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We derive the master equations for the fields in the one-mode A-type micromaser and laser with
injected atoms in a superposition of their states. In terms of effective parameters, these equations
are equivalent to those for a two-level micromaser and laser. The interference terms in the master
equations may cancel the absorption terms independent of statistical properties of the 6eld. Due
to the atomic coherence between the two degenerate lower levels, the generation of 6eld states with
sub-Poissonian photon statistics is possible in the micromaser without the need for a population
inversion. If an equivalent level system is used in a laser operating without population inversion it
can produce 6eld states with Poisson distributions of the photon number.

PACS number(s): 42.52.+x, 42.55.—f, 32.80.—t, 42.50.Dv

I. INTRODUCTION

Recently there has been considerable interest in non-
inversion lasers [1—20]. Many schemes for laser action
without population inversion have been proposed [1—10].
Kocharovskaya and Khanin have predicted amplification
of ultrashort pulses in an active medium consisting of
three-level atoms with two nearly degenerate lower levels
[1]. Harris has considered the difference between emission
and absorption spectra due to Fano interference between
two lifetime-broadened discrete levels which decay into
an identical continuum [2]. Scully et al. have studied the
crucial role played by atomic coherence in driven atomic
systems [3]. Experimental observations of amplification
without inversion have recently been reported [18—20].
The study of noninversion lasers operating on three-level
atoms may provide us with interesting information on
coherent efFects resulting &om interference between dif-
ferent channels of atoxnic transitions.

Most of the previous studies [1—10] were, however, lim-
ited to the classical treatment of the field. Only a few
contributions [11—17] addressed the statistical proper-
ties of the radiated Geld. By using the density-operator
method, Zhu [11]has shown that the conditions for lasing
without inversion in the degenerate quantum-beat laser
are independent of the intensity of the laser Geld. Analyz-
ing the coeKcients of the Fokker-Planck equation, Bergou
and Bogar [12] predicted that the inversionless degener-
ate quantum-beat laser in steady state would be char-
acterized by a standard deviation of the photon number
approaching the Poisson value under appropriate condi-
tions. Manka et al. [13] found that for selected val-
ues of the parameters the radiated Geld in a three-level
laser driven by a coherent external field shows strong
sub-Poissonian characteristics. Squeezed lasing has been
studied by Gheri and Walls [14]. The reduction of spec-
tral linewidth in noninversion lasers has been predicted

by Agarwal [15] and Ritsch, Marte, and Zoller [16]. The
noise-&ee energy transfer in a A-type atomic medium has
been shown by Agarwal, Scully, and Walther [17].

On the other hand, recent developments in quantum
optics have provided a new kind of maser, the micro-
maser, operating with one atom at a time inside the cav-
ity [21—32]. These devices have allowed new tests of the
basic models in quantum optics, displaying a variety of
interesting quantum phenomena.

Though preparing three-level atoms in a mixture of
states with internal coherence is not easy, using three-
level atoms is attractive since such systems may yield
quantum noise quenching [33], lasers that emit squeezed
light [34], lasing without inversion [1—20], and new op-
tical materials with a substantially enhanced index of
refraction [35].

The purpose of this paper is to develop the quantum
theory of the one-mode A-type micromaser and laser with
injected coherence. We show that the interference terms
in the master equations may cancel the absorption terms
independent of statistical properties of the field. Due to
the atomic coherence between the two degenerate lower
levels, the generation of field states with sub-Poissonian
photon statistics is possible in the micromaser without
the need for a population inversion. If an equivalent
level system is used in a laser operating without pop-
ulation inversion it can produce field states with Poisson
distributions of the photon number.

In Sec. II we derive the master equations, present the
steady-state photon distributions and discuss the results.
In Sec. III we summarize our conclusions.

