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Electron field-emission data, quantum mechanics, and the classical stochastic theories
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Electron field-emission experiments conclusively eliminate a family of classical stochastic theories that
have been proposed as alternatives to quantum mechanics. Modified stochastic theories with certain
nonlocal interactions may be postulated and may agree with the experimental data, but these revised
theories should not be described as classical stochastic theories.
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In a recent paper [1] it was shown that electron-
tunneling spectroscopy provides a straightforward exper-
imental test between quantum mechanics and a class of
alternative theories, the classical stochastic theories. The
classical stochastic theories assume that the Maxwell
equations, Lorentz force law, and classical mechanics are
rigorously true even for subatomic distances, but each
particle undergoes random Auctuations in position and
momentum due to a postulated fluctuating submicroscop-
ic medium. Within these theories the Schrodinger equa-
tion is viewed essentially as a diffusion equation and
probability enters the theories only through classical
ideas. Some examples of classical stochastic theories can
be found in the literature [2—7]. The conclusions of this
paper do not apply to theories which modify classical
physics through the addition of nonlocal interactions; for
example, Bohm's theory is "distinctly non-Newtonian" in
the words of Durr, Goldstein, and Zanghi [8] since it in-
troduces a quantum potential. Thus Bohm's theory is not
a classical stochastic theory and it is not covered by the
arguments in this paper.

A particle cannot tunnel through a potential barrier
according to classical physics, but in the classical sto-
chastic theories a particle may acquire sufficient kinetic
energy from the Auctuating background medium and es-
cape over the barrier. It must be emphasized that this es-
cape of particles over a barrier is a selection process
-which favors the particles with high kinetic energies.

On the other hand, according to quantum mechanics,
particles tunneling through a potential barrier at very low
temperatures typically lose energy due to inelastic col-
lisions within the barrier region. Bruinsma and Bak [9]
have derived a rather general quantum theory of inelastic
tunneling and have obtained expressions for ( b,E ), the
mean change in energy per tunneling electron. If E is the
initial energy of an electron, E is its energy after tunnel-
ing, and (bE) =(E') —(E), then according to quan-
tum mechanics [9] inequality (1) is always valid at T =0
K and is generally valid for low but nonzero tempera-
tures

(SE)&0. (1)

The equation (hE ) =0 describes elastic tunneling.
It is also possible to make quantitative predictions for

electron transmission across a potential barrier for the

classical stochastic theories. Let Vz be the maximum
value of the barrier and choose coordinates as in Fig. 1 so
that the potential barrier is located at positions x 0.
Consider an ensemble c composed of all free electrons ini-
tially on the left-hand side of the barrier x ~ 0. The aver-
age energy of an electron in this ensemble will be denoted
by (E),. Now, let us consider the subensemble S of
those electrons which have crossed over the barrier po-
tential by a later time t2. The average energy of an elec-
tron in this subensemble is represented by (E'), . Each
electron in this subensemble must have attained an ener-
gy greater than Vo, at least for a brief time, in order to
surmount the potential barrier [1,3]. Unless the electrons
experienced a subsequent correlated decrease in energy
immediately after crossing the barrier, then

(E'), ) Vo . (2)

Inequalities (1) and (3) yield very difFerent predictions
since quantum mechanics permits electrons to tunnel
elastically through a barrier with no change in energy,
but according to the classical stochastic theories elec-
trons may pass over a potential barrier only if they have
sufficient kinetic energy. An experimental test between
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FIG. 1. Electrons in the metal at x &0 may tunnel through
the vacuum in the region 0&x &x2.

The difference in mean energies, according to the classi-
cal stochastic theories, can be represented by
( b,E )os = (E'),—( E ), and from (2) we find

(3)
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these alternatives requires only that the change in energy
of electrons be measured after traversing a barrier of po-
tential energy ( Vo) » (E ). It was suggested in Ref. [1]
that the vacuum tunneling of electrons at low tempera-
tures might provide such an experimental situation and it
was noted that photoemission measurements would per-
mit an independent measurement of the potential barrier
Vo.

