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Distance between density operators: Applications to the Jaynes-Cummings model
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A measure for the distance between two arbitrary density operators, based on the Hilbert-Schmidt
norm, is investigated. It is applied to the 3aynes-Cummings model where the question of the extent
to which a given state is close to the initial state or to another state of interest has commanded a lot
of attention. This problem is studied in detail for the whole system as well as for the field and the
atom subsystems. The behavior of the distance for some important particular cases is numerically
evaluated. Some interesting aspects of the field and the atom dynamics are discovered.
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I. INTRODUCTION

The Jaynes-Cummings model (JCM) describing a sin-
gle mode of the quantized electromagnetic field coupled
to a two-level atom in a lossless cavity [1—6] is an im-
portant fundamental theoretical model of the interaction
between two quantum systems. In spite of its simplic-
ity, the model predicts many nonclassical effects and ex-
hibits reasonably complicated behavior. Some of these
efFects have recently been observed experimentally using
highly excited Rydberg atoms in high-Q microwave cavi-
ties [7]. It should be noted that details of the interaction
strongly depend on the initial conditions [8—18]. Sur-
prisingly enough, the most transparent quantum features
such as, e.g. , collapses and revivals of the Rabi oscilla-
tions of the atomic inversion [8,9], are especially striking
if the field is at the beginning in the coherent state. Just
in this case we also have another interesting effect: the
state preparation by quantum apparatus. It has been
shown that the atom and Geld most closely return to pure
states during the collapse region but not at the peak of
revivals as may be expected [10—13]. However, this does
not mean that the atom or the field is as close as possible
to the initial state.

The state preparation efFect was investigated using
both the purity parameter and the von Neumann en-
tropy. Another aspect of the evolution of quantum sys-
tems can be highlighted using the concept of Wehrl's en-
tropy [19,20]. However, to investigate the question of how
close a given state is to the initial state we need a proper
measure of the distance between quantum states. In the
case of a compound system such a distance should be
calculated separately for the whole system as well as for
subsystems. We cannot a priori assume that we will get
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similar results for subsystems even if we start evolution
in a pure state. Such a distance between density oper-
ators is another way to study the time development of
the JCM. If the distance between two density operators
is small, these two density operators can be considered
as very similar to one another, and on the other hand a
large distance means very different density operators. It
enables us to compare the state of the system at any time
with the initial state or another reference state of interest.
It is possible to define the distance between two quantum
states described by density operators in many ways. Al-
though different in details, the most natural definitions
of distance are based on the norms defined on the space
of density operators, such as e.g. , the Hilbert-Schmidt
norm or the trace norm [21—24]. Also more sophisti-
cated distances often use the standard, norm-based defi-
nitions as building blocks [25,26]. Quite recently, another
distance between density operators has been considered
in the context of measurements which optimally resolve
neighboring quantum states [27] (see also [28—32]). Ap-
plications of the concept of distance to the JCM provide
a deeper insight into many aspects of the time dynamics
of the field, the atomic system as well as the whole sys-
tem. We can precisely see, e.g. , how the Geld evolves into
a special state or how closely it will reach such a special
state.

This paper is organized as follows. In Sec. II, a defini-
tion of the distance between density operators, based on
the Hilbert-Schmidt norm, is presented and some basic
facts and consequences are discussed. A short discussion
of the distance based on the trace norm is also given.
In Sec. III, the JCM is considered in the form suitable
for our objectives. General properties of the distance in
the JCM are presented. More detailed case studies are
performed in Sec. IV, where time dynamics of various
distances is numerically evaluated. Results concerning
distances are compared with other quantities such as in-
version and the von Neumann entropy. In Sec. V we
summarize our main results and mention possible gener-
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alizations. To make the paper self-contained we collect
crucial formulas and facts about the JCM in the Ap-
p endix.

