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A scheme for the preparation of Fock states and general superposition states of the electromag-
netic field in a cavity is studied in detail. The scheme uses adiabatic passage in a strongly coupled
atom-cavity system to "map" atomic ground-state Zeeman coherence onto the cavity-mode field. We
model photon-counting and homodyne measurements of the field exiting the cavity and demonstrate
the possibility of generating and detecting highly nonclassical states of the Geld with parameter val-
ues close to currently realizable experimental values. The adiabatic passage process is also reversible,
enabling cavity-mode fields to be mapped onto atomic ground-state Zeeman coherence. Application
of this property to the measurement of cavity fields is discussed, with particular consideration given
to a possible scheme for quantum measurement of the intracavity photon number.

PACS number(s): 42.50.Dv, 42.50.Lc

I. INTRODUCTION

Nonclassical electromagnetic fields exhibit statistical
properties that cannot be associated with any classical
stochastic process. That is, nonclassical electromagnetic
fields require an explicitly quantum-mechanical descrip-
tion. Spectacular recent advances in quantum optics
have led to the experimental realization of such fields.
Quadrature-squeezed and sub-Poissonian light fields are
two prominent examples [1—3]. Quadrature-squeezed
light exhibits reduced quantum fluctuations, below the
vacuum-state level, in one quadrature phase amplitude of
the field. Sub-Poissonian, or intensity-squeezed, light is
characterized by an intensity distribution narrower than
a Poissonian distribution, which corresponds to a reduc-
tion in intensity fluctuations below the level of a coherent
light field.

Interest in these nonclassical light fields arises from the
potential applications such fields may have in optical sys-
tems. In particular, the reduced fluctuations exhibited by
these states of light offer the possibility of enhanced mea-
surement sensitivity beyond the standard quantum limit
set by vacuum fluctuations. Theoretical studies also indi-
cate that fundamental atomic processes should be altered
through interaction with nonclassical light [4].

A particularly interesting and topical avenue of re-
search into the generation of nonclassical light fields is
that associated with cavity quantum electrodynamics,
in which beams of atoms interact strongly with a sin-
gle quantized field mode of a cavity [5). In both the mi-
crowave [6,7] and optical [8,9] regimes it is now possible to
realize situations in which the single-atom —cavity-mode
coupling strength exceeds spontaneous emission and cav-
ity loss rates, so that coherent evolution of the coupled

system predominates, or at least produces observable ef-
fects. In microwave experiments this is achieved by using
Rydberg atoms and very high-Q superconducting cavi-
ties, so that spontaneous emission and cavity damping
are quite negligible on the time scale of the atom-field
interaction. Properties of the cavity field are inferred
from interrogation of atoms exiting the cavity. In optical
experiments spontaneous emission is significant, but the
strong-coupling regime can be reached via high-finesse
cavities and very small cavity-mode volumes. In con-
trast to the microwave regime, one has direct access to
the optical field in the form of light transmitted through
the cavity mirrors and hence one can employ a number
of direct measurement schemes such as photon counting
and homodyne detection.

The predominance of coherent evolution in these
configurations makes cavity quantum electrodynamics
a favorable candidate for the realization of uniquely
quantum-mechanical states of light. Relevant examples
are Fock (or number) states, which have no intensity fluc-
tuations (corresponding to the "ultimate" sub-Poissonian
field), and coherent superposition states, which, in the
case that the superposed states can be regarded as macro-
scopically, or classically, distinguishable, are referred to
as "Schrodinger cat" states.

A variety of theoretical proposals have been put for-
ward for the generation of such states [10—19]. Brune
et al. [11,14], have shown that repeated measurements
of the dispersive phase shift experienced by Rydberg
atoms traversing a microwave cavity produce a collapse of
the cavity-Geld photon distribution into a pure photon-
number state. A variation of this scheme involving an
initial coherent state and single-atom interaction and de-
tection can generate a Schrodinger-cat state of the field
[14,16]. Measurements of the dipole-force-induced defiec-
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tion of an atomic beam &om the standing-wave cavity
mode may also in principle yield Pock states, as shown
by Holland et al. [12], while Cirac et al. [13] have demon-
strated a scheme in which Fock states can be generated
via the observation of quantum jumps to a metastable
atomic level. The technique of Slosser et aL [15] for the
generation of coherent superposition states assumes a se-
quence of polarized two-level atoms passing through a
microwave cavity and invokes the concept of "trapping
states" in a micromaser [5]. In a similar vein, Vogel et
al. [17] have recently demonstrated theoretically that a
sequence of suitably prepared two-level atoms can drive
a cavity mode into an arbitrary superposition state, pro-
vided that each atom is measured to be in a particular
state following its interaction with the field. A scheme
based upon the same mechanism, but employing two-
photon interactions in a micromaser, has also been de-
scribed by Garraway et aL [18]. Finally, a scheine based
on the adiabatic transformation of system eigenstates in-
volving continuous tuning of the cavity &equency was
proposed by Raimond et al. [10] as a means of produc-
ing Fock states. In all of the above-mentioned schemes,
the efI'ects of atomic spontaneous emission are avoided
through the use of either slowly decaying atomic lev-
els (e.g. , Rydberg atoms) or far-off-resonance (and hence
weak) atom-field interactions.

The purpose of the present paper is to examine in de-
tail a scheme put forward recently by us for the prepara-
tion of Fock states and coherent superposition states in a
cavity [19]. As with the proposal of Raimond et aL [10],
our scheme is based upon the adiabatic transformation
of an eigenstate of the atom-cavity system. The feature
of the scheme that sets it apart &om previous work, how-
ever, and which gives it particular appeal, is that the rel-
evant adiabatically evolving eigenstate contains no con-
tribution from excited atomic states, even under the con-
dition of resonant atom-field interaction. Hence atomic
spontaneous emission, in principle, plays no role in the
system dynamics, irrespective of the spectral regime we
may be considering and of atom-field detuning. The pos-
sibility of experiments in the optical regime, especially
with regard to the generation of superposition states,
makes this scheme of particular interest, we believe, and
indeed the emphasis of the work to be presented here is
upon configurations appropriate to optical experiments.

In practical terms, our scheme requires the passage of
an atom (or atoins) with Zeeman substructure through
overlapping cavity and laser fields. The adiabatic passage
technique allows for coherent superpositions of atomic
ground-state Zeeman sublevels to be "mapped" directly
onto coherent; sup erpositions of cavity-mode number
states. This ability arises &om the independent evolu-
tion of different "families" of states of the coupled atom-
cavity system. Hence the generality of the superposi-
tions that can be produced in the cavity is limited only
by the extent to which one can prepare general super-
positions of atomic ground-state Zeeman sublevels (for
example, using optical or radio-frequency pumping) and,
of course, by the number of available Zeeman sublevels
(i.e., by the angular momentum quantum number of the
atomic level). Another significant feature of the scheme

is that following the transfer the atomic population is in
a single atomic state, thereby avoiding the introduction
of atomic-state "measurement noise. "

The outline of this paper is as follows. In Sec. II we
describe the mechanism of adiabatic passage in an atom—
cavity-mode system and give the conditions necessary for
such a scheme to operate efIiciently. In Sec. III we present
numerical results for the situation in which adiabatic pas-
sage produces a coherent shift of the cavity-mode photon
distribution. Of most interest to us here is the case in
which the cavity field is initially in the vacuum state and
passage of an atom through the interaction region yields
a Fock state of the field. As mentioned above, we put
emphasis upon the optical regime, primarily restricting
ourselves to values of coupling strengths, cavity damp-
ing, and spontaneous emission damping that are of rele-
vance to existing experiments and to configurations that
should be viable with realistic improvements. Also in
this vein, we model photon-counting measurements on
the field transmitted through the cavity mirrors, tak-
ing into account finite detector efIiciencies so that we
may gauge the practicality of detecting Fock states of
the field generated by this scheme. In Sec. IV we de-
scribe the mechanism by which coherent superposition
states may be generated and present numerical results
in certain regimes and for various possible forms of su-
perposition states. With an eye towards possible exper-
iments, we consider balanced homodyne measurements
of the cavity field as a means of detecting these states.
Sections V and VI are devoted to discussions of possi-
ble further applications of the adiabatic passage scheme.
More specifically, in Sec. V we describe a variation on
the adiabatic passage scheme whereby coherent superpo-
sitions of fields in macroscopically separated cavities may
be produced, while in Sec. VI we discuss the potential of
adiabatic passage for the measurement of cavity fields,
with particular emphasis on the possibility of quantum
measurement of the intracavity photon number. Finally,
in the Conclusion we touch briefIy upon some experimen-
tal considerations.

