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N-electron wave functions described with hyperspherical coordinates
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We describe the ¹lectron atomic wave functions within the hyperspherical-coordinate framework.
The wave functions, being solutions of the Schrodinger equation, are made to adapt the permutation
symmetry of the symmetric group Sz. The effects of permutations on the wave functions are deduced,
and the matrix elements of the atomic potential are presented.

PACS number(s): 31.15.—p, 33.15.—e

I. INTRODUCTION

One of the primary important problems in the field of
atomic and molecular quantum mechanics is to solve ac-
curately the Schrodinger equation of a many-body sys-
tem. The same problem is also encountered and has been
pursued systematically by many theorists in the field of
solid-state physics and chemistry. In the course of this
development, many methods aimed at solving this prob-
lem have been proposed, most of which admit only solu-
tions in the sense of an average.

The hyperspherical-coordinate (HC) method, on the
other hand, can admit accurate and analytical solutions
of the Schrodinger equation of a many-body system.
Indeed, the application of the HC method to He, H
and some few-particle systems has resulted in very accu-
rate ground-state eigenvalues of these systems [1—3]. The
method also yields encouraging results when applied to
the calculation of the ground-state energies of a lithium
atom (Li) and a hydrogen molecular ion (Hz+ ) [4,5].

It is well known that the wave functions of a many-
electron system should be antisymmetric to the inter-
change of any two electrons because of the fermionic
property of the electron. Many excellent texts have dealt
with this problem in great detail [6]. Cavagnero, for in-
stance, has antisymmetrized wave functions by using Ra-
cah coeKcients of fractional parentage [7]. In this paper
we present the antisymmetric wave functions in terms of
the hyperspherical coordinates. We first antisymmetrize
wave functions by directly permuting electrons and then
investigate the effects of the permutation of electrons on
these wave functions. The effects of permutation on a
three-electron system have been surveyed before [8] and
in this paper we extend it to an ¹ lectron system. Final-
ly, we use the antisymmetric wave functions to simplify
the calculation of matrix elements of the atomic poten-
tial.

II. ANTISYMMETRIZATION
OF WAVE FUNCTIONS

r, =R sing~sing~ i
. sing;+, cosy, ,

2 R sing~sing~ i
. sing3cos'g2,
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where

0&+.& 7T
l 2

The Schrodinger equation (in a.u. ) reads

(2)

1 8 3N —1

2 gR' R BR
+ V %=E%, (3)

R

For an ¹ lectron atom, after the usual procedures of
separation of the center of mass coordinates (practically
on the nucleus), there are still 3N coordinates left for N
electrons. Following Knirk [9], we use the
hyperspherical-coordinate system in which the Cartesian
coordinates are first transformed into spherical coordi-
nates and then the radii of electrons are cast into hyper-
spherical coordinates. We have

z,. =r;cosO;,

x; =r;sin8;cosP;, i =1,2, . . . , N

y; =r;sin8;sing;,

T~ =R cosg~,

T~ i =R sin'pecos'g~
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where V is the potential of the ¹ lectron atom. In
three-dimensional Cartesian coordinate system this po-
tential operator resumes the form

N ZN N
v= —g +g

i=1 & i(j ij

After transforming into a hyperspherical-coordinate
system, the potential operator may be written as

ON'( 1» 2»'''» N» 2» 3»'''» N —l» 2» 3»' » N —l

p —I +Aj )+—',j—1;
X =2n -+A . , +I

y =l+ —,';
n, l =0, 1,2, . . . ;

j=2,3, . . . , N .

ZN(Q)V=
R

(4')

a2
A (N)=-

~ON

(3N —4)cos AN
—2 sin AN

sin'g N cos'g N '0 gN

In Eq. (3), A (N) is the generalized angular momentum
scalar operator of N electrons and it resumes the form

The Hamiltonian on the left-hand side of Eq. (3) is

symmetric with respect to electron permutation and is
commutable with permutation operators. The Hamil-
tonian and permutation operators therefore, have, com-
mon eigenfunctions. Let VL M (R, Q) be an eigenfunc-

tion of Eq. (3) with eigenvalue E and let Y( )'"' be a
Young operator belonging to the irreducible representa-
tion [f] and row (r) of the symmetric group SN. Then

