
PHYSICAL REVIEW A VOLUME 51, NUMBER 2 FEBRUARY 1995

Laser cooling a trapped atom in a cavity: Bad-cavity limit
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We analyze theoretically a one-dimensional model of laser cooling of an atom or ion trapped in a
cavity. We assume that the cavity loss rate is much larger than the atom-cavity coupling (bad-cavity
limit) and that the atomic excited state is weakly occupied (low saturation limit). After elimination
of the cavity mode and the atomic excited state, we derive rate equations for the populations of
the trap states. We find that in the Lamb-Dicke limit the atom can be cooled to the ground state
of the trap even in the strong confinement limit. This result is interpreted in terms of quantum
interferences between di8'erent cooling and heating processes involving spontaneous emission in the
cavity.

PACS number(s): 42.50.Dv, 42.50.Lc

I. INTRODUCTION

The main goal of laser cooling of atoms confined in
electromagnetic traps is to leave the atoms in the ground
state of the trapping potential. In this state the atoms
reach their minimum temperature, which has important
implications in both high-resolution spectroscopy and the
developing field of quantum statistical mechanics of laser-
cooled atoms [1].

In laser cooling of trapped atoms or ions one usually
distinguishes two limits, depending on the typical size of
the ground state of the trap ao and the wavelength of
the laser A [2]. For ao )) A one expects that the trapping
potential does not play an important role in the cooling
process and therefore one can use the cooling schemes de-
veloped for free atoms [3]. In the opposite limit A » ao,
the so-called Lamb-Dicke limit (LDL), the (quantized)
motion of the atom in the trapping potential becomes
important, which leads to different cooling mechanisms
than those for free atoms. In the LDL and for harmonic
traps, laser cooling to the ground state of the trap may
be achieved by tuning the laser to the lower motional
sideband in such a way that the atom loses energy ev-
ery time a photon absorption-emission cycle takes place.
This cooling mechanism is known as sideband cooling [4]
and requires the trap frequency v to be larger than the
spontaneous emission rate I', of the atomic transition
excited by the laser v » I', (strong confinement limit).
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Akademia Nauk, 02-668 Warsaw, Poland.

Sideband cooling has been demonstrated experimentally
with a single Hg+ ion confined in a Paul trap [5]. In
the weak confinement limit I', & v several schemes have
been proposed to cool the atoms to very low tempera-
tures [6,7].

In a recent paper [8], a scheme to cool free atoms using
a cavity has been proposed. The cavity is tuned to one
of the Mollow's sideband of the atomic emission spec-
trum in order to enhance the transitions that decelerate
the atoms in a Sisyphus cooling scheme. Zaugg et aL

have proposed the adiabatic cooling of atoms in cavities
[9]. Laser cooling of trapped atoms strongly coupled to
a cavity mode (i.e. , in the good-cavity limit) has been
studied [10], showing that the temperature of the atoms
reHect the ion —cavity-mode interaction spectrum. How-
ever, in this good-cavity limit, the minimum temperature
is the same as that achieved with traditional mechanisms
for laser cooling of trapped atoms.

In this paper we analyze laser cooling of an atom
trapped in a harmonic potential and placed inside a cav-
ity. We concentrate on the bad-cavity limit, where the
cavity loss rate is much larger than the atom-cavity inter-
action. We show that in the LDL and when emission into
the cavity mode dominates the spontaneous emission into
the background modes, the atom may be cooled down to
the ground state of the trap. We interpret this result as a
consequence of the existence of a destructive interference
effect between two quantum paths for heating transitions
between trap levels. This effect disappears outside the
LDL and therefore the cooling mechanism does not work
for free atoms or weak traps. To derive analytical results,
we eliminate both the cavity-mode degrees of freedom
and the excited atomic state. We use two formal proce-
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dures to perform these eliminations. The present paper
shows how these procedures can be combined to simplify
the problem of atomic motion in cavities in some limiting
cases.

The paper is organized as follows. In Sec. II we in-
troduce the model in the form of a master equation. In
Sec. III we perform several approximations to simplify
the problem in the bad-cavity and low-intensity limit and
derive a set of rate equations. In Sec. IV we discuss the
results. Finally, a summary is given in Sec. V.