II. ADIABATIC PASSAGE
IN AN ATOM-CAVITY SYSTEM

Given that a system is described by a time-varying
Hamiltonian H(t), the adiabatic theorem applied to this
system for the interval of time &om to to tz can be stated
in its simplest form as follows [20]: If the evolution from
time to to time tz is sufIiciently slow, then if the system
is initially in an eigenstate of H(to) it will pass into the
eigenstate of H(ti) that derives from it by continuity.

Making use of this property of adiabatically evolving
quantum systems, Raimond et al. [10] proposed a scheme
for the preparation of Fock states in which initially ex-
cited Rydberg atoms pass through a microwave cavity,
the resonant frequency of which is continuously varied
during the atomic transit time. With an appropriate
time dependence of the atom-cavity detuning, the initial
eigenstate describing the atom-cavity system adiabati-
cally evolves into a final eigenstate corresponding to the
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atoms being in the ground state and to the cavity mode
being in a Fock state. Although the evolving eigenstate
contains a contribution from the excited atomic state,
nonadiabatic transitions induced by spontaneous emis-
sion do not represent a significant problem as long as one
remains in the microwave regime.

The adiabatic passage scheme that we are concerned
with has its origins in studies of coherent population
transfer between atomic ground-state levels [21—24] and
more recently in work on coherent atomic-beam deflec-
tion [25]. These studies demonstrated that the adia-
batic evolution of a certain atomic eigenstate, given the
presence of appropriately ordered time-dependent laser
pulses, could facilitate the coherent and complete trans-
fer of atomic population to a single ground state. The re-
markable feature of this eigenstate, which enables atomic
coherence to be preserved, is that it has no contribution
from excited atomic states. That is, under suitable op-
erating conditions, excited atomic states are never popu-
lated during the evolution and spontaneous emission does
not figure in the dynamics of the system.

The adiabatic transfer between atomic ground states
can also be interpreted in terms of Raman transitions in-
duced by a pair of laser fields. These transitions involve
the exchange of precise numbers of photons between the
two laser fields, with a similarly precise number of mo-
mentum "kicks" given to the atom in the directions of
the laser beams. In the case that the laser beams are
counterpropagating, it follows that an atom can experi-
ence a substantial and controlled defIection in one direc-
tion. The potential of this characteristic feature for use
in atomic interferometry has been pointed out recently

~L, and a cavity-mode field of frequency u. For the mo-
ment, we neglect atomic spontaneous emission and cavity
damping, but these will be added to the model when we
carry out numerical calculations in the ensuing sections.
The Hamiltonian for this system can thus be written as

H(t) = Ruata+ M.gle)(el —ihg(t) (le)(g2la —H.c.)
+ihB(t) (Ie)(g, le

* ' —H.c.), (1)

where a is the annihilation operator for the cavity mode
and g(t) gives the atom —cavity-mode coupling strength.
The time dependence of B(t) and g(t) is provided simply
by the motion of the atom across the laser- and cavity-
field profiles.

The Hamiltonian II(t) has the property that it
couples only states within the family, or manifold,
(Igi n) le rt) Ig2 Xi+1)), where lg ii)—:Ig)lii) le n) —=

le) In), and In) represents an n-photon Fock state of
the cavity mode. Such a family is depicted in Fig. 1(a).
In a frame rotating at the frequency u, the adiabatic
energy eigenvalues of the Hamiltonian associated with a
particular family of states take the forms

E„+= nM + —h(A + [A' + 4g(t)'(n+ 1)
1

+40(t)']'~'),

where we have assumed that w = uL, and 4 = u g
—~ is

the detuning. Of particular interest to us is the eigenstate
corresponding to E = nLu, which is given by

[25]. g(t)gn+1 Ig„n)+ n(t) Ig2, n+1)
v ()'+g()'( + )

(2)

A. Basic description: Three-level A atom

The theoretical analysis of coherent population trans-
fer in atomic systems via adiabatic passage has been
given in detail in Refs. [21—24]. A clear and simple de-
scription of the method is best given for the elementary
case of a three-level A atom subject to two incident light
fields. Our analysis of this system is completely analo-
gous to the earlier work on coherent population trans-
fer. However, previous work was not concerned with the
statistics of the light fields, which were typically coherent
laser fields and were thus treated as classical fields. In
contrast, we now consider one of the light fields to be the
field mode of a cavity. In terms of our theoretical model,
this necessitates the quantization of one of the fields cou-
pled to the atom. The properties and statistics of this
quantized field mode are the focus of our attention in this
paper.

a) laser
le, n)

(t)In+1
atom

This eigenstate does not contain any contribution from
the excited state (hence the term "dark state") and is
independent of the detuning A. For completeness, the
eigenstates IE+) are

X. DavA: state

Ig1,n) Ig2, n+1&

cavity

We consider a single three-level atom with two ground
states lgi) and lg2) (for simplicity we consider these states
to have the same energy) coupled to an excited state le)
via, respectively, a classical laser field O(t) of frequency

FIG. 1. (a) A three-level atom. (b) Proposed configuration
for the preparation of Pock states using three-level atoms.
The propagation direction of the pump laser is perpendicular
to the page.
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where JV~(t) = g(t) (n+ 1) + A~(t) + O(t)2 and

A+(t) = —(E 6 [E + 4g(t) (n+ 1) + 4B(t) ] ) .

2. Time evolution

(and vice versa). For example, if, as the atom enters the
interaction region, the state of the atom-cavity system is
given by lgi & n), then, for the pulse sequence (as "seen" by
the atom traversing the cavity and laser fields) in which
O(t) is time delayed with respect to g(t), the final state
of the system as the atom exits the interaction region will
be lg2, n+ 1). Such a pulse sequence would be realized
in the experimental configuration depicted in Fig. 1(b).

The state lE„)exhibits the following asymptotic be-
havior as a function of time:

8. Shift of the photon

distribution

lgi, n) «r O(t)/g(t)
lg2, n + 1) for g (t) /O (t) i 0.

Given that the time evolution of the system is adiabatic,
Eq. (5) demonstrates the possibility for the adiabatic
transformation of the state lgi, n) into the state lg2, n+1)

Given the evolution described above, it follows that the
passage of an atom through the cavity and laser fields
produces a single-photon "shift" of the cavity-mode pho-
ton distribution. This is summarized by the transforma-
tion equation for the density operator of the atom-cavity
system:

p = l»)(gil p~ =—l»)(gil ).In)(ml(mlp~ln)
n)m

; lg2) (g2 l
Cg) ) l

n + 1)(m + ll (ml p~ n) = p'.
n}m

That is, an atom prepared in the state lgi) leaves the cav-
ity in state lg2) with probability one and the cavity-mode
density operator following the passage is given simply by

p'„=T „(p')= ) in+1)(m+ ll(mlp~ln),
n im

where Tr~() denotes the trace over the atom. The pho-
ton distribution is shifted by exactly one photon. [Note
that the forms of the coupling terms in the Hamiltonian
(1) are such that phase shifts occurring during the adi-
abatic transformation are identically zero. ] Obviously,
the transit of N such atoms shifts the distribution by ex-
actly N photons. For the case of an initial vacuum state
of the cavity mode, py = l0) (Ol, this corresponds to the
generation of an N-photon Fock state p&

——lN)(Nl, pro-
vided, of course, that cavity losses are negligible during
the interval between the first and last atoms.

