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Classical equations for quantum squeezing and coherent pumping
by the time-dependent quadratic Hamiltonian
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The time evolution, under the general time-dependent quadratic quantum Hamiltonian, of mean
values of a class of observables that includes the field quadratures and their dispersions, is obtained
exactly in classical Hamiltonian form. Quantum states are described in terms of density operators,
so that arbitrary initial states (both pure states and statistical mixtures) are allowed.

PACS number(s): 42.50.Dv, 42.65.Ky, 03.65.Bz

I. INTRODUCTION

The general quadratic Hamiltonian

H = fia a+ fza a + fzaa+ fsa + fsa

with coefficients f, which may be time dependent and
standard bosonic creation and annihilation operators
at, a is an object of notorious utility [1] particularly in
connection with the quantum modeling of the pushing
and squeezing of the electromagnetic 6eld of a single
mode in a high-Q cavity. Several treatments of the cor-
responding dynamics, developed in order to bring un-

der control the various effects which can be achieved by
driving the parameter functions f, , are now available [1,
2]. The purpose of this paper is to describe yet another
way of approaching this matter which has on its account
the following distinctive features. (a) It shows explic-
itly that the time evolution of the mean values of the
field quadratures and of the corresponding dispersions is
given exactly in terms of the canonical equations of in-

dependent c-number Hamiltonians. These Hamiltonians
are expressed in terms of the f; in addition to one extra
non-negative parameter v which is a constant of motion
of (1) determined by the initial state of the field. (b) It
uses density matrix language to express quantum states,
so that both pure states and statistical mixtures can be
handled equally easily. This feature, in particular, may
prove useful for the inclusion of the effects of dissipation
which are not considered here.

The treatment given below is in fact a simple ap-
plication of techniques developed before for the treat-
ment of the reduced (in general, nonunitary) dynamics of
Gaussian observables of interacting many-boson systems
[3—5]. An essential simplifying feature in the present con-
text is the nonautonomous but noninteracting charac-
ter of the general quadratic Hamiltonian (1). Although
a definite option is made here to assure as much self-
containedness as possible, the reader is directed to the
earlier work for additional technical details.

picture. Units chosen so that h = 1 are used through-
out. The mean values q, p of the usual field quadratures
relative to a scale parameter po are then introduced as

(2)

This allows for the definition of displaced boson operators
b, bt as

b=a —(a), b bt =1,
which can be further Bogolyubov transformed to the op-
erators g, gt:

b=xg —y*gt, g, gt =1.
The preservation of the commutation relations requires
as usual that the transformation coefficients x and y be
chosen so that [xi —

lyl = 1. This last transformation
will be chosen so that one has

TrggF =0.
The corresponding coefficients x and y can be determined
as follows: Consider the extended one-boson plus pairing
density matrix [3, 4],

( (at a) —
l (a) l (aa) —(a)

where the brackets denote average values taken with F,
and solve the secular problem,

GRX =XGN,
where

II. QUADRATURES AND DISPERSIONS
AS GAUSSIAN OBSERVABI ES

The state of the field is generally described in terms of
a density operator E (with unit trace) in the Schrodinger

It follows &om this that

Tr gtgE = v,
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so that v gives the average number of g bosons in F and,
consequently, v & 0.

At this point it is useful to introduce a truncated den-
sity operator Fo (also of unit trace) which is completely
determined once the quantities p, q, x, y, and v are given
[3, 4]. This operator is constructed so that it reproduces
the mean values of the quadratures and of the opera-
tors ata and aa taken with respect to the full density
F. Since it is fully determined by these quantities, ir-
reducible parts of three or more boson operators (e.g. ,
(ataata)) are truncated away. The density operator Fp

will, therefore, be called the Gaussian projection of the
full density F. It is given, in general, as [3]

1 ( v
I(, +„)I (4)

This density can, in fact, be expressed in the form

Fp ——P(t)E,
where P(t) is a time-dependent projector [3,4] which can
be explicitly written as

P(.) = P () = 1 — Tr(.) + Tr (&t& ) + —" Tr (&t.)
" Tr (&.)1+v v(1+ v) v 1+v

gtgi

The time dependence of P results, in general, from the
time dependence of p, q, z, y, and v. An important prop-
erty of this operator is that

P(t)F = 0

so that one has Eo ——P(t)E. These time derivatives
involve the dynamic evolution generated by H.

As a result of this construction, the mean value of any
observables which is at most quadratic in the operators
a, at can be fully retrieved &om just the Gaussian projec-
tion Fp of the full density. These observables will, there-
fore, be referred to as Gaussian observables. The general
quadratic Hamiltonian and the quadratures q and p are
clearly Gaussian observables, the same being true also
for the dispersions of the quadratures. A straightforward
calculation gives, in fact,

(H) = hq+ h,~,
with

hq = fll(a)l'+ f2(a)* + f2(a)'+ f3(a)'+ f3(a),
(S)

and

2
+ Iyl'+ (Ixl'+ Iyl') v

—[f2x'y + f*xy'] (1+2v) .