II. DISTANCE BETW'EEN DENSITY'
OPERATORS

The standard distance between two real numbers (or
two points on the real line) x, y is something very sim-
ple: lx —yl. Also the distance between two points
x = (xi, . . . , x„), y = (yi, . . . , y ) in Euclidean space

( n )1/2
D(* y) =

I ) (*' —y')'
I (2.1)

is a familiar concept. It is very useful, however, to in-
troduce an abstract definition of distance which could be
applied also for more complex sets of objects such as,
e.g. , vectors, functions, matrices, and operators. Such
an abstract definition is a basis for the general theory
of metric spaces [22]. An arbitrary set of objects of any
nature is called a metric space if there is a real, non-
negative function D(z, y), called the metric function or
the distance between objects x and y of M, which satisfies
the following conditions: (i) D(x, y) & 0, (ii) D(x, y) =
0 if ancl only if z = y, (iii) symmetry: D(x, y) = D(y, x),
and (iv) triangle inequality: D(x, y) & D(z, z) + D(z, y).
The above four requirements seem obvious if we think in
terms of the archetypical examples given by real num-
bers or Euclidean distance (2.1) but they actually pro-
vide a very general and powerful theoretical framework,
far beyond the capabilities of these illustrative examples.
For a given set of objects, the distance satisfying (i)-(iv)
can be defined in a number of different ways. For ex-
ample, any set can be made a metric space if we use
the discrete metric Do(x, y) equal to zero for x = y and
equal to one otherwise. Of course it is not very use-
ful. Fortunately, in many cases we are able to develop a
more natural concept of distance making use of the de-
tailed structure of the set of interest. It is indeed the
case for the density operators. By definition, they are
linear, bounded, positive-definite, and self-adj oint oper-
ators. Moreover they are the Hilbert- Schmidt operators
[22—24]. Therefore we can build from them a normed
space with the Hilbert- Schmidt norm

D(p„p2) = D2(p, ) p2)
2

Trpi + Trp2 —2Tr(pip2)
2

- X/2

(2.6)

In the above definition, quantities like Tr(p; ), related to
purities, occur explicitly. Thus the distance is determined
by purities of both states and by the trace of the product
of the two density operators. The latter is a measure
of orthogonality of states. Any density operator p, can
be diagonalized, i.e. , we can find its eigenvalues vr and
eigenstates I@ ), providing the following decomposition:

p, = ) .I@.')~.' (@.'
I (2.7)

Eigenstates Ig' ) form an orthonormal basis

(2.8)

and the sum of the corresponding eigenvalues vr' is nor-
malized to unity:

) vr' =1, (2.9)

Making use of diagonal representations (2.7) we fnd for
the distance between two density operators pi and p2 the
expression

Let us note that just the trace norm was used by Hillery
[25,26) to introduce the concept of nonclassical distance.
In this paper we will use the distance based on the
Hilbert-Schmidt norm. This norm is a generalization of
the Prob enius norm known from the theory of finite ma-
trices [33]. The corresponding distance strongly resem-
bles the Euclidean distance (2.1) and is more suitable
for detailed computations of concrete examples than dis-
tance based on the trace norm. A comparison of these
two distances will be presented elsewhere.

It will be convenient to use rescaled distance that dif-
fers from the standard one by a factor 1j~2. This choice
is equivalent to the normalization of the distance: it as-
sures that the distance is a number between 0 and 1. In-
troducing this scaling factor and carrying out the square
in Eq. (2.3) we have

flpll2 = v T ptp = v'T p'. (2.2)

The corresponding distance can now be easily introduced
as (2.10)

2(pi, p2) = I]pi —p2II2 = QT (pi —p2) (2.3)

As density operators are also trace class operators [21—24]
we can define another norm, called the trace norm,

We see that the distance can be easily calculated if eigen-
values and eigenfunctions of corresponding density oper-
ators are known. I et us consider two special but impor-
tant cases. When both systems are in pure states, i.e. ,

llplli = T lpl = T v p'p

and corresponding distance

(2.4)
p, = I&*)(@*l for i = 1, 2, (2.11)

Dl(pl p2) = lip ~
—

pha�lli.