B. Atomic J~ = N —+ J = N —1 transition:
Multiple-photon shift

where the atomic lowering operators A are given by

A = ) l Jgmg)(Jgmg, lo
l
J.m, )(J.m. l,

me )mg

with (Jgmg; lo'l J,m, ) the Clebsch-Gordan coefFicient for
the dipole transition le) +lg) with -polarization o

0, +1.
If we consider the case in which the atom is initially

in the state lg N), then the relevant adiabatic-following
eigenstate (with eigenvalue E = nkvd) of the above
Hamiltonian takes the form

lE, g ) = JV(lg, )G,G, G(n) (n) (n)

(n) . . . (n)+lg N+1 n + 1)O N—+1G-
+ ~ + lgN 1, n+ 2N —1)

x O N+1O N+2 ON 1}, (10)

II = &ato+ Ru,g) lJ,m )(J,m,
l

me

—ilig(g) (a~Ao —4oa) + E'hB)'t) (A~a —A+&), (8)

One need not restrict oneself to single-photon shifts
per atom. The same analysis described above can be
applied to more complicated atomic-level configurations,
with the most obvious generalization being to an atom
possessing Zeeman substructure. In particular, we shall
concentrate on a Jz ——N ~ J = N —1 atomic transition,
where Jg and J, denote, respectively, the total angular
momentum quantum numbers of the ground and excited
atomic levels. The laser .field is assumed to be o.+ po-
larized and the cavity field vr polarized: in this way the
photon shift per atom is maximized. The Hamiltonian
for this configuration can be written

where

G&
——g(t) y n + N + A: (Jg(mg ——k); 10lJ,(m, = k))

(k & N), (ll)

Og = O(t)(J (m = k —1); ill J, (m,, = k)) (k ) —N),

(12)

and JV is a normalization factor. Hence, given that the
atom is prepared in the state lg N) and that one has
an appropriate pulse sequence, in which g(t) precedes



1582 PARKINS, MARTE, ZOLLER, CARNAL, AND KIMBLE 51

O(t), adiabatic passage along this dark state produces
the transformation

lg ~, n)

Such a transformation is depicted in Fig. 2(a) for an
atomic J~ = 2 ~ J, = 1 transition. In words, population
initially in the atomic state lg N. ) is coherently trans-
ferred to the state lg~ i) and the initial cavity mode
state ln) is transformed into the state ln+2N —1). Hence,
for an initial vacuum state of the cavity mode, passage of
a single atom yields a (2N —1)-photon Fock state in the
cavity and each subsequent atom (entering in the state
lg N. )) increases the photon number by (2N —1). Taking
into consideration cavity losses, a single atom producing
a (2N —1)-photon shift clearly has an advantage over a
sequence of (2N —1) atoms each producing only a single-
photon shift as described in Sec. IIA 3.

C. Ort hogonal families of st ates

When the cavity is initially in the vacuum state, there
exists the possibility of performing adiabatic passage

with initial atomic states other than lg ~). Each of the
states lg, 0) (m = —N, —N + 1, . . . , N —1) is associ-
ated with a diferent manifold of the system Hamiltonian.
Each of these (orthogonal) manifolds possesses an inde-
pendently evolving dark state of the form given above,
asymptotically linking each state lg, 0) w'ith a unique
Fock state of the field, i.e., via adiabatic passage one can
generate the transformation

(14)

Taking the example of a J~ = 2 —+ J = 1 transition
(N = 2), it follows that, in addition to performing adia-
batic passage from the state g 2, 0) (producing a three-
photon Fock state) one can also consider adiabatic pas-
sage with initial state lg i, 0), which yields a two-photon
Fock state, or with the initial states lgo, 0) and lg+i, 0),
which lead to the one-photon and vacuum I"ock states,
respectively. These four distinct possibilities are depicted
in Fig. 2(b).

D. Conditions for adiabatic passage

Ig „,n&

le &, n&

Ig ~, n+1&

leo, n+ 1&

Ig0, n+2)

le &, n+2&

Ig ~, n+3&

Until now, we have only specified that the evolution
of the system be sufriciently slow in order for adiabatic
passage to occur. Quantitative estimates of the restric-
tions on various parameters can be obtained as in Refs.
[23,24]. Assuming Gaussian pulse profiles for A(t) and
g(t) of width T [full width at half maximum (FWHM)]
and peak intensities 0 and g, the necessary con-
dition for adiabatic following is

0 T, 2g Qn+1T )) 1.

Ig 2,0& Ig ),3)

Ig ),0& Ig ),2&

Igo, 0& Ig ],1&

Ig ),0)

FIG. 2. (a) Depiction of the three-photon shift produced
with an atomic Js = 2 ~ J, = 1 transition. (h) Depiction of
the dependence of the shift of an initial vacuum cavity field
on the initial atomic state. For the atomic J~ = 2 —+ J = 1
transition considered, shifts of zero, one, two, or three photons
occur for the initial atomic states lg+i), lgo), lg i), or lg 2),
respectively.

This condition results from the requirement that the
probability for transitions from lE„)to other states be
very small. Given that the pulses have a significant over-
lap in time, it ensures that lE ) is well separated from
IE+) throughout the interaction and that nonadiabatic
coupling between these eigenstates is not significant.

The conditions given above minimize the probability
for nonadiabatic transitions within a particular manifold.
Dissipative efFects due to cavity losses and atomic spon-
taneous emission can, on the other hand, lead to tran-
sitions between difFerent manifolds of the system. As
alluded to earlier, the technique of adiabatic passage is
robust against the eÃects of spontaneous emission as, in
principle, the excited atomic state is never populated. Of
course, in practice some fraction of the population does
reach the excited atomic state and hence large values of
g and 0 relative to the atomic spontaneous rate
I' are desirable.

Cavity damping cannot, of course, be avoided in the
way that spontaneous emission is avoided. The eÃects of
cavity dissipation come into play as soon as the cavity
mode is excited. This means that before the adiabatic
transfer is complete, photons may be emitted from the
cavity, limiting the maximum number of intracavity pho-
tons at any one time. The eKect of cavity dissipation is
clearly to couple manifolds (lgi, n), le, n), lg2, n + 1)f oi
difFerent n: ideal adiabatic transfer occurs when the pas-
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sage is across a single manifold.
Summarizing, the adiabatic passage technique will be

optimized when

1
~diaz) gmaz»» —»» m~~&) I"

) (16)

III. SHIFTING PHOTON DISTRIBUTIONS:
NUMERICAL RESULTS

A. Master equation

where K is the cavity linewidth (FWHM) and n is the
maximum photon number attained by the cavity mode.
With respect to the condition on g, it is clear that we
require conditions under which "vacuum Rabi splitting"
would be observable in the coupled atom-cavity system
t7-91

Finally, it is important to note that, because of the
adiabatic nature of the transformation we employ, the
conditions for successful operation take the form of in-
equalities and hence the scheme is robust against small
changes in the various parameters, i.e. , precise values of
coupling strengths and interaction times, etc. , are not
required for the scheme to operate. This tolerance of
variations in parameter values is particularly appealing
from the point of view of experiments.

given realistic parameters. We concentrate in particu-
lar on the atom-cavity coupling strength g and the
cavity-mode decay rate K, since the maximization and
minimization of these parameters respectively pose the
most diKcult challenges for experiments. Thus it is im-
portant to know magnitudes of these parameters required
to produce interesting results.

Considerably more freedom is available to experimen-
talists with respect to the laser-field strength and the
time delay (or physical overlap) between the cavity and
laser fields. The values that we choose for these parame-
ters approximately optimize the results in each case, al-
though a reasonable variation is tolerable. For exam-
ple, given a pulse width T = 1 (FWHM) for both cav-
ity and laser fields (as we choose below), a time delay

0.6 —0.8 is found to give optimal results [26]. In all
cases below, we use a delay w = 0.6, with the Gaussian
pulses g(t) and O(t) centered at t = 1.7 and 2.3, re-
spectively. For the laser-field Rabi frequency we choose
0 = 50, but a variation of 10—20%%uo in this value makes
little difference to the results. A limited increase in the
value of 0 will usually improve the results somewhat,
but if 0 is too large relative to g, the adiabatic
transfer is degraded. The atomic linewidth is taken to be
I' = 5 and the cavity-mode and laser frequencies are as-
sumed to be resonant with the atomic transition through-
out all of the calculations that follow.

For a realistic description of the atom-cavity system,
in which dissipative channels are accounted for, we must
employ a master equation description. Remaining with
the case of an atomic J~ = N ~ J, = % —1 transi-
tion and with a m-polarized cavity-mode field and a o.+-
polarized laser Beld, the relevant master equation can be
written in the form

i(H, ff p —H.c.—) + I' ) A pA + r.apa,
a =0,+1

(17)

where p(t) is the reduced density operator of the system,
and

H ff = (& —iI/2) ) ~

J.m. ) (J.m
~

—i —ata

—iB(t) (A+i —A+i) + ig(t) (at Ap —Aoa), (18)

where now we have moved to a frame rotating at the
laser frequency, which is assumed to be resonant with
the cavity-mode frequency.