II. MASTER EQUATIONS AND STEADY-STATE
PHOTON DISTRIBUTIONS

We consider a micromaser or laser cavity in which the
atoms interact with the cavity mode for a finite time
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FIG. 1. The schemes of the one-mode A-type micromaser
(a) and laser (b).
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7 in the micromaser case or spend their life interacting
with the cavity mode in the laser case. The atoms have
an upper level a with the energy hO and a lower-state
doublet bz and b2 with the energy hOb, as shown in Fig. 1.
The dipole-allowed transitions between the upper level a
and the lower levels bq and b2 are resonant with the Geld
mode. The transition between the two lower levels is
dipole forbidden.

The interaction of the cavity mode with an injected
atom is described by the Hamiltonian

H = HA + Hp + HAp .

where

gy +g2 ~
2 2 (6)

e~ = e-la)&al+ ): e~.b, Ib-&&bi
n,P=1

where

We suppose that, before entering the cavity, each atom
is prepared either in the upper state or in a superposition
of the two lower states. The density matrix of the initial
state of each atom is given in the interaction picture by

Here, HA and Hp describe the free atom and free field,
respectively, and KAp describes the atom-Geld interac-
tion in the dipole and rotating-wave approximations:

- la&(al+ r mls ) Ib-&(b-I

Hp ——h(grata,

g~~ = 1) gbyb2 ~baby &

j=a,b1,b2

Ieb, s, I
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Let the atoms be injected into the cavity according to
a Poissonian process with an average rate r. Below, we
will study separately the micromaser and laser cases.

IIAF ) ~g (a la& &b I
+ Ib-) (al a ) (2) A. Micromaser

The operator
I j& &j I (j = a, bq, b2) describes the atomic

population of level j. The operator li&&jl (i g j) de-
scribes the transition from level j to level i. The photon
operators a and at describe the annihilation and creation
of photons in the field mode with the resonance &equency
u = 0 —Ob. The parameter g is the atom-mode cou-
pling constant corresponding to the transition a ++ b

We can show that the time-evolution operator U(t) in
the interaction picture has the form

In the micromaser, the injected atoms pass through
the cavity and the atomic Bux is so low that only one
atom is in the cavity at a time. The atomic decay is
negligible. The time of interaction of each atom with the
cavity Geld is much shorter than the cavity damping time
so that the relaxation of the cavity Geld can be ignored
while an atom is inside the cavity. For simplicity, we
suppose that the injected atoms have the same velocity
and, therefore, interact with the cavity field for the same
time. We denote this interaction time by w. As discussed
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in Ref. [36], the time evolution of the density matrix g of
the cavity field in the interaction picture is governed by
the equation

g —Tr(+) (&(r) ~a) (a] (3 g U (7 )) —g,
b-" "'

g = T ( ) (&(&) l~-) (t'p I
(8 g U'(&) j —g b-p .

i = ~~ @+Le,

where b g is the change in Lo due to an atom interacting
with the field for the time v, and Lg is the Liouvillian
operator which describes losses due to the coupling of the
cavity mode to a thermal bath.

The expression of b g is

bg g ~(A) (&(r)g~ 3 g & (r)) —g

Lg =
2 C(nb + 1)(2aga —a ag —ga a)

+2Cnb(2atga —aatg —gaat) . (12)

Here, nb is the number of photons in thermal equilibrium,
and C is the cavity damping rate.

By using Eqs. (5), the matrix elements of the operators

b Lo and b g are easily found to be

The expression of the Liouvillian operator Lg is given
by [36]

where

2
(aa) (b bp)=gaabg g+ ) gb b(3bg g 1

a,p=1
(10) bi lg(n, n') =8~ ~g(n, '),
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I
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According to Eq. (12), the matrix elements of the loss operator Lg are

Lg(n, n') = C(nb + 1)[g(n + 1)(n' + 1) g(n + 1,n' + 1) —
2 (n + n') g(n, n')]

+ Cnb[v nn' g(n —1, n' —1) —
2 (n+ n'+ 2)g(n, n')].