II. MODEL

We consider a one-dimensional model of an atom
trapped in a harmonic potential of frequency v. We
describe the internal structure of the atom by a two-
level system of ground and excited levels ~g) and ~e), re-
spectively, with transition frequency ~0. The ion inter-
acts with a laser beam of frequency ~~ and wave vector
kt = art/c. The trap is placed inside a cavity of frequency
~, and wave vector k, = u, /c. The master equation
describing this situation is (h = 1)

Note that in our one-dimensional model spontaneous
emission takes place only through the cavity mode. The
master equation (1) can be easily generalized to include
spontaneous emission in three dimensions, i.e. , into the
modes other than the cavity mode.

III. APPROXIMATIONS

The master equation (1) cannot be solved analytically.
Even solving it numerically using a truncated basis of
internal atomic, trap, and photon states represents a
formidable task. However, since we are interested in the
bad-cavity and low saturation limits, we can simplify the
problem considerably. In these limits, one can eliminate
the cavity mode and the internal excited state of the
atom, which leads to simple rate equations for the pop-
ulations of the trap levels. In this section we derive such
rate equations and give analytical expressions for their
solutions in the LDL.

A. Elimination of the cavity mode

p= —i[H +H. +H,„+H .+H &, p]+8 p, (1)

where

We assume that the cavity loss rate is much faster than
the laser-ion and cavity-mode —ion interactions, i.e.,

1+a = 2WOOz)

H =(u b~b,

Hqz ——va a

(2a)

(2b)

(2c)

+ ~(t(~ ~(t) + — ~(itr~ ~, t)]0
a-) — 0 0 e

2

K = gS(o+b+ obt). (2d)

are the free Hamiltonians for the internal structure of the
ion, for its motion in the trapping potential, and for the
cavity mode, respectively, and

K )) g, O. (5)

Z't xHot —
(t)

—iIIot (6)

where Ho ——&woo', + w, btb Using (1),. we find that

In this limit, one can eliminate the cavity mode and
find a master equation for the atomic degrees of free-
dom alone. In this subsection we follow the procedure
given in Ref. [11] to derive such a master equation.

Let us de6ne a density operator

describe the interaction of the atom with the laser and
cavity mode, respectively. Finally,

P = -'[H( ) + H,„,P]

ig (e "b[o+S,p]+—e" [b, p]o+S —H.c.), (7)

8'p = K(2bpbt —btbp —pbtb)

describes the cavity damping.
Here the o. are the standard spin-2 matrices describing

the internal structure of the atom and a (b) and at (bt)
are creation and annihilation operators for the harmonic
oscillator (cavity mode). We can express the position op-
erator r in terms of the harmonic oscillator operators; in
particular, k,r ktr = t1(a+ at), where t7 = gk& /(2mv)
is the Lamb-Dicke parameter. 0 is the Rabi frequency
for the laser-ion interaction and g is the coupling con-
stant for the cavity-mode —ion interaction. The operator
S is de6ned as

S = sin(k r + P),

where P depends on the relative position between the trap
center and the cavity standing wave. We assume that the
cavity mode has a simple sinusoidal spatial dependence.
Finally, e is the cavity loss rate.

where H = —24 O„with 4 = u, —~0 being the()
cavity-mode —ion detuning. In the derivation of (7) we
have used

c t (b~)
——mtb 8 t~-

e '([b, X]) = e" [b, e 'A]

and ignored the laser-ion interaction. In the limit (5)
this interaction can be added independently to the Anal
master equation [see Eq. (11) below].

Tracing Eq. (7) over the cavity mode states, we get
the following equation for the reduced density operator
I = T.(P):

p = —i[H(') + H,„,P] —ige "'Tr, (b[o+S, p] —H.c.) .

In the limit (5), following arguments identical to those in
Ref. [11],it can be shown that
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where

e "'p = i (—[b, p]o+T. —H.c.), l:,p = —i[H&'& + H,„,p] + l:"p„

l ip, = z[—H „p],(&)

(17a)

(17b)

—(tc+iA, )v —iHtpTS iHqpv.

0
(1O)

a"d

Substituting (9) into Eq. (8) and coming back to the
nonrotating frame, we find that p, = Tr, (p) obeys the
following master equation:

H«g(o+e* r + o
—

e
—'

)
1 1

a-l 2
)

(18a)

(i8b)

p = —x[H~ +. Hi„+ H~ i, p] + l:"p.