B. Mean photon number, photon-number variance,
and atomic ground-state populations

In the following, we study the time evolution of the
mean cavity photon number and the Mandel Q parameter
(i.e. , photon-number variance) and give the final atomic
ground-state populations, obtained from numerical inte-
gration of the master equation given above. Our aim is to
gauge the effectiveness of the adiabatic passage scheme

1. Egect of atom-cavity coupling stt'ength

((a'a)') —(a'a)'
(ata) (19)

as a function of time. Tables I—III give the final atomic
ground-state populations following the passage of the

For atomic transitions we consider just the two cases
J~ = 1 ~ J, = Oand J~ = 4 —+ J = 3. Thelat-
ter case is relevant to cesium while the former, although
possibly applicable to helium for instance, is included
primarily to enable a comparison between results ob-
tained for atomic transitions having different numbers of
levels (and different Clebsch-Gordan coefficients). Four
values of the coupling parameter g are studied and
the ratios of these values to the atomic spontaneous
emission rate I' and the cavity-mode decay rate K areg:I': e = (10, 15, 20, 30):5: l. In recent experiments
a ratio g:I': K 7.2:5:1.2 has been achieved with
cesium atoms and an optical cavity mode [27]. Further
improvements can be contemplated and so our choice of
parameters seems reasonable.

The cavity mode is assumed to be initially in the vac-
uum state and the initial atomic state is taken to be
~g i) for the Js = 1 -+ J, = 0 transition and. either
~g 4) or ~go) for the Js = 4 ~ J, = 3 transition. Hence,
under ideal conditions these three conBgurations would
generate the cavity-mode Fock states ~1), ~7), and ~3),
respectively.

In Figs. 3—5 we plot the mean cavity photon number
(n) = (a)a) and the Mandel Q parameter
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FIG. 3. (a) Mean cavity-mode photon number (n) and (b)
cavity-field Mandel Q parameter as a function of time for an
atomic J~ = 1 ~ J, = 0 transition. The initial system state
is ~g i) S ~0) and parameters are I' = 5, ~ = 1, 0 = 50,
and g =10 (i), 15 (ii), 20 (iii), and 30 (iv).

FIG. 4. (a) Mean cavity-mode photon number (n) and (b)
cavity-field Mandel Q parameter as a function of time for an
atomic J~ = 4 —+ J, = 3 transition. The initial system state
is ~g 4) 43 ~0) and parameters are I' = 5, r = 1, 0 o = 50,
and g =10 (i), 15 (ii), 20 (iii), and 30 (iv).

TABLE I. Atomic ground-state populations following adi-
abatic passage for a J~ = 1 ~ J = 0 atomic transition with
initial atomic state ~g i). The parameters are as in Fig. 3.

Coupling strength
gmaz

10
15
20
30

Atomic ground-state populations
lg-i) lgo) lg+i)
0.006 0.840 0.154
0.001 0.945 0.054
0.000 0.975 0.025
0.000 0.989 0.011

atom through the interaction region. For a Jz ——N ~
J = N —1 transition, with ideal conditions, all atomic
population should be transferred to the state ~g~N i).
In the tables, the populations of the other ground-state
sublevels give an indication of how well adiabatic pas-
sage is operating, with, in particular, the population of
the state ~g+iv) giving some measure of the inHuence of
atomic spontaneous emission (since this state can only
be reached via spontaneous emission).

The major features demonstrated by these results can
be summarized as follows.

(i) The greater the number of states involved in the
adiabatic transformation, the more critical the value of
g is. For the Jz ——1 ~ J = 0 transition, reason-

able results (with respect to atomic population transfer
and maximum mean photon number and minimum Q pa-
rameter attained) are obtained even for g = 10. The
same can be said for the J~ = 4 —+ J = 3 transition with
initial state ~go), but with initial state ~g 4), g = 10 is
clearly too small to yield eKcient transfer. Of course, the
actual coupling parameter between the cavity mode and
the dipole transition between a pair of Zeeman sublevels
is proportional to the Clebsch-Gordan coefBcient for this
transition. For high-J atomic levels Clebsch-Gordan co-
efFicients can be small, reducing the effective coupling
to the cavity mode and putting greater demands on the
value of g required for adiabatic passage. A mini-
mum value g 15 —20 is seen to be necessary for the
Js = 4 ~ J, = 3 transition with initial state ~g 4).

(ii) Beyond a certain value of g the results do not
improve significantly. Some further improvement is pos-
sible with an increase in the laser-field strength (again
though, an optimum value of 0 is reached, beyond
which the results do not improve), but the optimum at-
tainable values of the mean photon number (n) and Q
parameter are ultimately limited by cavity dissipation. A
decrease in the interaction time can obviously counteract
this eÃect, but a corresponding increase in the coupling
parameter g is necessary in order to satisfy the adia-
batic passage condition g T )) 1.
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FIG. 5. (a) Mean cavity-mode photon number (n) and (b)
cavity-field Mandel Q parameter as a function of time for an
atomic J~ = 4 ~ J = 3 transition. The initial system state
is ~go) ~0) and parameters are I' = 5, tc = 1, 0 = 50, and

g =10 (i), 15 (ii), 20 (iii), and 30 (iv).
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FIG. 6. (a) Mean cavity-mode photon number (n) and (b)
cavity-field Mandel Q parameter as a function of time for an
atomic J~ = 1 ~ J, = 0 transition. The initial system state is

~g i) I3 ~0) and parameters are I' = 5, g, = 20, 0 = 50,
and rc =0 (i), 0.25 (ii), 0.5 (iii), and 1.0 (iv).

2. Egect of cavity damping

For our next series of figures (Figs. 6—8) and tables
(Tables IV—VI), we fix the parameter g (to a value
which, in Sec. IIIB 1, enabled a good adiabatic transfer)
and consider the effect of varying the cavity-mode decay
rate r. The parameter ratios we consider are g:I':
v = 20:5:(0, 0.25, 0.50, 1.0) and the three configurations
we examine are as described above.

The essential features of the results are as follows.
(i) As one would expect, increasing the rate r degrades

the optimal attainable values of (n) and q.
(ii) From the final atomic ground-state populations,

one sees that varying the magnitude of K has little effect
on atomic population transfer in these con6gurations. To
some extent, cavity dissipation can be regarded as a pro-

cess operating independently of adiabatic passage. While
photon emissions Rom the cavity may cause jumps be-
tween different "families" of states of the system, they
do not necessarily inhibit the adiabatic transfer process;
it is possible that a jump effectively "shifts" the adia-
batic transfer to another dark state. However, for suffi-
ciently large values of rc (e.g. , v ) 10), calculations show
that adiabatic transfer no longer operates efticiently. Of
course, in the limit of large v (i.e. , in the bad cavity
regime, where the cavity field can be adiabatically elim-
inated from the dynamics), the effect of the cavity is
simply to enhance the atomic spontaneous emission rate.
Our system can then be described in terms of a laser-
driven atom with a modified spontaneous emission rate
[28], resulting merely in optical pumping of the atom into
the states ~g+iv i) and ~g+iv).

TABLE II. Atomic ground-state populations following adiabatic passage for a J~ = 4 ~ J, = 3
atomic transition with initial atomic state ~g 4). The parameters are as in. Fig. 4.

Coupling strength
gmaz

10
15
20
30

lg-4)
0.068
0.014
0.002
0.000

lg-3)
0.066
0.015
0.002
0.000

Atomic ground-state
lg-2) Ig-. ) lgo)
0.063 0.063 0.062
0.015 0.017 0.018
0.002 0.003 0.004
0.000 0.000 0.001

populations
lg+i) lg+~)
0.063 0.074
0.021 0.031
0.005 0.014
0.002 0.008

lg+. )
0.358
0.701
0.812
0.812

lg+4)
0.183
0.168
0.156
0.176
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FIG. 7. (a) Mean cavity-mode photon number (n) and (b)

cavity-field Mandel Q parameter as a function of time for an
atomic J~ = 4 ~ J = 3 transition. The initial system state is

~g 4) 13 ~0) and parameters are I' = 5, g = 20, 0 = 50,
and K =0 (i), 0.25 (ii), 0.5 (iii), and 1.0 (iv).