(2.5)
the distance should be a function of the scalar product
of two state vectors. Indeed, we find



1624 LUDWIG KNOLL AND ARKADIUSZ QRKOWSKI 51

&(i i, p~) = (~ —I(@'IC*)l') (2.12)

The distance depends on the absolute value of the scalar
product between kets Ig ) and Ig ). The overlap of two
wave functions, which is a measure of a similarity of two
states, is thus also an indicator of the distance between
them. If only one density operator represents a pure state
(let us take pi ——Ig ) (g I

for definiteness) we have

1/2

D(pi p2) =
I

—(1 + ~p2) —(0 'Ip214 ')
I (2 »)

In applications to the JCM we will represent the density
operators in diagonal forms corresponding to Eq. (2.7),
which allows us to calculate numerically all distances of
interest in a relatively simple way.

It is seen that our distance has a maximum value (equal
to 1) for any two orthogonal normalized states. Therefore
two orthogonal states are as far apart as possible. We
find this property an advantage because it is very natural
from the geometrical point of view: two orthogonal states
have really very little in common. Let us stress that our
distance does not take into account any ordering of the
orthogonal states with respect to the eigenvalues of any
operator. Therefore, e.g. , all different Fock states are
equally distant from each other.

IA) = cos(0/2)le) + sin(0/2)e' lg). (3.4)

We assume also that the field is at the beginning in a
coherent state

OO

IF) = l~):= ex& (—n/2) ). ,
In) o. = ~n. (3.5)

I@(t)) = IA+) ~~+IF+) + IA ) ~~ IF ) (3 6)

where

(A+IA-) = 0, (3.7)

(F IF-) =0 (3.8)

The atomic and field states A+) and IF+) as well as the
quantities 7r+ (with 0 & vr+ & 1) are time dependent.
The resulting density operators of the whole system p(t),
the atom p~(t), and the field p~(t) are given by

Here ln) denotes a Fock state with n photons present in
the considered quantized field mode and n is the mean
photon number in the coherent state Io.&. According to
[13], the state of the system at time t can be represented
as a superposition of time-dependent orthonormal atomic
and field states (see Appendix for more details):

p(t) = l@(t))(@(t)l (3 9)
III. DISTANCE IN THE JAYNES-CUMMINGS

MODEL

The JCM describes the interaction between a two-level
atom and one mode of the quantized radiation field (see,
e.g. , [6] for a recent review). Our aim is to study the
distance between states of the JCM and properly chosen
reference states as a function of time. This will be done
for the whole system as well as for the atomic and the
field subsystems. Assuming the exact resonance we have
the following mell-known Hamiltonian of the JCM in the
dipole and rotating wave approximations:

H = Ho+ HI a = Ho+ A (atlg&(el+ ale)(gl), (3.1)

p~(t):= T ~p(t) = IA+) ~+(A+ I+ IA )~ (A- I, (3.10)

p&(t):= T &P (t) = IF+)~ (F+I+ IF )~-(F I, (3.11)

where Tr~ (Tr~) means the trace over atomic (field)
states. It is seen from the above equations that eigen-
values of the atom and the Geld density operators are
exactly the same: sr+. It is a general property of two
component systems that both subsystems have the same
eigenvalues [34]. It can be traced back to the Araki-Lieb
inequalities for the von Neumann entropies [35].

The reference state of the whole system is assumed to
be initially an uncorrelated product state of atom and
field states:

Ho —Ho~ + Ho~ = a ata —culg) (gl, (3.2)

where at and a are the standard creation and annihila-
tion operators of monochromatic photons with frequency
~, the excited and the ground state of the atom are de-
noted by le) and lg), respectively, and A is the atom-field
coupling constant which may be treated as real and pos-
itive. We set h = 1 and energy of the excited atomic
state to be equal to zero. We assume that the system
is prepared in an uncorrelated product state of the atom
and the field at the initial time t = 0,

l~) = IA) IF& (3.12)

I+(t)) = exp(-'H. t)l+) = IA(t)) IF(t)), (3.13)

where

where again IA) and IF) denote (reference) states of the
atom and the field, respectively. As we are interested in
dynamics of distances caused by interaction, we choose
the time-dependent reference state describing free evolu-
tion of the initial state (3.12),

I&(0)) = IA) IF) (3.3) .(t)) = exp( —tHo~t) IA)

where the atomic state IA) is an arbitrary coherent su-
perposition of the excited and the ground state, IP(t)) = exp( —iHopt)IP&.