@PI'"'(R,Q) = Y(f1~"~l%
M (R,Q) (10)

4 A(N 1)—
cos gN sin gN

(5)

%1 M (R, Q)= g F2 „(R)P2 „ IM (Q),
wI N

Since quantum numbers I. and MI of the total angular
momentum scalar operator and its third component are
good quantum numbers, the eigenfunctions of Eq. (3)
may be chosen to be the simultaneous eigenfunctions of
these operators and can be specified with I. and ML,
namely,

is also the eigenfunction of Eq. (3) with eigenvalue E. We
then construct the spin wave function 6(~$" (o ) with

spin quantum numbers S and M& belonging to the irre-
ducible representation [f] and row (r ) conjugating to [f]
and (r). Thus we have the following antisymmetric wave
function of ¹ lectron atom:

4([f]SLMsMI ~R, Q, cr)

g ( —1) "'PPIIr"'(R, Q)6(~$ '(o ),
Vhf (r)

where Pz „LM (Q) are eigenfunctions of the operator
N~N L

A (N),

where hf is the dimension of the irreducible representa-
tion [f].

A (N)5'2 „ IM (Q)=AN(AN+3N —2)P2 „~M (Q)

and are represented by

&2„„„LM(Q) [ [[Yl (1)Yl (2)] 'Yl (3)] '

X Y, (8')]M

(7)

III. EFFECTS OF PERMUTATION
ON THE WAVE FUNCTION

In this section we will investigate the effects of permu-
tations on the wave functions given in Eq. (11). First, we
observe that F& „(R)is symmetric with respect to per-

NI N

mutations; hence the effects of permutations on
(R,Q) are just on the hyperspherical harmonics,

namely,

(12)

X Qy, ' (1—
y, ) '

J=2

XcoN( nj, nj+p~;yj ~y, ) —.

In writing Eqs. (7) and (8) we have used the following no-
tation: Y&(i) is the spherical harmonics and i =8;,P;;

l

yj=cos gj. ; coN( nj, nj+p~;y~~y~. ) i—s the normalized
Jacobi polynomial of degree n. ;

Next we note that every permutation can be expressed as
the product of two cycles of consecutive integers such as
(j,j+1). Thus we need only to search for the effects of
transposition (j,j+ 1 ) on the hyperspherical harmonics

(Q).
The effects of transposition (j,j+1) on the spherical

harmonics of the wave function can be obtained by the
Racah coupling and recoupling method. By transposi-
tion (1,2) we get
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(1,2)[ . [[YI (1)Y( (2)] 'F( (3)] '
Y( (A)]M

=[ [[Y( (2)YI (1)] 'YI (3)] ' . . Y( (8')]M

=( —1) ' ' '[ [[Yt (l)YI (2)] 'YI (3)] '
Y( (A)]~ (13)

By transposition (j,j+ 1) we get

(j j+1)l [[[]' 'YI, (j)l 'Yi,.„(i+1)1'+' Y~„(»]M,

=[ . [[[1' 'Y (j+1)] 'Y (j)] '". Y (+)]'
I

=g CI, [ [[[] ' 'Yt (J') ']Yi (j+1)] '+'
Y( (g)]M

J

The expansion coefficients C, are derived in Appendix A
J

and have the expression

2
~j+1

yj+1= j+1
2

(16b)

I

J

(15)
By transposition (j,j+1),yj+I is transformed to

where U(1 L,L~+., l~ +, ', L~L') is .the Racah coupling
coefficient. We have followed Baymann [10] in deriving
the Racah coefficient U (a, b, c,d; e,f ) and fixing the
phase factors by using the relation
U(a, b, c,0;e,f)=5«5b&E,b„where e,r„=1, if abe satisfies

a triangle relation; otherwise c,b, =0.
The effects of permutation on the hyperspherical har-

monics, are similar to that on spherical harmonics, but
more complex. With the definition of Eqs. (2) and (9), we
have

y. —+

2rj+1
j—1

+ PJ + I
i(1)

yj+1
l 1 —

y, (1—yj+ I ) ]

p 2j
y, +I,„—=y, (1—y, +I)

g r,.
i (1)

andy is transformed to

(17a)

