37].

We address in this section the problem of calculating
the two energy terms when only the potential is known.
The first term hE

&
can in practice be calculated accurate-

ly using the linear path [37,38]

y(t) =Px+ t(PM Pq) =Px+ tbp

which yields

(78)

bE, =f dt fdru„, ([y(t)];r)bp(r)
0

= f droop(r) f u„,([y(t)];r)dt . (79)
0

When using a simple Simpson rule for the t-integration
one obtains

hE, =fdr bp(r)( —,'u„, ([px];r)+ —,
' u([ P]T;r)

+-,'u„,([pM];r) },
where PT=y( —,')= —,'(px+p~) is the so-called transition-
state density. This procedure actually proves to be exact-
ly equivalent to the transition-state method [36] carried
through to third order in 6p. It may easily be extended
to higher accuracy by using the higher-order numerical
quadrature in t, but this is usually not necessary. For
practical applications of the above method with approxi-
mate exchange-correlation potentials it is necessary that
the approximate potential give a good description of the
real exchange-correlation potential along the path in p

energy contributio~ of the exchange-correlation energy is
then given by

[pM l
—E..[p ~ ) E—-[pa )

=«..[pM) —E..[px))

space that is defined by Eq. (78).
The other part of the binding energy b E2 also has to

be calculated from the potential if explicit exchange-
correlation energy expressions are not known. Qne way
to do this is just to calculate the total energies of the
atom and the molecule using Eqs. (8) and (9) and to calcu-
late the difference. This procedure has, however, some
disadvantages. First of all, along the path y(t)=tp the
number of particles is not conserved, which presents
some di%culties from a theoretical point of view.
Second, if one makes an approximate expression for the
potential v for some ¹ lectron system, for instance, by a
fitting procedure to some known exact potential, one
makes unknown errors for systems with a different num-
ber of electrons. It is therefore of some advantage to use
particle number conserving paths. Therefore, to calcu-
late the energy difference AE2 one might consider the fol-
lowing path:

yx(t) =p„(r)+pii(r+tR), (81)

in which we let t run from 1 to ~ and R is the internu-
clear distance. This path is particle number conserving.
If we have pz=y(1), then

VII. CONCLUSIONS

In this work we addressed the question of how to ob-
tain exchange-correlation energies from (approximate)
exchange-correlation potentials. This is of some theoreti-
cal and practical importance as many approximate ex-
change and correlation potentials have been proposed. It
is shown that one can use line integrals to express the
exchange-correlation energy in terms of the exchange-
correlation potentials. It was further shown how to
derive symmetry properties of the exchange-correlation
energy functional from the corresponding properties of
the exchange-correlation potential. We further obtained
some upper and lower bounds to the exchange-
correlation energy which can be calculated if the
exchange-correlation potential is known in two limiting
cases, at the beginning and the end of the scaling path.
We showed how to express the kinetic part T, of the
exchange-correlation energy in terms of line integrals
over the exchange-correlation v„, or correlation potential

AE2 = vxc

= fdr f dtu„, ([yx(t)];r)R Vp~(r+tR) . (82)

Application of the above formula puts some severe re-
strictions on approximate exchange-correlation poten-
tials. This approximate potential should give a good
description of the exact v„, at all bond distances. For in-
stance, the bond midpoint peak in v„, in dissociating mol-
ecules [28,29] must also be described by this approximate
v „,. This might be feasible, for instance, in a gradient ex-
pansion using Laplacians of the density in any approxi-
mate v„,. However, care should be taken for potentials
which are not functional derivatives, as in that case the
value of AE2 will depend on the dissociation path taken.
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v, and derived some constraints on the correlation poten-
tial. We finally addressed the problem of calculating the
exchange-correlation part of molecular binding energies
from approximate potentials. The constraints and ine-

qualities derived in this article might prove useful to the
development of more accurate exchange-correlation po-
tentials improving the LDA and GGA potentials. Work
along this line is in progress.
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