(3.14)
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The corresponding density operators for the whole sys-
tem 0, the atom o~, and the field o~ are given by pure
states

&(t) = I@(t))(@(t)I

&„(t) = T +& = IA(t))(A(t)l,

(3.15)

(3.16)

e~(t) = T „~= IP(t))(P(t)l.

We will investigate the following metric functions:

D(t) = D(~(t) p(t))

D~(t) = D(rr~(t) &~(t))

(3.17)

(3»)

(3.19)

D (t) =D(&~(t) p~(t)) (3.2o)

representing distances between density operators of the
whole system, the atom, and the field, respectively. As a
direct consequence of Eqs. (3.9)—(3.11) and (3.15)—(3.17)
we obtain

IV. RESULTS OF CASE STUDIES

A. Preliminaries

Apart from the distance, we shall consider also two
additional quantities: the atomic inversion and the von
Neumann entropy. The atomic inversion I of the system
is defined as

~ = (@(t)l(le) (el —lg) (gl) I@(t)). (4 1)

The von Neumann entropy S of a system with a density
operator p is given by

This section contains many illustrative examples, pre-
senting in detail the time dynamics of distances in the
JCM. For completeness of our discussion and to place re-
sults in a broader context we include also results related
to other parameters useful in investigations of some as-
pects of the JCM, such as atomic inversion and the von
Neumann entropy. To provide better understanding of
our numerical results we start with some estimations con-
cerning revival times and approximate solutions.

(3.21) S:=—Tr(p ln p). (4.2)

D~ (t) = (g —v sr+ I»+
I

—v'vr —I» I )

D~(t) = (g —~~+I&~l' —~~ l&zl')

where

(3.22)

(3.23)

(3.24)

(3.25)

The entropy of a system in a pure state is always zero [34].
But for a system composed of two interacting subsystems
it is usually greater than zero for each subsystem, even if
the whole system remains in the pure state. In this case,
it follows from the Araki-I ieb inequalities that entropies
of both subsystems are equal one to another. As a result
we have

S~(t) = —sr+ ln7r+ —vr in~ = Sp(t).

(4.3)

and

1
g = —[1+(~+)'+ (~ )'] =1 —~+~ .

2
(3.26)

To understand qualitatively results for d.istances it is in-
structive to look at approximate solutions of the JCM
with special initial conditions, which are valid for large
intensities of the radiation field [11]:

The parameter g denotes half of the sum of purities of
density matrices for which the distance is calculated. In
our case the purity of the reference states and of the
state of the whole system is always equal to 1. For the
atomic and the field state purity is the same: (sr+) +
(7r ) Thus g can v.ary only between 4 and 1, where the
minimum is reached. for ~+ =

2
——~

In the investigated cases of the Jaynes-Cummings
model, the distance between density operators of the
whole system is always greater than or equal to the cor-
responding distance for the subsystem density operators

. At t

(t)) = exp( —iHot) +exp
I

+i
I le) + Ig)

2 q 2 n)

(y ) ~p„exp(~iAt~n) ln),
n=o

(4.4)

I@+(0))= (+I )+lg)) I ).
2

(4.5)

where p„= exp( —n)n /n!. For t = 0, Eq. (4.4) reduces
to

D(t) & D~(t) and D(t) & D~(t). (3.27)

However, the more general problem, as to whether the
distance between two density operators of the compound
system is always greater than or equal to the distance of
the corresponding density operators of any of the subsys-
tems, is an open question.

The atomic wave functions of these initial states rep-
resent the eigenstates of the semiclassical Hamiltonian,
which describes the interaction of a two-level atom with
a classical monochromatic radiation field. As it is shown
in Eq. (4.4), the corresponding states of the whole system
will be disentangled approximately at all times. Initial
states of the system can be written as a linear combina-
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tion of the states l@+(0)). Therefore Eq. (3.6) can be
approximated by

1
!C'(t)) = cos(o/2) + sin(0/2)e' !4'+(t))2-

1+~ —cos(a/2) + sin(a/2)e' l4 (t)). (4.6)

In this paper we consider the following atomic reference
states:

!A) = cos(cr/2)e' le) + sin(o'/2)e' lg).