(17b)

2
J

2
l

(16a)
These relations show that the transposition (j,j+1)

affects the hyperspherical harmonics of y and y. +1 only, '

hence we will concentrate on them. Now consider the
function

I .+ I /2 1, . /2 l. /2 A, /2
&(y, y, +I) yj+I (1—

y, +I) ' ~&( n, +I,n, —+i+p, +I ,y, +Ily, +'i)y,' (1—y, ) ' '"~N( nj nj+pj yjly, )

1/2 1/2 l.+I/2 A.2/2=N (nj+„pj+„lj+,)N (n~, pj, lj )y~~+, (1—y~+, )

l. /2 A, . I/2
Xco( n~+„n—~+I+p +&,yj+, ~y )y+'~(1—y ) ' '

co( nj, nj+—p~;yz~yj) .

Making use of Eqs. (17a) and (17b) we have

(j,j+1)K(yj.,y +, )=N ' (n +I,p +„lj+I)N '~ (n p I )[y (1—y~+I)]'+' [1—y. (l —y. +, )] '

X~( nj+I n, +I+p, +I,y, +Ily)(l —yj+I))
l . /2

yj+1
1 —y, (1—

y, +I)
y +1

1 —
y, (1—

y, +I)

yj+1X co n, n& +p; y—. .
1 —y. I —y-+1

l. /2 (k. I+1.+ I)/2=N (n +„p +„lj.+, )N (n,pj, l~)y~'+l(1 —
y~. )+

Xy,j+' (1—
y, )

'-' [1—
y, (1—

y, , )] '

yj+1
X co( n+ „n +,+p~ +—, ', y J. +, ~y ( 1 —y +, ) )co —n J., n . +pJ;y J 1 —yj(1 —y +, )

(19)
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First, we note that there is no singular point in expres-
sion (19} because the highest power in
co( n~,

—nj+PJ. ;r~ Iyj+, /[1 —y~(1 —y~+, )]) is n~ ;t.here-
fore the denominator is canceled by the factor

n.
[1—y (1—y +, )] ' present in the expression. Second, we
notice that the Jacobi polynomials form a complete
orthonormal set and expression (19) can be expanded in
terms of these polynomials with the parameters p and y
not uniquely determined, but free at our disposal. We fix
these parameters by the following considerations.

Comparing Eqs. (18) and (19) we find the following
correspondence relations:

1.+)/2 l. /2
yj'++,

' (in Eq. (18)]~y '+, [in Eq. (19)],
1./2 l. + )/2

y ' [in Eq. (18)]~y.'+' [in Eq. (19)] .

With the definition for r in Eq. (18) we also have

XJ+&~3'J. for O'J+r ~

VJ+ j.

From Eqs. (8) and (9) we note that A, . is present in both
co( —nj+i, nj+, +pj+i', rj+iIyj+i) and co( nj.—, nj+PJ;
rj Iy~ ). Thus we may choose Aj+i, which is present in
~( —& +2, & +2+PJ+2,'rj+2Iy~+2), to be also present in
the expansion co( —n '+ „n '+, +p' +i, r .+ i Iy + i ). In the
same way, A, &, which is present in
co( nj —„nj,+PJ. „' rJ, IyJ. , ), is also chosen to be
present in the expression of the Jacobi polynomial
co( n', n—'+p,';r +, Iy ).

Later we will show that nj'+, +nj'=nj+, +nj [see Eq.
(23)]. There is, therefore, only one dummy index in the
expansion, which we will choose to be n ' because
A,

' =2n'+A, , +l +i is present in both co( —n'+, , n'+i
+p,'+i, r, Iy, +i}and ~( nJ'—~J'+p,';r, +ily, )

By these exaininations, Eq. (9) can be written as

(j,j+l)K(y,yj+i)=QC, N (n 'J+p ~+lj)N (nj, p~, lj+, )y~'+, (I —yj+i) ' yj' (1—yj) '
J

&1+i &J+i+pj+i"rjlyj+i}~( rin jii+pjrj+ilyJ } (20)

where

pj+, =l.+A, '+ —', (j+1)—1,
p'=l +, +A, , +—,'j —1,
k —2n +l +, +A

(21)

12/2
(1,2)E (y2 ) = (1,2)N ' (n2, p2, l2 )y 2'

1) /2x(l —y2) '
co( —nz, nz+pz', r2Iy2)

12/2 1) /2
(ii~, p~, ~2)(1—y&) y&

xylo( —n2, n2+pz, r2I1 —y2)) .