Here we have added the atom-laser interaction and de-
fined

l:"p, = g(oTpSo. + —o+cr STp+ H.c.). (12)

gT . S

The Liouvillian 8" describes the efFects of the cavity
on the behavior of the atom. Apart from the interaction
with the laser, the atom emits photons into the cavity
mode which leave the cavity rapidly. The correspond-
ing effective spontaneous emission rate depends on the
position of the atom through the position-dependent in-
teraction with the cavity mode. Apart from that, there
is an energy shift (Lamb shift) which also depends on
the position of the atom. To show this, let us consider
that the position of the atom remains practically con-
stant during the time 7 = K (i.e. , r )& v). In this case,
we have

with L~ ——w~ —~0 being the laser-ion detuning.
We define the projector operators Pa'nd Q, fulfilling

'PX = ) )n, g)(n, g((n, g(X(n, g)
n=p

and Q = 1 —P 'H.ere ~n, g) denotes a state with the
atom in its internal ground state and in the nth trap
level. Projecting master equation (11), we obtain

'Pp = P(l:p+ l:i)Qp, ,

Qp = &i Pp+ Q(l-p+ l-i)Qp,

(20a)

(2ob)

where we have used that PZ~P = COP = 0. We then
solve formally Eq. (20b) for Qp and substitute the re-
sult into (20a). Expanding the result in powers of 0 and
keeping the lowest nonvanishing orders, we find the fol-
lowing equation for the population of the nth trap level
P„= (n, g~ p~n, g):

and we can write n'=0
P„+ ) I „~„P„.

n'=0
(21)

l: p = —i[b(r) —ip(r)]o+o p, ~ipo+o [b(r) + ip(r)]
+2ppo. S@SO.+, (i4)

where

Here

02 ,I„I' ~ = Re nT
2 A( +. v(n' —ata) +igST

p(r) = p sin(k, r + P),
b(r) = p(r)A, /K, —

(»-)
(»b)

1
x n'e '"" Snb.( + v(n' —ata) —igTt S)

and p = g K/(v + b, 2). Here 2p(r) and b(r) are the
position-dependent spontaneous emission rate and the
Lamb shift, respectively. When v & ~, the operator T
incorporates the fact that the position of the atom may
change appreciably during the time in which the cavity
mode is damped.

B. Elimination of the atomic excited state

For low laser intensities the internal excited state ~e)
will be negligibly occupied. Thus, in this limit, one can
eliminate the excited state ~e). To do this, we follow
standard procedures based on projector techniques. We
first rewrite master equation (11) in a frame rotating at
the laser &equency ~~ as

(22)

are the Raman-type transition rates &om state ~n') to
fn).

The rate equation (21) can be easily solved numeri-
cally using a truncated set of harmonic oscillator states.
According to the above discussion, it is valid in the lim-
its v )) g and 0 /[p(r) + b(r)2] (( 1. In the following,
we will further assume that the trap frequency is much
smaller than the cavity loss rate (w, » v). In this limit,
the coeKcients I' ~ can be written as

2

2 En', g eR'

(23)

where

p = (lp+li)p, ,
where H,g(r) = H + Hi„+ [b(r) —ip(r)]o+cr'

The interpretation of (23) is simple since it has the
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typical form of a Raman transition rate. The process
]n'} -+ ~n) takes place through the absorption of a laser
photon (which is accompanied by a recoil kick e'""), fol-
lowed by a spontaneous emission into the cavity mode.
The spontaneous emission rate is p(r), i.e. , depends on
the coupling constant between the atom and the cavity
mode at the position r of the atom. There is also a

I

position-dependent Lamb shift b(r) induced by the cav-
ity.

Finally, it is worth mentioning that the expression (23)
for the rates can be easily generalized to the case where
there is spontaneous emission in modes other than the
cavity mode. In such a case, one can. write I'„
I'„' „, + I'„' „,where I'„„,is given in (23), and

2
02 —ikru
2 1 E„g —H,s (r)

(24)

where 2p' is the spontaneous decay rate into the back-
ground modes, N(u) is the usual dipole emission rate,
and the replacement H, fr(r) ~ H,s(r) + ip' is under-
stood.