For the field we take coherent reference states:

(4.7)

~ = i/ne'~ (4.S)

The field parts of the scalar product of l@+(t)) with the
reference state l@(t)) have revival times t+ given by

At„+ = 2v n(2~p, p P), p = 0, 1, . . . (4.9)

At. = 27rv~n, v= 1)2). . . (4.10)

At half of the first revival time of the atomic inversion I
we have

In contrast, the revival times t of the atomic inversion
I are given by

state of the system, and the atom is initially fully in-
verted. At half of the first revival time of the atomic
inversion, Ati/2 = 7r~n, the von Neumann entropy has
a local minimum: states of both subsystems are as close
as possible to some pure states. However, this does not
mean that these states are as close as possible to ini-
tial states. In fact, both the atomic and the field dis-
tances have at this time well-developed maxima. The
field distance and, similarly, the distance of the whole
system exhibit pronounced revivals at two times the re-
vival time of the atomic inversion, in agreement with Eq.
(4.9). The atomic distance "oscillates" with a double
frequency compared to the whole system. The field dis-
tance follows more closely than the atomic distance, the
behavior of the whole system.

In Figs. 2—4, reference states are also equal to initial
states, but now the atom is prepared in some coherent
superpositions of ground and excited states. These states
enter with equal weights, but phases are different for dif-
ferent figures. The initial state in Fig. 2 corresponds to
the state l4 (0)) in Eq. (4.5). This state is one of the
eigenstates of the semiclassical Jaynes-Cummings Hamil-
tonian and. , as a result, the atomic inversion remains close
to zero and shows small intrinsic oscillations only. Also
because the state of the whole system is approximately
disentangled some time after t = 0, the von Neumann

I@+(ti/2)) = exp( —iIIoti/2) (
—ile) + lg))

2

) ~p„exp(~i~gnn) ln).
n=0

(4.11)

B. Numerical results

It shows that independently of the initial atomic state,
the state of the atomic system at half of the revival time
is approximately given by —ile) + lg) (see, e.g. , [11]).
Following [13], we call this state the atomic attractor
state. For a method to calculate revival times see, e.g. ,
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Using different sets of parameters for the initial state
of the system and for the reference state we calculate
numerically distances D(t), D&(t), and DF(t) as well as
the atomic inversion I(t) and the von Neumann entropy
S~(t) of the atom. The latter is equal to the entropy
of the field S~(t). All results are plotted as functions of
scaled time At. For each set of parameters three pictures
are displayed. In the first picture we present the atomic
inversion I(t). The second one shows the von Neumann
entropy S&(t). The third picture contains distances for
the atom D~(t), the field Dp (t), and the whole system
D(t). In all cases, curves denoted by a, b, and c corre-
spond to D(t), Dp(t), and D~(t), respectively. As we
mentioned, the distance D(t) is always greater than or
equal to D~(t) and Dy (t). We will see that in most
cases also D~(t) is greater than D~(t). It is not, how-
ever, a general rule. All figures are plotted for a mean
photon number n = 25.

In Fig. 1, the reference state is equal to the initial
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FIG. 1. The atomic inversion I(t), the von Neumann
atomic entropy Sz(t), and distances as functions of scaled
time At. The parameters of the initial state are n = 25,
o = 0, and 7. = 0, i.e., the atom is initially fully inverted.
The reference state is equal to the initial state. Curves a, 6,
and c correspond to D(t), Dz(t), and Dz(t), respectively.
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entropy rises rather slowly. Taking ~4'+(0)) as the initial
state we obtain a very similar picture. Quite difFerent
behavior is seen in Fig. 3. Here the atomic initial state
corresponds to the atomic attractor state [11—14]. This
state is (approximately) reached in the collapse region,
after half of the first revival time of the atomic inver-
sion, practically independently &om the initial atomic
state. Thus in this case we know a priori that at the
time Ati/2 = irwin the atom is very close to its initial
state. Indeed, the atomic distance D~(t) shows a pro-
nounced minimum at this time. It clearly confirms that
we use a reasonable measure for the distance. In Fig.
4, the initial atomic state is orthogonal to the attrac-
tor state and the atomic distance shows a pronounced
maximum, as expected. I.et us note that, in contrast, in-
version and entropy are not able to distinguish between
these two cases.