Since

Since A, +, is unchanged by operation (j,j + 1), we have

2n +]+l +~+A

p2= l2 + l] +2 y2= l2 +
2

we find
=2n ++2n . +l +,+l.+A,

=2n. +&+l +
=2n~' +, +2n'+. lJ+, +lj+A

(22)
p2

—y2+1=l, +—,
' =y, .

With the help of Eq. (B3) of Appendix B, we get

Therefore, the sum n + &+n. is also unchanged by opera-
tion (j,j+1},that is

N(, , l, )
'1/2

( )

(1,2)&(y&)=( —1) '
N n2, P2, l

I
nJ + $ +nJ nJ + $ +'nJ (23)

The expansion coefficients C, are derived in Appendix
J

B. It is shown there that the interchange of electrons j
and j+1 is equivalent to interchanging orbitals l. and
l +&, as in spherical parts.

The transposition (1,2) needs to be considered separate-
ly. With (1,2} we have y2~1 —y2. Only K(y2) is
affected by this operation

1& /2 l~/2
Xy~' (1—y2) '

x co( —n z, n 2 +p2, r i Iy& ) . (24)

IV. MATRIX ELEMENTS

Substituting Eq. (11) into Eq. (3), we get

Again, the interchange of elections 1 and 2, is equivalent
to interchanging orbitals l, and l2.
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(Q)eg(')(~)
Qhf (r) X„)'))

1 d2 3N —1 d
2 dR2 R dR

A))r(A, ~+3N —2)

R
E—F (R)

NI N

Since

g( —1)" g
f

(25)

with all possible A,&,p& form a complete set, the second term on the left-hand side of Eq. (25) can be rewritten as

g( —1)" g g g g ( —1) ' ' ([f](r')A&p&SLM&ML ~Z&(Q)~[f](r)A&p&SLM&MI )
V ~f (r) ) &p& g' &' (r') (r") fN N ~P~

By interchanging the dummy indices A, ))„)M)),r ~ A, z, )M~, r" Eq. (25) is reduced to

1 d 3X—1 d
2 dR' R dR

X)(,(A,))r +3N —2)

R
EF (R—)NI N

g g (
—1) " ' Z[f]'""",', F, , (R)=0,R, , hf „, ,„~+I'w ~w~x

where

ZP "
&", , = ( [f](r')Azp&SLM&MI ~z&(Q)

~
[f](r")A&p&SLMsMI )

NI N NI N

and

(27)

(Q, (r~[f](r')A. p SLMsMI )=yI( „"'IM (Q)e (f),-„.,( ) . (27')

Since the wave function is antisymmetric and the potential V is symmetric with respect to the interchange of any two
electrons, Z ' "", ', can be reduced to

NI N NI N

Zz '" 'z", ', = [f](r')Azp+SLMsMI Nzz
NI N Nl N

f((r)M~r, „sLM"~M~) .
'

12
(28)

In standard representation, the basis functions belonging
to different rows of the same representation are orthogo-
nal,

1 d2 3N —1 d
2 dR2 R dR

(efP( )~eP]( "))—g(r r ) (29)
A,))((A,))r +3N —2)

R
E F(R)—.