FIG. 8. (a) Mean cavity-mode photon number (n) and (b)
cavity-fie1d Mandel Q parameter as a function of time for an
atomic J~ = 4 ~ J, = 3 transition. The initial system state
is ~go) I3 ~0) and parameters are I' = 5, g = 20, 0 = 50,
and r =0 (i), 0.25 (ii), 0.5 (iii), and 1.0 (iv).

C. Photon-counting distributions

The most direct approach to detecting Fock states
produced by adiabatic passage is to perform photon-
counting measurements on the field leaking from the cav-
ity through the mirrors. In the ideal scenario, these mea-
surements would be conditioned upon the transit of an
atom through the cavity, thereby avoiding complications
associated with atomic-number fIuctuations and realizing
a clean single-atom experiment. Though dificult, such a
scenario appears to be within reach of experimentalists
and we will assume this ideal situation in the calcula-
tions that follow. We will return briefIy to this point
in the Conclusion and describe a possible experimental
configuration.

Monte Carlo uiaee function -simulations

The recently developed theoretical technique of quan-
tum Monte Carlo wave-function simulation [29—31] is ide-
ally suited to the study of photon-counting measurements
of the field emitted from the cavity. This technique con-
sists of system wave-function propagation with a noa-
Hermitian (damped) system Hamiltonian, interrupted at
random times by wave-function collapses, or quantum
jumps, which can be interpreted as, for instance, emis-
sions of photons from atoms or cavities. In the present
context, photon-counting distributions can be computed
very straightforwardly by simulating the passage of many
atoms through the cavity and counting cavity emissions

TABLE III. Atomic ground-state populations following
adiabatic passage for a Jg = 4 + J = 3 atomic transition
with initial atomic state ~go). The parameters are as in Fig. 5.

TABLE IV. Atomic ground-state populations following
adiabatic passage for a J~ = 1 + J = 0 atomic transi-
tion with initial atomic state ~g i). The parameters are as in
Fig. 6.

Coupling strength
gmax

10
15
20
30

Atomic ground-state populations
lgc) lg+i) lg+2) lg+s) lg+4)

0.000 0.001 0.009 0.733 0.257
0.000 0.000 0.007 0.852 0.140
0.000 0.000 0.005 0.882 0.113
0.000 0.000 0.004 0.884 0.112

Cavity linewidth

0.00
0.25
0.50
1.00

Atomic ground-state populations
lg-i) lgo) lg+i)
0.000 0.977 0.023
O.ODO 0.977 0.023
0.000 0.976 0.024
0.000 0.975 0.025
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TABLE V. Atomic ground-state populations following adiabatic passage for a J~ = 4 + J, = 3
atomic transition with initial atomic state ~g 4). The parameters are as in Fig. 7.

Cavity linewidth

0.00
0.25
0.50
1.00

lg-4)
0.002
0.002
0.002
0.002

lg-. )
0.002
0.002
0.002
0.002

Atomic ground-state populations
lg-~) lg-~& lgo) lg+~& lg+2)
0.002 0.003 0.003 0.005 0.018
0.002 0.003 0.003 0.005 0.016
0.002 0.003 0.004 0.005 0.015
0.002 0.003 0.004 0.005 0.014

lg+s)
0.825
0.823
0.820
0.812

lg+4)
0.141
0.144
0.147
0.156

per atom. Details of the method are given in the Ap-
pendix.

As mentioned above, we assume that the detection in-
terval is conditioned (or "triggered") by the arrival of
an atom. The detection interval itself is typically ten or
more cavity lifetimes, i.e. , we count emissions until such
a time that the probability for further emissions is neg-
ligible. Repeating this procedure for many atoms, we
generate a probability distribution P(n) for detecting n
photons per atom, given perfect detector efBciency. To
account for nonunit detector eKciency, we simply apply
the formula

OO m!
P(n, e) = ) P(m), ', e"(1 —e)

m=n
(2o)

which gives the probability distribution P(n, e) for the
detection of n photons given that the efficiency is e (0 &
e&1).

2. Reaults

We confine ourselves to a Jg = 4 + J = 3 atomic
transition, as this is of most relevance to experiments
using cesium atoms. The pulse widths and separation
are given their (approximately) optimal values and we
consider values of the coupling strength g and cav-
ity linewidth r which, we believe, are within reach of
present experiments. The photon-counting distributions
are formed &om ensembles of 2000 atoms —this num-
ber is sufficient to produce reliable statistics. As initial
atomic states, we choose ~g 4) and ~go), which under ideal
conditions would lead to the generation of the cavity-
mode Fock states ~7) and ~3), respectively.

In Tables VII and VIII we give the computed proba-
bility distributions for these two cases, together with the
mean number of detected photons (n) = g nP(n, e) and
the Q parameter, computed from

(n') —(n)'
(n)

with (n ) = Pn2P(n, e). Negative values of Q signify
a nonclassical photon distribution. Three values of the
photon —counting detector efBciency are considered, e =
0.3, 0.6, 1.0.

In all cases, one sees that, for the majority of atoms,
seven (initial state ~g 4)) or three (initial state ~go)) pho-
tons are emitted &om the cavity. Nonunit detector efFi-

ciency obviously reduces the observed number, but signif-
icantly negative values of the Q parameter persist. With
photon detectors of 70—80%%uo efficiency now available
[32], detector efficiency should not pose a major practical
barrier to the observation of nonclassical distributions.

The performance of the scheme is seen to be better
for the case in which the initial atomic state is ~go). As
more atomic levels (and hence more Clebsch-Gordan co-
efficients) contribute to the adiabatic-following state, it
becomes desirable to increase the coupling strength g

For each case, we also consider two values of the cavity
linewidth e. We see that relatively large values of e com-
pared to g do not exclude the possibility of producing
significantly nonclassical distributions and might actually
be somewhat advantageous in terms of the length of the
required detection interval.

Finally, Table IX shows results again for the initial
state ~go), but now with a reduced value of g com-
pared to that of Tables VII and VIII. The e8'ects are
somewhat diminished compared with Table VIII, but
still comparable in quality to those of Table VII (ini-
tial state ~g 4)), highlighting the previously mentioned
point that the demands on the coupling strength g
are less stringent for situations in which fewer states par-
ticipate in the adiabatic passage process. For the case of
a Jg = 4 ~ J, = 3 transition, and &om the point of view
of experiments, it follows that some advantage is to be
gained by considering adiabatic passage &om the initial
state ~go).

Cavity linewidth

0.00
0.25
0.50
1.00

Atomic ground-state populations
lgo) lg+~) lg+&) lg+s& lg+4)

0.000 0.000 0.008 0.890 0.101
0.000 0.000 0.007 0.889 0.104
0.000 0.000 0.006 0.887 0.107
0.000 0.000 0.005 0.882 0.113

TABLE VI. Atomic ground-state populations following
adiabatic passage for a J~ = 4 ~ J = 3 atomic transition
with initial atomic state ~go). The parameters are as in Fig. 8.

IV. COHERENT SUPERPOSITION STATES
OF THE CAVITY FIELD

A. Orthogonal families of states

In Ref. [19]it was pointed out that adiabatic passage in
an atom-cavity system has the potential to generate not
only Fock states of the cavity field, but also quite gen-
eral superposition states. This potential arises &om the
existence of orthogonal manifolds of the system Hamil-
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TABLE VII. Probability distribution P(n, e) for the detection of n photons emitted from the cavity as a result of adiabatic
passage with an atomic Jg = 4 —+ J, = 3 atomic transition. The initial atomic state is Ig 4). Parameters are I' = 5, g = 20,
0 = 50, pulse width T = 1, and pulse separation w = 0.6. Three values of the detector e%ciency e and two values of the
cavity linewidth ~ are considered.

1.0 0.3
0.6
1.0

P(0, e)
0.120
0.012
0.003

P(1, e)
0.282
0.045
0.007

P(2, e)
0.309
0.125
0.007

P(3, e)
0.194
0.231
0.018

P(4, e)
0.075
0.275
0.040

P(5, e)
0.018
0.206
0.101

P(6, e)
0.002
0.089
0.224

P(7, e)
0.000
0.017
0.600

(n)
1.89
3.77
6.28

-0.236
-0.472
-0.787

5.0 0.3
0.6
1.0

0.151
0.027
0.010

0.299
0.067
0.017

0.298
0.150
0.018

0.174
0.243
0.027

0.062
0.259
0.072

0.014
0.174
0.151

0.002
0.068
0.289

0.000
0.012
0.416

1.75
3.49
5.82

-0.189
-0.379
-0.631

tonian associated with each of the states Ig, 0) (rn =
N, —N—+ 1, . . . , N —1), as described earlier in Sec. II C.