From Eqs. (9), (10), and (13), we find

g(n, n') = rg b'~ ~ g(n, n')

I

parameter G, the injection rate r, and the initial popu-
lations g and gb of the upper and lower levels [31,32],
where

) (gb b g gp/G2) b ~bl(gn, n)
cx,p=1

g..+ ). (gb. b, g.gp/G')

+Lg(n, n') . (16) gaa

In the above equation, the Grst term corresponds to the
emission &om the upper level a. The terms in the sum
correspond to the absorption Rom the lower levels bi and
b2 and to the interference between the channels of tran-
sitions. It is interesting to note that in the micromaser
model considered above the interference terms, propor-
tional to gb, b, or gb, b, , may be different from zero and,
therefore, may cancel the absorption terms, proportional
to gb, b, or gb, b, , independent of statistical properties of
the Geld.

As it stands, the master equation (16), together with
the expressions (14) and (15) of the matrix elements of
the operators b g, b g, and I g, is the basic equation
for the micromaser considered. Note that this equation
coincides with the master equation for a micromaser that
operates on two-level atoms with the atom-field coupling

g..+ p (gb. b, g.gp/G')
a,p=l

gb=1 —ga.

In terms of the above efI'ective parameters, the dynamics
of the field in the degenerate three-level micromaser is
identical to that of the field in a two-level micromaser.
This result is not surprising and is due to the existence of
an atomic trapping state (dark state), ~4'o) = (g2~bi)—
gi~b2))G . The state [F10) is not coupled to the upper
state ~a). Therefore, the Hamiltonian H, given by Eqs.
(1) and (2), can be reduced to the Hamiltonian for a two-
level system with the upper state ~a) and the lower state
I@) = (gi~~i) +g2~62))G '

Prom Eq. (16), the steady-state solution for the photoii
distribution P(n) = g(n, n) is found to be [31,32]
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P(n) = P(0)
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Moreover, according to Ref. [32], the distribution (18)
may be sub-Poissonian with one or more than one peak
when

2
2 C

r gaa ) (gb bsgcxgP/G ) +
( )2

n,p=1
(2o)

In general, the condition (20) does not require g ) gb, b,
or g & Lo~, ~, . For example, if we choose g~, g,

gb, b, = —(gb, b, gb, b, ) and gb, b, gq
——gb, b, g2, then

~(gb bsg gp/G2) = 0; therefore, the condition

(20) becomes g ) C/r(G&)z, that is, there is no need
for population inversion between the upper level a and
the lower level bq or b2.

In Fig. 2, we show the steady-state photon distribution,
calculated from Eq. (18) for g = 0.2, gb, b, = gb, b, =
0.4, gb, b, = gb, b, = —0.4, r/C = 1000, nb = 0.1, and

g~
——g2 ——0.1v . The value of the normalized standard

deviation o = ((n ) —(n) ) / /(n) / for this distribution
is 0. = 0.82 & 1, indicating sub-Poissonian statistics.

In Fig. 3, we plot the normalized standard deviation o

of the distribution (18) as a function of Gvfor the .param-
eters g = 0.2, g$, g,

——gt„$, ——0.4, g$, g, ——g$, g, ———0.4,
r/C = 1000, nb = 0.1, and gq

——g2
——G/~2. The result

of this figure shows sub-Poissonian statistics of the field
(0' ( 1) for some intervals of the interaction time G7.

where P(0) is determined by the normalization condition

o P(n) = 1. It can be shown that the steady-state
mean photon number (n) will be larger than the thermal
photon number nb when

gaa

Note that the minimum value of 0 is 0.29 and is reached
for G~ = 1.44.

Thus, due to the injected atomic coherence the gener-
ation of field states with sub-Poissonian peaked photon
distributions is possible in the micromaser operating on
three-level atoms without population inversion.