In Figs. 5—7, atomic and Geld components of reference
states are different from the initial state. In all cases,
the latter is determined by cr = ir/2 and 7 = 0, i.e. ,

we use ~@+(0)). In Fig. 5, parameters defining the ref-
erence state are o = o, v = —1, and P = 2. The
first minimum of the atomic distance D~(t) occurs at

a time smaller than one-half of the first revival time of
the atomic inversion. The field distance has its first min-
imum at At+i ——2i/n(2ir —2), according to Eq. (4.9).
The minus sign in that equation must be used, because
the initial state of the system is ~iI'+(0)). In Fig. 6, we
change one of the parameters defining the reference state
a little, taking P = —2. The first minimum of Dy (t)
occurs at Ato+ = 2i/n(0 + 2) = 20. It is seen from
Fig. 5 and Fig. 6 that the minimum of the field dis-
tance is more pronounced at smaller times. This fact
can be explained as follows. The field states in Eq. (4.4)
can be further approximated for small times compared
with Ati/2 = vr~n to be coherent states with amplitudes
~n exp ~iAt/(2i/n), and this approximation is the bet-
ter the smaller the scaled time At is. Now this coherent
state with the minus sign is equal to the field reference
state at the first revival time Ato+ = 2i/n(0 + 2) = 20
of the field distance D~(t), and the minus sign must
be used, because the initial state of the system is again
~@+(0)). To plot Fig. 7, we use another set of param-
eters: v = —1/4 and P = —1/2. A comparison of Fig.
7 with Fig. 5 and Fig. 6 shows a small shift of the ex-
trema of D~(t). The first minimum of DF, which is very
pronounced, is now situated at Ato+ = 2~n(0+ 1/2) = 5.
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FIG. 2. The atomic inversion I(t), the von Neumann
atomic entropy Sz(t), and distances as functions of scaled
time At. The initial state of the system is defined by cr = vr/2
and 7 = s, i.e., the atom is initially in the eigenstate ~4 (0))
of the semiclassical Hamiltonian. The reference state is equal
to the initial state. Curves a, b, and c correspond to D(t),
D&(t), and D~(t), respectively.
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FIG. 3. The atomic inversion I(t), the von Neumann
atomic entropy SA(t), and distances as functions of scaled
time At The parameters .of the initial state are o = n/2 and
a = vr/2, i.e., the atom is initially in the attractor state The.
reference state is equal to the initial state. Curves a, 6, and c
correspond to D(t), D~(t), and D~(t), respectively.
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V. CONCLUDING REMARKS
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(t)) = 'J i(t) + q(t) s'(t) ls'(t)) The solution l@(t)) can be written with the help of or-
thonormal atomic and field states as follows:

with

C = cos(AtV'aaf), C' = cos(AtV'afa), (A4)

lC(t)) = lA+) g v'7r+lI'+)+ lA ) C3 v'~ lI— ), (A8)

where the following definitions are used:

and

.„&sin(At V'aat)

ac~

. sin(At& ata)S' = ia— , (A5)
a~a

f
lA ) = A'& exp( ——(zC g8) {le)+exp[(i@f8)]lg)),

)
(A9)

lE(t)) = exp( —n/2) ) ln),&! (A6)

lE+) = A/~ exp( — ii+8)
)

x jlE, (t) )+ exp[ —(t'4+0)]
l

E (t) )). (A10)

p = cos(o /2), q(t) = sin(cr/2) exp i(w+ ut) . (A7)
The quantities not yet Reined have the following mean-
lIlg:
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(F.(t)IF (t))
I(F (t) IFs(t)) I

'

(F.(t) F.(t)) —(F,(t) lF, (t))
I(F (t) IF.(t)) I

(A11) = (Fg(t)]Fg(t)) + exp(+e)](F, (t)JF (t))], (A13)