Because of the orthogonality of the manifolds, the difFer-
ent states Ig, 0) evolve, under adiabatic-following con-
ditions, entirely independently of each other. It follows
that any initial coherent superposition of atomic ground-
state Zeeman sublevels will be mapped onto an equiva-
lent coherent superposition of cavity-mode Fock states.
This is represented, for a Jz ——N —+ J, = .V —1 atomic
transition, by the transformation equation

N —X): c-Ig-) Io): Ig~-~)
m= —N

Ia ) c IN —m —1). (22)

Hence, to the extent that one can prepare arbitrary su-
perpositions of atomic ground-state sublevels, one can
also, in principle, prepare arbitrary superposition states
of the cavity light Beld.

The implementation of such a transformation is illus-
trated in Figs. 9 and 10, where we plot histograms of
the moduli of the cavity-mode density-matrix elements
(nIpyIm) at a sequence of times during the passage of
an atom (obtained from direct numerical solutions of
the master equation). In this example, we consider a
J~ = 4 ~ J, = 3 atomic transition, with the atom
initially prepared in the state 2 ~ (Igo) + Ig+s)) and

the cavity initially in the vacuum state. The field su-
perposition state that we attempt to generate is thus
2 ~ (IO) + I3)). For the case K = 0 (Fig. 9) such a state
is indeed seen to be produced, while for the case of non-
zero cavity-mode dissipation the superposition does not
reach its optimum form (Fig. 10). However, off-diagonal
density-matrix terms do appear for significant periods of
time, suggesting that signatures of quantum coherences
should still be observable. The results to be presented in
the following sections confirm this.

From an experimental point of view, several possibil-
ities exist for the initial preparation of atomic ground-
state superpositions. With an atom such as cesium, pop-
ulation can be optically pumped into the outermost Zee-
man ground state or into the state mg = 0 with suitably
tuned and polarized lasers. The coordinate axis for this
optical pumping can be chosen to be difFerent from that
in the adiabatic passage interaction region: this yields
initial atomic ground-state superpositions for the adi-
abatic transfer. Coherences between Zeeman sublevels
could also be generated by employing radio-frequency
pulses between sublevels or between sublevels of difFer-
ent hyperfine structure components.

B. Photon-counting measurements

Although direct photon-counting measurements on the
field emitted from the cavity cannot confirm the presence
of coherent superposition states, it is nevertheless inter-

TABLE VIII. Probability distribution P(n, e) for the detection of n photons emitted from the
cavity as a result of adiabatic passage with an atomic Jg = 4 ~ J, = 3 atomic transition. The
initial atomic state is Igo). Parameters are 1 = 5, g = 20, 0 = 50, pulse width T = 1, and
pulse separation 7 = 0.6. Three values of the detector efBciency e and two values of the cavity
linewidth p- are considered.

1.0
e

0.3
0.6
1.0

P(0, e)
0.394
0.109
0.010

P(1, e)
0.425
0.334
0.060

P(2, e)
0.160
0.390
0.156

P(3, e)
0.021
0.167
0.774

(n)
0.808
1.62
2.69

-0.256
-0.512
-0.853

5.0 0.3
0.6
1.0

0.423
0.135
0.014

0.415
0.360
0.110

0.144
0.362
0.218

0.018
0.143
0.658

0 ~ 756
1.51
2.52

-0.234
-0.468
-0.779
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TABLE IX. Probability distribution P( )
cavity as a result of adiabatic passage with an
initial atomic state is ~go). Parameters are I' =
pulse separation w = 0.6. Three values of the
linewidth e are considered.

for the detection of n photons emitted from the
atomic J~ = 4 ~ J = 3 atomic transition. The
5 , g~~~ = 15, O~&z 50) pulse width T = 1, and
detector eKciency e and two values of the cavity

1.0
e

0.3
0.6
1.0

P(0, e)
0.423
0.136
0.018

P(l, e)
0.414
0.355
0.107

P(2, e)
0.145
0.364
0.202

P(3, e)
0.018
0.145
0.673

(n)
0.759
1.52
2.53

-0.232
-0.465
-0.775

5.0 0.3
0.6
1.0

0.464
0.176
0.032

0.398
0.385
0.161

0.124
0.328
0.293

0.014
0.111
0.514

0.687
1.37
2.29

-0.206
-0.412
-0.687

esting to model the results one would expect to obtain

is, for instance, a coherent superposition of Fock states.
The photon-counting distribution should in such a case
exhibit a double-peaked structure. Given that such a
structure could be resolved, the superposed states could
then be considered to be "macroscopically distinguish-

ing, for example, the homodyne measurements described
in the following subsection) could thus be judged to be a

emonstration of a coherent superposition of macroscop-
ically distinguishable states.

We present two examples for which the initial atomic

respectively, and the cavity mode is initially in the vac-
uum state. Hence, under ideal conditions, the Fock state

(b)

superpositions 2 ~ (~0) + ~7)) and 2 ~ (~0) + ~3)), re-
spectively, would be generated. Simulated photon distri-
butions are given in Tables X and XI for possible experi-
mental parameters and for different values of the photon-
counting efEciency e. For the first example, a double-
peaked structure in the photon distribution is still re-
solvable for e =—0.3. However, for the second exam le,
where the separation between superposed states is not as
arge, this structure disappears much more rapidly as the

eKciency is decreased.

C. Homodyne measurements of the cavity Beld

The coherences that characterize quantum-mechanical
superposition states would most directly be detected via
homodyne measurements of the field exiting the cavity.
A strong local oscillator field is mixed with the signal
field (leaking &oxn the cavity) and, for a particular phase

(a)
(b)

(c) (d)

(c) (d)

FIG. 9. Moduli of the cavity density matrix elements
(n~p, „~rn) at a sequence of times during adiabatic transfer.
The atom is prepared in the state 2 + '

go/ Ig+3)) and rel-
evant parameters are g = 20, 0 = 60 F = 5, and)

e = 0. The pulses g(t) and B(t) are centered at t = 1.7 dan
, respectively, and each have a width T = 1. The mod-

uli are shown at times (a) t = 0, (b) t = 1.9 (c) t =
(d) t = 2.7.

c&j~ = 2.2, and

FIG. 10. Moduli of t e cavity density matrix elements
'g. , u wxt e = 0.5.n p „m for the parameters of Fig. 9 b t 'th

he moduli are shown at times (a) t = 0, (b) t = 1.9, c
t = 2.2, and (d) t = 2.7.
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TABLE X. Probability distribution P(n, e) for the detection of n photons emitted from the
cavity as a result of adiabatic passage with an atomic J~ = 4 ~ J = 3 atomic transition. The
initial atomic state is 2 / (Ig 4) + lg+s)). Parameters are I' = 5, g = 20, v = 1.0, 0 = 50,
pulse width T = 1, and pulse separation 7 = 0.6. Three values of the detector efficiency e are
considered.

0.3
0.6
1.0

P(0, e)
0.571
0.520
0.517

P(1, e)
0.136
0.020
0.001

P(2, e)
0.151
0.060
0.001

P(3, e)
0.095
0.112
0.011

P(4, e)
0.037
0.135
0.018

P(5, e)
0.009
0.101
0.042

P(6, e)
0.001
0.044
0.118

P(7, e)
0.000
0.008
0.292

0 of the local oscillator, one measures the probability
distribution P(xs) for the quadrature amplitude xs of the
signal field. Given that p „

is the cavity-mode density
matrix, P(xs) can be expressed as

discussed and studied in detail in Refs. [29,34], with care-
ful consideration given to the actual measurement pro-
cess (for instance, explicitly modeling local oscillator shot
noise .

P(«) = («lp--lxs)
—1/2 is(n —m) (2n 7)

—1/2(2m 7)
—1/2

A7m

x H„(x)H (x)e (23)

where p are the elements of p, „
in the number-state

basis and H„(x)are the Hermite polynomials.
The proposed experimental procedure is as follows.