Recently it has been pointed out [10] that previously
published electron field-emission measurements have pro-
vided data [11]for such a test. The field emission of elec-
trons from a cold metal surface under the inhuence of a
strong electric field involves electron tunneling through
the vacuum as shown in Fig. 1. The electrons in the met-
al are filled to the Fermi energy E~. The vacuum state
normally would be drawn as a horizontal line a few elec-
tron volts above the Fermi energy, but in the presence of
a strong electric field the potential outside the metal will
be deformed so that an approximately triangular poten-
tial results. Electrons that tunnel through this barrier are
attracted to the anode and may pass through a tiny probe
hole in a screen. A third electrode may be placed to the
right of the anode and a retarding potential electron ener-
gy analyzer can be operated [12]. The collected current
can be measured as a function of the voltage between the
emitter and analyzer, and if this collected current is
differentiated with respect to the bias potential then a
"total energy distribution" of the field emitted electrons
can be obtained [12].

A wealth of field emission energy distribution data has
been collected with this technique, but the present discus-
sion will concentrate on measurements from the (100)
surface of tungsten since it has been studied in great de-
tail. Plummer and Gadzuk [11,13] found that the mean

energy of electrons which had tunneled from the W(100)
surface through the vacuum at T =78 K was
(E') =EF 0.2+0. 1 eV—. Since the tunneling electrons
originate with energies near the Fermi level [12], this ex-
perimental value obviously agrees with the quantum-
mechanical prediction of inequality (1). The data of
Plummer and Gadzuk also showed that more than 99%
of the field-emitted electrons had final energies E'~EF.
The few electrons with relatively high energies after tun-

neling, E~ & E' & EF+ 1.5 eV, correspond to the "tail" of
the energy distribution and may have experienced
electron-electron interactions either during the tunneling
process or in the electron beam outside the metal [11]. It
is also relevant to note that Modinos and Nicolaou [14]
have calculated the energy distribution of electrons emit-
ted from the W(100) surface, assuming an applied electric
field of 5 X 10 V/cm and a work function of /=4. 5 eV.
Their quantum-mechanical calculation is in good agree-
ment with the experimental results of Plummer and Gad-
zuk [11].

The height of the potential barrier Vo is nearly equal

[15] to the work function P, but there are some complica-

tions when field-emission data are used to determine P.
The image potential correction [15]must be included and
more seriously it is difficult to Ineasure independently the
applied electric field during field-emission experiments.
Vorburger, Penn, and Plummer [16] have taken a series
of field-emission measurements as a function of the ap-
plied electric field and have extrapolated to zero field to
determine the work function of W(100). Their result
/=4. 57+0. 14 eV is consistent with the measurement
/=4. 63+0.02 eV, which was obtained for W(100) by the
field-emission retarding potential technique [17], and a
quoted value [18] of /=4. 6 eV based on photoemission
data from polycrystalline W. It must be emphasized that
the consistency of these data and the Ineasured energy
distribution of the field-emitted electrons from W(100)
provide strong confirmation of the quantum-mechanical
predictions.

Although the empirical results agree with quantum
mechanics, they are in conspicuous disagreement with in-
equality (2), which has been derived for a family of classi-
cal stochastic theories. Expression (2) for these classical
stochastic theories indicates (E'), Vo and a plausible
value [15,16] for Vo must be at least 4 eV above the Fer-
mi energy, or, in other words, about 0.9$. The previous-
ly cited experimental value [11,13] for the mean electron
energy after tunneling (E') =E~ 0.2+0. 1—eV violates
this inequality (E'), EF+4 eV obtained for a family of
classical stochastic theories.

In conclusion, electron-field emission data are in excel-
lent agreement with quantum-mechanical predictions. A
proponent of classical stochastic theories now must argue
either that the effective barrier potential Vo in field-
emission measurements of W(100) is about 4 eV less than
the work function or that each electron after it escapes
over the barrier must experience a correlated decrease in
energy. A stochastic theory proponent might hy-
pothesize the existence of new forces or nonlocal interac-
tions to account for the decrease in energy after an elec-
tron escapes over the barrier, but such forces are, in
themselves, signifieant departures from classical physics.
In effect, the classical stochastic theory will have been
modified to resemble Bohmian mechanics [8] and it must
be emphasized that Bohm's mechanics is not a classical
stochastic theory and is not covered by the present
analysis. If a classical stochastic theorist admits that
electrons passed over the barrier and does not introduce
the quantum potential or a similar nonlocal interaction,
then one must argue that it is more probable for an elec-
tron to have negative Auctuations than positive fIuctua-
tions in energy after it has crossed the potential barrier.
This is equivalent to the implausible idea that a person
Nipping coins, who repeatedly has obtained heads, is
more likely to obtain tails on the next Rip.
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