NI N

Equation (28) can be further reduced to

Z[f](r')(r") —Z[f](r') g(&~ &~~)
NIN NIN N~N NIN where

y z[f], , F, , (R)=o,
R ( , NI N NI N NI N

NI N

(31)

which says that only diagonal elements of the degenerat-
ed representation [f] exist. With these results, Eq. (26)
can be rewritten as

Z = Z [fl(r)1

N)'N N)'N h N)'N x)'wf (r)
(32)

is the average of the potential matrix elements of repre-
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sentation [f]. Equation (31) is the coupled differential
equation for hyperradial functions. In matrix notation it
becomes

charges, except for hydrogenlike ions; Z is diagonal
matrix.

d2 3N —1 d
2 dR R dR

A —E F(R. )
R

zlf] F(R)=0,
R

(33)
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APPENDIX A
where A is a diagonal matrix and Z is a square matrix.
Equation (33) is similar to that for hydrogenlike ions with
the matrix Z playing the role of number of nuclear

By the Racah coupling and recoupling method, Eq.
(14) may be written as

(j,j +1)[ [[[] ' 'YI (j )] 'Y& (j +1)] '+'
Y& (jV')]~

= [ ' ' ' I:[I: ] ' '
Yi (J + 1 )].

' ~i (j )] '
.
"

Y( (+)]~,

'[ ' ' ' [[YI (j +1)[ ] '
.'] ' YI. ,(j)]

"' ' ' ' Yi„(»]M,J j+1
I

=( —1) ' ' 'g U(l L,L +,l +„'L~LJ'. )[ [Y& (j+1)[[] ' 'YI ] '] '+'
Y& (8')]M

L.
I

=g (
—1) ' ' ' ' '+'U(l L,L +,1 +,;L L')

L.

X [ [[[] ' '
YI (j )] ' YI (j+ 1)] ' + '

YI (1V')]I
I

=g Cz [ ' ' ' [[[] ' 'Y& (j)] 'YI (j +1)] '+'
Y~ (1V')]~~

J
J

The recoupling constants C, are
J

I

J

(A 1)

(A2)

APPENDIX B

Equations (19) and (20) are required to be identical for any value of y. +,. By equating Eqs. (19) and (20), eliminating
1./2

the common factor y '+ „and setting y + &
equal to zero, we get

—1/2 —1/2 J +1N (n +„p +,l +, )N (nf, p, l~. )y ' (1—y~) ' ' co( n+&, n +—, +p +&,y +, Iy. )

=g C,N '~ (n'+, ,p'+„l )N '~ (n', p', 1 +, )y
'+' (1—y. ) ' '

co( n', nj'. +p';y +, Iy ) .—(Bl)
J

Multiply both sides by

l. + )/2 1, . 1/2

and integrate. The factor —,'y '~ (1—
y& )~ 1 ~~ dy is the differential surface element of jth electron. Taking advantage

of the orthogonality of Jacobi polynomials, we get

1/2
N(n + „p + „l )N(n~, pj, lj +, )

N '(n ,pj, l +,).N(nj+„p +„l +, )N(n ,p ., l.)..

I
1

X —,
' dy, y, '+' (1—y. ) ' ' '+' co( n, n +p'—;y +&Iy )co( n+„n +, +p.—+, ', y. +, Iy ) .

0

Making use of the relation [11]

(B2)
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co( n—, n +p';y ~, ~y))=
1) '(pJ 'YI+1+1)„-

co( —nj, nj+p';p' —y. +, +1~(l —y )) .
yj+1 s,

J

(B3)

Substituting Eq. (B3) into Eq. (B2), the integral becomes

Xco( n—j , nj. +p. j;pj —y. +, +1~1—y. )ro( n—+»n +&+p +»y +, ~y )

+k+ '- d '+
X dy(1 —y )'

0 J J n. +

By repeated partial integration we get

N(nj+ „p +„l.)N(n, pj , l, +,).
N(n +„p +„l +, )N(nj, p', lj)

( —1) '+' ' '(p' —y +, +1)„(nj+AJ,—A. ——', )!(n.+, +yj+, —1)!
X j

2(y +, ) (y +,)„(n +,+n +A. )
—A, —

—,')!

[n +A . . , + —,'(j—1)—1]!
n +n +,+l +. )+A, (+—', I —1!

where F3 ( A, B,C,D;E,F, G
~

1 ) is a generalized hypergeometric function with argument y = 1 and

A = n, B=n +yj—+, +. A. , + —,'(j —1)—1, C=n +Aj —1 —
Aj

—
—,', D„+A, &+ ', (j—1),—

j

E=A,J,+ —,'(j —1), F=n —n +, +A,J., —A,
—

—,', G=n +n +,+l +, +A, +, + —,'j .

(B4)
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