Again, we assume that the measurement is in some
way triggered by a signal from a single-atom detection
scheme. The homodyne signal (current) is then inte-
grated over a certain time interval (To, T1), which ideally
should encompass the time during which quantum coher-
ences are maximal. Carrying out this procedure for many
atoms and for a particular local oscillator phase, one
should generate a probability distribution in the man-
ner of Smithey et al. [33]. This probability distribution
should theoretically be of the form

Pl(xs) ~ dr (» I/--(r) lxs) —= I~-(») (24)

In the figures that follow we plot the integral I~ (x),
which we compute from numerical solutions of the master
equation.

We note that Monte Carlo wave-function simulations
could also be employed to model homodyne measure-
ments of the field and to perhaps give a more faithful
model of actual experiments. Such models have been

TABLE XI. Probability distribution P(n, e) for the detec-
tion of n photons emitted from the cavity as a result of adi-
abatic passage with an atomic Jg = 4 ~ J = 3 atomic
transition. The initial atomic state is 2 / (Igp) + lg+s)). Pa-
rameters are I' = 5, g = 20, K = 1.0, 0 = 50, pulse
width T = 1, and pulse separation r = 0.6. Three values of
the detector efBciency e are considered.

1. Superposition of Fock states

We consider again the example given at the beginning
of this section, for which the "ideal" transformation has
the form

2 "(I»)+ I&+2)) Io) : lg+. ) 2 "(Io)+ 13))

(25)

2. Superposition of coherent states

Because of its close correspondence to the classical de-
scription of harmonic physics, the coherent state arises
naturally in discussions of schemes for the generation
of superpositions of classically distinguishable quantum
states. Here we can also consider superpositions of coher-
ent states, although the coherent state amplitude is for
our scheme limited by the finite degeneracy of the atomic
ground state. In particular, we consider injecting atoms
prepared in an initial state of the form

In Figs. 11(a) and 11(b), Ir, (xs) is plotted for the three
choices of phase 0 = O,rr/6, rr/3 and for two integration
intervals (To, T1).

The "idealized" result, obtained in the limit K ~ 0,
is shown in Fig. 11(c). The case 0 = rr/6 yields the
same result as for the incoherent mixture 2 / (IO)(OI +
I3)(3I) and the structure of Ihpm(x) is very close to that
of the Fock state I3). For the other cases, 0 = O,rr/3, one
sees the effects of interference caused by the quantum-
mechanical coherences.

With potential experimental parameters these features
are not as pronounced [Figs. 11(a) and 11(b)], but the
basic structure persists. The results can be optimized
with a judicious choice of the integration interval, but
there seems to be a reasonably wide range of times over
which the effects can still be observed.

e
0.3
0.6
1.0

P(0, e)
0.708
0.568
0.517

P(l, e)
0.206
0.166
0.034

P(2, e)
0.076
0.188
0.087

P(3, e)
0.010
0.078
0.362

3
CI"

I ~lg+2) +,lgo) +,lg-2) +,lg-4) I

(26)
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where JV is a normalization factor. Provided n is not too
large, adiabatic passage will generate the cavity mode
superposition state

(27)

where ~n) is the coherent state with amplitude n For the
particular atomic transition considered here, we are lim-
ited to n = ~2, so the superposed states will at most be
separated by a distance in the complex-amplitude plane
corresponding to only a few quanta (i.e., Schrodinger
"kittens" [35]).

The parameter set we consider in Fig. 12 is the same

as for Figs. 11(a) and 11(c), with the idealized result
(r -+ 0) again given in Fig. 12(c). The value for the
coherent amplitude is taken to be n = v 2. For 8 = 0,
one sees the distributions of two classical states, while for
9 = 7r/2 interference fringes appear signifying quantum
coherences between these states and in particular the ex-
istence of a coherent superposition state. For nonzero
cavity dissipation these features are degraded compared
to the idealized result; the separation between the two
"classical' distributions for 0 = 0 is reduced and the in-
terference fringes are not as pronounced. However, suf-
ficient structure remains for one to be optimistic about
the possibility of realizing and detecting superpositions
of this sort. Reductions in the cavity loss rate K and/or
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FIG. 11. Homodyne current distribution Ih (zs) given an
initial atomic state 2 (~go) + ~g+3)) and parameters as in
Fig. 10 (ir, = 0.5), with 8 = 0 (solid curve), 7r/6 (dashed
curve), and vr/3 (dot-dashed curve). The integration interval
is (a) (To, Tq) = (2, 3) and (b) (2.2, 2.6). The limiting case
e ~ 0 is shown in (c).

FIG. 12. Homodyne .current distribution Ih (xz) given
an initial atomic state as in Eq. (26) and parameters as in
Fig. 10 (K = 0.5), with 0 = 0 (solid curve) and m/2 (dashed
curve). The integration interval is (a) (To, Tq) = (2, 3) and
(b) (2.2, 2.6). The limiting case K m 0 is shown in (c).
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where Ia, b)—:Ia)lb) denotes the state with a photons
in the first cavity and b photons in the second cavity.
Hence a coherent superposition state of the fields in the
two cavities is prepared, provided of course that cavity
dissipation is sufBciently small.

More general superposition states of two, or even more,
cavity fields can in principle be constructed by consid-
ering atomic transitions of higher Zeeman degeneracy.
Multiple-photon Fock states of the individual cavity fields
are also possible with such a scheme.

FIG. 13. Homodyne current distribution Ih (xs) given an
initial atomic state as in Eq.(28) and parameters as in Fig. 10
(m = 0.5), with 8 = 0 (solid curve) and s'/2 (dashed curve).
The integration interval is (To, Ti) = (2, 3).

increases in the coupling strength g naturally lead to
improvements in the results presented in the figures.

For completeness, and as an additional comparison,
we also give, in Fig. 13, the results obtained for an initial
atomic state

A
lg+s) + ~lg+2) + lg+i) + I»&

g'1

5 6 ~7
+ lg-i) + lg-2) + lg-s& + lg-4)

41 51 61 71 )
(28)

corresponding to the preparation of the coherent state
ln). The same parameters are used as for Fig. 12(a).

V. COHERENT SUPERPOSITIONS
OF SEPARATED CAVITY FIELDS

A variation on the ideas presented above can also be
used to prepare superposition states of macroscopically
separated cavity fields [5]. Consider, for example, two sep-
arated cavity modes, each of which is overlapping with
a laser field in the adiabatic passage configuration. The
two cavity fields are of identical linear polarization and
are coupled to the Jg ——1 ~ J = 0 transition of a single
atom passing through the cavities. The laser fields in the
first and second cavities are o+ and o polarized, respec-
tively. The atom is assumed to be initially prepared in
a coherent superposition of the ground states Ig i) and
Ig+i). It is straightforward to show that passage of the
atom through the two (consecutive) interaction zones the
transformation (under ideal conditions)

1
(lg-i) + lg+i)) Io o)

2

1
(lgo) 11, o) + lg+, ) lo, o)) (first cavity)

2
1

Igo) (I 1, 0) + IO, 1)) (second cavity), (29)
2

VI. QUANTUM MEASUREMENT
OF THE CAVITY FIELD

In our previous work [19], we briefiy mentioned the
possibility of measuring as well as of generating quan-
tum states of the cavity field. The purpose of this sec-
tion is to elaborate this point further with reference to
a particular scheme for quantum measurement of the in-
tracavity photon number. However, quite apart &om any
specific example, we wish to emphasize the reversible na-
ture of the adiabatic passage scheme whereby complete
information about the state of the intracavity field can
be mapped to the Zeeman coherence of an atom. That is,
if we consider a reversal of the atomic velocity shown in
Fig. 1, then the mapping of Eq. (22) is likewise reversed
with the coeKcients c for the intracavity field now ap-
pearing as the probability amplitudes for the various Zee-
man sublevels. Note that the intracavity field is left in
the vacuum state after the atomic transit independent
of the initial field state [subject only to the conditions
appropriate to adiabatic transfer with low dissipation as
expressed in Eq. (16) and to the constraint of a maximum
photon number consistent with the atomic level scheme
employed]. Hence the mapping of the wave function for
the intracavity field to that of the atom as expressed by
a reversal of Eq. (22) is universal in that it applies to
arbitrary Geld states which are a priori unknown and as
such should serve as a powerful tool within the domain
of quantum measurement.