C. Lamb-Dicke limit

e'"' = 1+ ig(a+ at) + o(q2),
8 = sin(P) + icos(P)(a + at) + o(g ).

On the other hand,

(25a)
(25b)

E„s—H, fr(r)

1 1+2'(b —ip) cot(P)(a + at)E„s—H, rr 0

1
E , —H (0)

+ ("') (26)

In the LDL, the motion of the atom is restricted to a
region small compared with the laser wavelength. In this
limit we have g &( 1. Thus we expand the rates I'

+ in
powers of g and keep only the lowest nonvanishing order.
The rates I + are of zero order in g, whereas the rates
I' ~q+ are of second order. The rest of the rates are,
at least, of fourth order in g. Since the rates I'„~„do
not appear in the rate equations (21), we only derive
the expression for the rates that change the quantum
oscillator number by unity. %e first expand e'"'" and 8,
obtaining

P- =(1-( )-) (~)ss
(n)ss + 1

(29)

where (n) ss is the mean oscillator quantum number and
is given by

( )
n+ 1+-n

r---+1 —I'-+1-. (30)

IV. DISCUSSION

The most interesting feature of laser cooling in a cav-
ity in the limits studied here is the possibility of cool-
ing to the ground state of the harmonic oscillator. This
can be achieved when I' +q~ equals zero, since in this
case no transition increasing the oscillator quantum num-
ber takes place (in the Lamb-Dicke limit). This ef-

fect is the consequence of a destructive quantum in-
terference effect between two processes: The erst is

]n, g) ~ ~n+ 1, e) ~ ~n + 1,g) [see Fig. 1(a)] and corre-
sponds to the first term in the formula (28); the second is

~n, g) m ~n, e) ~ ~n+ l, g) [Fig. 1(b)] and corresponds to
the second term in the formula (28). Note that the tran-

In the LDL limit, the rate equations (21) can be solved
analytically. In steady state, transitions from ~n)

~n+ 1) are balanced with those from ~n+ 1) -+ ~n) (de-
tailed balance), i e , I.'„.+ „+iP +i ——I'„+i~„P, which
results in an occupation probability of level n

where we have used. the shorthand notation b = h(0)
and p = p(0). Substituting these expressions in (23), we
obtain

(27a)
(27b)

with

(a)

le)

(b)

le&

02/2
E(v) = (n+ l)g p a) —b)'+ p2

2(h —ip)x cos(P) 1 +
L~ —8+ P+xp

b) —b+ ip
L~ —h+ P+zp (28)

Ig&
In&

n+1&
Ig)

In&

In+1&

FIG. 1. Heating transitions between trap levels in the
Lamb-Dicke limit. In (a), the atom absorbs a laser photon,
increasing the quantum number n. This photon is emitted
into the cavity without changing n. In (b), the atom absorbs
a laser photon without changing n and then emits a photon
into the cavity, increasing n by one.
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sition amplitudes for these processes are proportional to
sin(P) and cos(P), respectively. On the other hand, their
phases depend (in a different manner) on the atom-laser
detuning At. It is then clear that by varying these two
parameters the destructive interference can occur. A sim-
ple analysis shows that the rate I' +~~ is zero when

sin(2$) = AI/(2p),

AI = [v + Qv2+ 4p2 sin(p)4]/2.

(31a)

(31b)

Figure 2 shows a contour plot of the mean quantum
oscillator number (n)sg as a function of the detuning
AI and the phase P for rI = 0.03, K = 200v, g = 20v,
and L = 0. This figure has been plotted after solving
numerically Eq. (21) with the rates given in (22). For

—0.9v and P 2.18, the mean quantum oscillator
number is practically zero. Note that the parameters for
this plot have been chosen so that the weak confinement
applies (2p = 4v).

Prom the formulas given in Sec. III we can derive the
cooling rate I . In the LDL, it is defined from the evolu-
tion equation of (n) ~s,

(n) = —I'(n) + D,

where D is the diffusion coefFicient. In our case, the cool-
ing rate is given by

(33)

Note that, as expected, it is proportional to g 0 and also
depends on the particular values taken by the detunings,
etc.