For the dispersions of the quadratures, one gets

[(( ' +.) ) —(( )* + ( ))']

»' = ——[(( ' — )') —(( )' —( ))']
2

= —[1+2]xl'v+ 2lyl2(l + v)
2

+(1+2v) (x*y + xy')] .

III. EQUATIONS OF MOTION
FOR GAUSSIAN OBSERVABLES

The next step is to consider the time evolution of the
mean values of Gaussian observables under the general
quadratic Hamiltonian (1) in the context of the initial-
value problem associated with the I iouville —von Neu-
mann equation,

Pi= [H(t), F] .

If I' is a time-independent Gaussian observable, one has

i =iT I'F = T [I', H(t)]F. d(I')
dt

= Tr [I', H(t)] (Fo+ F )

where use has been made of the cyclic property of traces
and F has been written in terms of Fp and of the remain-
der traceless part F'. As stated in the Introduction, im-
portant simplifications occur in the case of the quadratic
Hamiltonian H. In fact, in this case I'(t) = i [I', H(t)] is-
itself a Gaussian observable, and, consequently, one has

Tr I'(t)F = Tr I'(t)Fo,

so that the term involving F'(t) in Eq. (12) vanishes.
The time evolution of (I') reduces, therefore, just to

i = Tr[F, H(t)]Fo .d(I')

and

1 [1+2lxl'v+ 2lyl'(1+ v)
2pp
—(1+2v) (x*y+ xy')] (1O)

This result can, furthermore, be immediately extended
to Gaussian observables which are explicitly time depen-
dent, but have time derivatives which are also Gaussian
observables. In this case, Eq. (13) acquires an extra term
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p 2
q = (fi —2Ref2) —+ 2Imf2q+ —Imfs,

go Pp

p = —(fi + 2Ref2) ppq + 2lmfzp+ /2pp Refs .

It can easily be checked that these equations can be writ-
ten in terms of h~, Eq. (8), as

t9hq . Ohq

t9p Oq
'l I (i5)

OI'
i Tr Fp.

Ot
The task of obtaining equations of motion for the

quadratures and their dispersions starting from Eq. (13)
is now a straightforward algebraic exercise. For the
quadratures p and q take I' = a. Substituting this in
Eq. (13) and separating real and imaginary terms, one
gets

so that the uncertainty product LpLq is

(1+2v)2 1+ 2i
(21)

Since, however, Fp commutes with pter, it follows that
v = 0, i.e., v is a constant of Inotion whose value is de-
termined by the particular choice of initial conditions for
the density F. Inspection of Eqs. (17) shows, moreover,
that the effect of changing the value of v reduces to a
simple rescaling of the functions Q(t), P(t). Let, in fact,
Q(v; t) and P(v; t) be the solutions of these equations for
a given value of v and initial conditions Q(v; 0), P(v; 0);
it can then be checked immediately that the scaled func-
tions,

Finally, one must consider the possible time dependence
of v. This is obtained from [4]

iv = Tr g~g, H Fp ——TrH Fp, gtg

so that hq, expressed in terms of p and q, plays the role
of a c-number Hamiltonian which generates the time evo-
lution of the quadratures. As for the dispersions, since
these are given in terms of x, y, and v, take I' = gtgt.
In this case one gets [4]

P(v'; t) =

2„Q(~ t)

P(v; t),

i(xy —xy)(1+ 2v) = Tr rItrjt, Hp Fp

= 2fi xy —2f2y' —2f,*x' . (16)

will also be solutions, corresponding to the value v' and
similarly scaled initial conditions.

This can be cast in neater form by reparametrizing the
Bogolyubov transformation as [3]

Z7 Z'T
x = cosho. + —,y = sinho. + —,

2
' 2

which automatically fulfills the condition ~x~
—

~y~
= 1.

Furthermore, introducing new variables P and Q as [5]

1+2v 1+2v
p,p, ——e

2 2pp

one obtains &om Eq. (16),

P
Q = (fi —2Re f2) —+ 2Imf2 Q,

Pp

P = —(fi+ 2Ref2) ppQ

l (1+ 2~)'
+ fi —2Re f2 —2Imf2 P, (17)

which can also be written in terms of h, ~, Eq. (9), as

Aq =Q
(1+2v)2

I +
4

(i9)

(20)

Bh,~ . Bh,~
BP '

OQ

This shows that h, ~, expressed in terms of P and Q,
plays the role of a c-number Hamiltonian which generates
the time evolution of the squeezing variables P and Q.
The dispersions Lq and Lp written in terms of these
variables appear as

IV. DISCUSSION AND NUMERICAL EXAMPLES

The foregoing development has shown that equa-
tions of motion determining the time development of
Gaussian observables, particularly the quadratures and
their dispersions, can be obtained in closed c-number
Hamiltonian form for the quantum dynamics generated
by the general quadratic Hamiltonian, Eq. (1), and an ar-
bitrary initial state described by a density operator F(0).
The quadratures and their dispersions are found from in-
dependent sets of equations which are related to each
other via their common dependence on the c-number pa-
rameters of the underlying quantum quadratic Hamilto-
nian. The equations that describe the squeezing motion
involve also the value of the constant of motion v which
is fixed by the initial state under consideration.