0:=sinh (0/2), (A12)

Az .——[2 cosh(O)] A'P:= [27r+ cosh(O)]

(A14)

[41

[5]

[7]

E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89
(1963).
H. I. Yoo and J. H. Eberly, Phys. Rep. 118, 239 (1985).
S. M. Barnett, P. Filipowicz, J. Javanainen, P. L. Knight,
and P. Meystre, in Frontiers in Quantum Optics, edited
by E. R. Pike and S. Sarkar (Hilger, Bristol, 1986), p.
485.
Fam Le Kien and A. S. Shumovsky, Int. J. Mod. Phys. B
5, 2287 (1991).
D. Meschede, Phys. Rep. 221, 201 (1992).
B. W. Shore and P. L. Knight, J. Mod. Opt. 40, 1195
(1993).
G. Rempe, H. Walther, and W. Klein, Phys. Rev. Lett.
58, 353 (1987); G. Rempe, F. Schmidt-Kaler, and H.
Walther, Phys. Rev. Lett. 64, 2783 (1990).

[8] J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-
Mondragon, Phys. Rev. Lett. 44, 1323 (1980).

[9] M. Fleischhauer and W. P. Schleich, Phys. Rev. A 47,
4258 (1993).

[10] S. J. D. Phoenix and P. L. Knight, Ann. Phys. (N.Y.)
186, 381 (1988).

[11] J. Gea-Banacloche, Phys. Rev. Lett 65, 33.85 (1990).
[12] J. Gea-Banacloche, Phys. Rev. A 44, 5913 (1991).
[13] S. J. D. Phoenix and P. L. Knight, Phys. Rev. A 44, 6023

(1991).
[14] S. J. D. Phoenix and P. L. Knight, Phys. Rev. Lett. 66,

2833 (1991).
[15] Ho Trung Dung and A. S. Shumovsky, Opt. Commun.

83, 220 (1991).
[16] M. Orszag, J. C. Retamal, and C. Saavedra, Phys. Rev.

A 45, 2118 (1992).
[17] V. Buzek, H. Moya-Cessa, P. L. Knight, and S. J. D.

Phoenix, Phys. Rev. A 45, 8190 (1992).
[18] E. I. Aliskenderov, Ho Trung Dung, and L. Knoll, Phys.

Rev. A 48, 1604 (1993).
[19] I. Jex and A. Orlowski, J. Mod. Opt. (to be published).
[20] A. Orlowski, H. Paul, and G. Kastelewicz (unpublished).
[21] W. Thirring, A Course in Mathemati cal Physics 9:

Quantum Mechanics of Atoms and Molecules (Springer-
Verlag, New York, 1981).

[22] M. Reed and B. Simon, Methods of Modern Mathematical
Physics I: Functional Analysis (Academic Press, Boston,
1980).

[23] I. M. Gel'fand and N. Ya. Vilenkin, Generalized Func
tions 4: Applications of Harmonic Analysis (Academic
Press, New York, 1964).

[24] R. D. Richtmyer, Principles of Advanced Mathematical
Physics I (Springer, Berlin, 1985), Chap. 12.

[25] M. Hillery, Phys. Rev. A 35, 725 (1987).
[26] M. Hillery, Phys. Rev. A 39, 2994 (1989).
[27] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72,

3439 (1994).
[28] C. W. Helstrom, Quantum Detection and Estimation

Theory (Academic, New York, 1976).
[29] A. S. Holevo, Probabilistic and Statistical Aspects of

Quantum Theory (North-Holland, Amsterdam, 1982).
[30] D. J. C. Bures, Trans. Am. Math. Soc. 135, 199 (1969).
[31] A. Uhlmann, Rep. Math. Phys. 9, 273 (1976).
[32] M. Hiibner, Phys. Lett. A 163, 239 (1992).
[33] P. Lancaster and M. Tismenetsky, The Theory of Matri

ces (Academic Press, Boston, 1985).
[34] A. Wehrl, Rev. Mod. Phys. 50, 221 (1978).
[35] H. Araki and E. Lieb, Commun. Math. Phys. 18, 160

(1970).