B. Laser

'P(w) = p exp( —pr). (21)

Following the procedure of Scully and Lamb [36], we can
write the coarse-grained time derivative of the field den-
sity matrix g in the form

g = r b g'P(7. ) d~ + Lg .
0

(22)

By averaging Eqs. (16) and (14) over the atomic life-

time w, the master equation for the laser field is found to
be

g(n, n') = r g b( ) g(n, n')

+r ). (gb. b, g.gp/G') S (&b(gn, n')
n,p=1

+Lg(n, n'), (23)

where

In the laser, the injected atoms stay and spend their
life in the cavity. In addition to participating in the laser
action, levels a, b~, and b2 can decay to other levels. We
assume that the Wigner-Weisskopf theory of atomic de-

cay prevails and the decay rates are the same for all three
lasing levels: p = pbbs

——pb2 = p. The distribution 7 (T)
of the atomic lifetime 7 is given by
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FIG. 2. The steady-state photon distribution of the mi-

cromaser, calculated from Eq. (18) for g = 0.2, gb, b,
= 0.4, gb, b = gb b, = —0.4, r/C = 1000, nb = 0.1, and

gq
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FIG. 3. The normalized standard deviation o of the distri-
bution (18) as a function of Gr for the parameters g = 0.2,
gb, g, = gb, b2 = 0.4, gbl bg —gb, bl = —0.4~ r/C = 1000,
nb = 0.1, and gq

——g2 ——G/~2.
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h( lg(n, n') = —W, (n + 1,n' + 1) g(n, n')
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+W, (n+ 1,n'+ 1) g(n+ 1, n'+ 1), (24)
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. 2

Equation (23) together with Eqs. (24) and (25) is equiv-
alent to the master equation for the Geld in a two-level
laser with the atom-Geld coupling parameter G, the in-
jection rate r, and the initial populations g and gb
of the upper and lower levels. The reason is that the
atomic state [4o) = (92~bi) —gi~b2))G is trapped
and, therefore, the Hamiltonian H, given by Eqs. (1)
and (2), can be reduced to the Hamiltonian for a two-
level system with the upper state ~a) and the lower state
~4) = (gi~bi) + gq[b2))G . Analogous to the micro-
maser case, the interference terms, proportional to gg, g,
or gp, p, , may cancel the absorption terms, proportional
to lope p1 OI Qpg pg &

independent of statistical properties of
the Geld.

The steady-state solution for the photon distribution
in the laser is found &om Eq. (23) to be

P(n) = P(0)
nb+ g..(A/C) [1+ (B/A)k]

'

&=i nb + 1+ g (gb b~g~gp/G') (A/C) [1+ (B/A)k]
a,p=i

(26)

where

A = 2r (G/p)', B = 4 (G/p)'A . (27)

A Be- —). (eb.b, g-gplG') &»+ —.
a,p=l

(28)

The position of the peak is approximately determined by
f

no =
B ( gua ) (eb bpg~gp/G )

a,p=1

(29)

In ordinary laser systems, A/B is much larger than unity.
Therefore, if

2

nb =0, ) (gbbggp/G) =0, g —)) 1,
a,p=1

(30)

the distribution (26) will approach a Poisson distribution

(31)

where

A2
( ) = g-BG. (32)

Analogous to the micromaser case, the steady-state mean
photon number (n) in the laser case will be larger than
the thermal photon number nb when the condition (19)
is fulfilled. It can be shown that the distribution (26) has
a peak when

The conditions (30) do not require inversion of level pop-
ulations. Thus the generation of field states with Poisson
photon distributions is possible in the noninversion one-
mode A-type laser.

III. CONCLUSIONS

By using the Scully-Lamb quantum theory of the laser
[36], we have derived the master equations for the fields
in the one-mode A-type micromaser and laser with in-
jected coherence. These equations, in terms of efFective
parameters, are equivalent to those for a two-level mi-
cromaser and laser. Furthermore, the interference terms
may cancel the absorption terms independent of statis-
tical properties of the Geld. Such behavior is not sur-
prising because of the existence of an atomic trapping
state which is not coupled to the upper level by the
Geld. The steady-state photon distributions have been
obtained. Due to the atomic coherence between the two
degenerate lower levels, the generation of Geld states with
sub-Poissonian photon statistics is possible in the micro-
maser without the need for a population inversion. If an
equivalent level system is used in a laser operating with-
out population inversion it can produce Geld states with
Poisson distributions of the photon number.
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