We stress the fact that due to this interference effect,
the ground state of the harmonic potential ~0) is a dark
state, since the atom, once it has reached this state, can-
not leave it. We wish to emphasize that the cooling mech-
anism based on this interference effect is completely dif-
ferent from the sideband cooling [4,2], whereby the state
~0) is a dark state as well (in the strong confinement limit

p)& p', (34)

where 2p, is the spontaneous emission decay rate in

10

v « p). In that case, the atom cannot leave the state
~0) since the laser photons are very far from resonance
for all possible transitions. In fact, the interference effect
described here works in the weak confinement limit as
well.

This cooling mechanism based on the existence of a
destructive interference only operates in the LDL. This
is clear since outside this limit, although transitions
n ~ n + 1 are suppressed, other transitions increasing
the quantum number n can occur. To show this, we have
plotted in Fig. 3 (n)s& [Fig. 3(a)] and I' as given by Eq.
(33) [Fig. 3(b)] as a function of the Lamb-Dicke parame-
ter g for the same parameters as in Fig. 2 and 4 = —0.9
and P = 2.18 [which correspond to the values for which
(n)~~ 0 in the LDL]. Figure 3(a) shows that (n)gs
is an increasing function of q. In fact, for g & 0.2 the
population of the ground level is already significant. On
the other hand, in Fig. 3(b) we have computed the cool-
ing rate I' as the maximum nonzero eigenvalue of the rate
equations (21). In order to compute I' we have solved nu-
merically these rate equations taking a truncated basis of
harmonic oscillator states, namely, 25, 50, and 100 states
(solid, dashed, and dash-dotted lines, respectively). For
small values of g, the dependence is quadratic, in agree-
ment with the results derived above for the LDL. For
increasing values of g, this dependence changes. As one
takes more states for the calculation, the cooling rate
changes its quadratic dependence for smaller values of
g. This is due to the fact that the cooling starting &om
higher trap levels is slower, because the transitions in-
creasing and decreasing the quantum oscillator number
tend to the same values. We remind the reader that for
most of the ions trapped in Paul traps, g & 0.1.

Observation of the effects predicted above in a real
three-dimensional trap would require
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FIG. 2. Contour plot of the mean quantum number of the
harmonic oscillator (n)ss in steady state as a function of
the laser detuning A~ and the angle P. The parameters are
g = 20v, K = 200v, A = 0, and g = 0.03. Dashed lines
delimit regions where cooling or heating occurs.

FIG. 3. (a) Mean quantum oscillator number (n)ss in
steady state and (b) cooling rate as a function of the
Lamb-Dicke paraxneter g for the same parameters as in Fig. 2
and A~ = —0.9v and P = 2.18. These parameters corre-
spond to those which give the minimum value of (n)ss in the
Lamb-Dicke limit. Ill (b), the solid, dashed, and dash-dotted
curves have been calculated using a truncated basis of 25, 50,
and 100 states.



51 LASER COOLING A TRAPPED ATOM IN A CAVITY: BAD-. . . 1655

modes other than the cavity mode. In this case there are
few photons emitted into those other modes (compared
to those emitted into the cavity mode), which is the re-
quired condition to neglect spontaneous emission into the
background modes. For this, one should be able to en-
hance the atomic spontaneous emission with the cavity
[12]. At present, there are two regimes for experiments in
cavity QED, namely, the optical and the microwave ones.
In the optical regime, the condition p ) p, has been ap-
proached and there are attempts to improve it [13]. In
the microwave regime, the condition (34) has been suc-
cesfully achieved, for instance, in the recent experiments
of Lange and Walther [14].

Finally, we would like to point out that there is an
alternative possibility to use a cavity to cool a trapped
particle. It consists in tuning the cavity to the upper
motional sideband 6 = v. In this case and for K )) v
only transitions n ~ n —1 would take place since the
other would be very far &om resonance. However, this
cooling mechanism operates in the same regime as the

sideband cooling (note v )) K &) g2/K = p) and requires
very good quality cavities (v 3 MHz &) r.).

V. CONCLUSIONS

We have studied laser cooling of a trapped atom in a
cavity in one dimension. We have derived a rate equa-
tion valid in the bad-cavity and low saturation limits.
We have obtained analytical expressions for the transi-
tion rates between neighboring levels in the LDL. These
expressions predict that the ground state of the harmonic
oscillator is a dark state for certain parameters. This ef-
fect is the consequence of a destructive quantum inter-
ference and is not restricted to the strong confinement
limit.
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