Concerning this quantity, it is easily verified that an
initial state given by a density of the form Fp, Eq. (4)
[i.e. , a density F(0) such that F'(0) = 0], will be a pure
state (in the sense of having an idempotent density ma-
trix) only when v = 0. These pure Gaussian states are,
in general, one- or two-photon (squeezed) coherent states
of the field. Situations in which v g 0 corresponds ei-
ther to Gaussian mixed states [when F'(0) = 0] or to
pure or mixed states which are correlated in the sense
of giving rise to irreducible contributions to mean val-
ues of non-Gaussian observables. The particular form of
the quadratic Hamiltonian (in fact, its Gaussian charac-
ter) leads, however, to the decoupling of the dynamics
of Gaussian and non-Gaussian observables, so that the
former can still be fully retrieved in closed form &om Fp
alone.

For the special case of a coherent state ~v), constructed
as usual as an eigenstate of the annihilation operator a,
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FIG. 1. Phase space (P, Q) trajectory obtained by numer-
ical integration of Eqs. (17) for parameter functions f& ——uo
and f2 ——0.2e' ' with up = ~v 2 and v = 0. Initial condi-
tions are P = 0, Q = ~2/2. The scale parameter Ijp is set
equal to one. The highlighted areas correspond to the q- and
p-squeezed domains defined in Eq. (22).

FIG. 2. Same as Fig. 1 but with f2 ——0.05e' ' and cup ——

0.5u.

the trivial case of the simple harmornc oscillator, fz
up, fz —fs ——0, one obtains &om Eqs. (14) and (17),
respectively,

+~o& = 0

1+2v 2=Lq and Lp
2pp

For a given value of v one can, therefore, define q-
squeezed and p-squeezed (with respect to the usual Fock
states) domains in the (P, Q) plane, respectively, as

1 + 2v 2ppQz —(1+2v)
and P

1+ 2v
po

1 + 2v

2Pp

(22)
These domains meet at the point

1+2 l
2pp

They are highlighted in Figs. 1 and 2 (for v = 0), where
phase-space trajectories obtained &om numerical integra-
tion of Eqs. (17) are also shown. The scale factor pp is
set equal to one. The initial conditions used are P = 0,

Q = . In both cases the trajectories correspond to a
2

parametric oscillator with fq ——wp and fz ——Ke' with
K = 0.3 cu/(up = ~2/2 and v. = 0.05, cd/(dp = 2. Note
that the equations do not depend on fs The time i.n-
tegrations have been carried through to t = 15m/wp and
6'/up, respectively.

As a final comment, it is worth mentioning that, for

one has v = O, z = l, y = 0, which gives P = O, Q =
I/+2pp. The dispersions, given by Eqs. (19) and (20),
are Aq = and Ap = —,as appropriate, for a2= 1 Pp

2pp 2'
minimum uncertainty packet. If, on the other hand, one
considers Fock states ~n) (eigenstates of ata), one finds
also that they correspond to x = 1,y = 0 but now v = n.

1+2P
For these states, therefore, P = 0 and Q =

2pp
so that one recovers Rom Eqs. (19) and (20) the usual
values,

Q+cup Q — =0.(1+ 2v)'
4ppQ

(»)
For small oscillations dQ of Q about the equilibrium po-

1+ 2v
, Eq. (23) becomes

2pp
sltlon Qp +

dQ + 4urpdQ = 0 .

This doubling of the frequency for the squeezing motion
can in fact be related to the treatment of harmonic os-
cillators in terms of symplectic groups given by Goshen
and Lipkin [6]. It can be visualized classically by noting
that, since for harmonic oscillators the frequency does
not depend on the amplitude of the motion, if a set of in-
dependent particles in a harmonic field is symmetrically
stretched out for equilibrium, it will subsequently pulsate
with &equency 2up.

V. CONCLUSIONS

Classical Hamiltonian equations of motion have been
obtained that describe completely the time evolution of
mean values of Gaussian observables of a quantum sys-
tem governed by the general time-dependent quadratic
Hamiltonian, Eq. (1). These equations, which consti-
tute the main result in this paper, are given in Eqs. (14)
and (17). Arbitrary initial quantum states are allowed,
both pure states and statistical mixtures. In particular,
this reduces the study of squeezing and coherent pumping
eÃects for the field quadratures and their dispersions to
the classical dynamics of nonautonomous systems. The
treatment given avoids the complete solution of the un-
derlying quantum problem by taking advantage of the
decoupling of the dynamics of diferent classes of observ-
ables which result &om the noninteracting character of
the general quadratic Hamiltonian.
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