As a particular example to illustrate this general capa-
bility, we propose a scheme for quantum measurement
of the intracavity photon number [36]. In qualitative
terms, the notion is to employ the inverse transforma-
tion of Eq. (22) whereby photons in the cavity are first
removed and "read" by an atomic transit and are then
replaced back into the cavity mode by the transformation
Eq. (22). More specifically, imagine an atom that transits
the cavity "backwards" relative to Fig. 1 so that the pho-
ton statistics of the cavity field are transferred to Zeeman
coherence of the atom for the states g . If the field were
initially in a Fock state, then a single Zeeman state would
result; otherwise, a superposition of Zeeman states would
be the outcome. In the former case, an irreversible mea-
surement of the atomic state (e.g. , by state-selective pho-
toionization or by optical-microwave double-resonance
spectroscopy) would always yield a unique value for g
and hence the original photon number. In the latter case,
the measurement would (randomly) "project" the atom
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into one of the several Zeeman states, with a resulting
distribution (g ) that reflects the original distribution
for the intracavity photon number. In either case, given
g, the procedure would be reversed to send an atom
(perhaps even the original atom) through the cavity to
generate the appropriate Fock state for the intracavity
field. Hence, if the cavity field were originally to be in
a certain Fock state, it is restored to precisely this state
after the second atomic transit. If, on the other hand,
the cavity field were not to be in a Fock state initially,
it would nonetheless be projected by the measurement
process into a final state which is a Fock state with the
particular value for the intracavity photon number deter-
mined. from the number distribution for the initial field
state. Thus, because this first measurement sequence
results in a Fock state independent of the initial field dis-
tribution, subsequent repetitions of this sequence would
yield a single unique value for g and hence for the in-
tracavity photon number.

Notwithstanding the intermediate steps for the above
sequence (i.e. , for the first "read" atomic transit, then for
the vacuum Beld between transits, and finally for the sec-
ond "restore" atomic transit), this scheme functions over-
all in a fashion resembling a backaction evading (BAE)
measurement of the photon number of the cavity Beld
[37]. In regard to the intermediate steps, note that a
lack of the strict preservation of the state of the "signal"
field is implicit in many BAE schemes, with deviations
arising anytime that the signal-meter coupling is imple-
mented by way of finite elements. For example, recent
BAE measurements of the quadrature-phase amplitude
of a signal beam employ first a polarization rotation fol-
lowed by parametric amplification and finally completed
by a second rotation of polarization [38]. The state of
the incident signal Beld is not preserved in these various
intermediate stages, but rather only by the overall trans-
formation. Likewise in our present example, the state
of the intracavity field is maintained only &om the per-
spective of the global interaction. Here we make explicit
the intermediate state for the signal field which is being
measured; it is the vacuum state. In many respects the
spirit of our current proposal is similar to that embod-
ied in recent demonstrations of "quantum repeaters" for
which a (broad bandwidth) field is (irreversibly) recorded
by a photodetector and is then subsequently "recreated"
by an emitting device with high efficiency [39], although
arguably these particular schemes give only approximate
measures of the Geld states with respect to photon Aux.

Tinning to a somewhat more general perspective, we
note that since the complete state of the intracavity Geld
is specified by the coefficients (c ) that are transferred
to the atom, our proposed measurement technique is in
principle capable of a wide set of quantum measurements
beyond simply that of photon number. Ind. eed, to the
extent that superpositions of the various (c ) for the
Zeeman levels (g ) can be recorded in the intermedi-
ate interval after the transit of the first atom (such as,
for example, by an adiabatic change of the atomic basis
affected by rotation in a magnetic field), a variety of mea-
surements would be possible, including the quadrature-
phase amplitude. I'iuthermore, within the constraints

imposed by dissipation, our scheme can be readily re-
peated for successive measurements of the intracavity
field (in the fashion of quantum nondemolition measure-
ment [40]).

A variation of these basic ideas for measurement via
adiabatic transfer is to employ a cavity with separated
"lobes" for its mode structure (such as a TEMoi mode or
the two arms of a ring cavity [41]). In this arrangement,
the Beld would be read in the region of the first Beld lobe
by the transit of an atom, this atom would then be inter-
rogated in the intermediate region where the cavity am-
plitude is zero, and finally the field would be restored by
transit of the atom through the second cavity lobe. Note
that the measurement of the state of the atom in the
intermediate region could be either "reversible" (involv-
ing, for example, a Stern-Gerlach deflection in a magnetic
field gradient) or "irreversible" (involving, for example,
state-selective photoionization). If a reversible technique
were to be employed, then the restoration of the Beld
state would be distinctly difFerent from that discussed
above in that the overall state of the atom-cavity system
after atomic transit through the second lobe would no
longer be a direct product state, but instead would in
general be an entangled state. Stated more explicitly, if,
for example, the measurement in the intermediate region
involved a coupling of the internal Zeeman state to the
external atomic center-of-mass motion, then an entangled
state would be generated for the restored field state and
that of the atomic momentum and hence the state of the
cavity field would not be known (or indeed objectively ex-
ist) until a measurement of the atomic momentum were
made, possibly long after the atomic transit through the
mode.

Beyond the independent transits of individual atoms,
interesting possibilities also arise from sequential atomic
transits and the quantum correlations thereby produced.
For example, if the measurement that collapses the en-
tangled atom-field state is postponed. , then multiple
atoms which pass through the state-mapping apparatus
within a suKciently short time interval should emerge
with mutually entangled states. By a suitable trace over
the Beld degrees of freedom, it might then be possible
to generate a sequence of atoms with correlated. internal
states, which could find application in investigations of
nonlocality in quantum mechanics.

Although the analytical capabilities demonstrated in
the preceding sections are certainly applicable to the
discussion of quantum measurement of the cavity field
presented in this section, we will postpone to a future
work a thorough quantitative analysis based upon numer-
ical solutions of the master equation and upon quantum
trajectories. As for the experimental implementation of
these ideas, we note that a principal requirement beyond
that discussed in connection with Figs. 6—8 is the need
for a much smaller dissipation rate for the cavity (with-
out a concomitant sacrifice in coupling strength g). The
most promising route to this end would seem to be adi-
abatic transfer which employs the external Belds of mi-

crospheres, as will be discussed in the Conclusion and for
which cavity storage times sufhcient for multiple atomic
transits seem feasible.
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VII. CONCLUSION 0

In this paper we have expanded upon the work pre-
sented in Ref. [19] and taken a step towards modeling
likely experimental situations and measurements. Our
models required certain assumptions of considerable rel-
evance to potential experimental configurations and here
we would like to discuss some of these assumptions fur-
ther.

First, the photon-counting and homodyne measure-
ments that we presented assumed the ability to detect the
passage of single atoms through the interaction region.
As a potential configuration, we can suggest the following
setup, which makes further use of cavity QED effects in
the strong coupling limit. A dilute atomic beam passes
through a preliminary cavity before entering the adia-
batic passage region. Given a sufIiciently strong atom—
cavity-mode coupling in the preliminary cavity, passage
of a single atom through this cavity produces an observ-
able change (in real time) in the transmission of a signal
through the cavity. This change serves as a trigger for
the photon-counting measurement of the field in the sec-
ond cavity. The extent of the modification to the trans-
mission also provides information on the location of the
atom relative to the antinodes of the standing-wave cav-
ity Beld, which, given that the first and second cavities
are stabilized relative to each other, can be used to se-
lect only those atoms passing through antinodes of the
cavity in which adiabatic passage occurs (thus maximiz-
ing the coupling strength g ). Physical gratings might
also be employed to help guide atoms through the cavity
antinodes. Alternatively, the atom-detection stage could
be placed after the adiabatic passage region and atom
detections could be correlated with photon-counting or
homodyne detection intervals.

For our study of the preparation of coherent superpo-
sition states, we assumed somewhat idealized initial su-
perposition states of the atomic ground-state sublevels.
While these particular states may not be straightforw'ard
to prepare, it is clear that a great variety of superposi-
tion states (which should exhibit similar properties to the
states we considered) could be prepared in practice using,
for example, radio-frequency pumping or by introducing
rotations of the quantization axis between preparatory
and interaction regions. In this work, we have also lim-
ited our considerations to J~ = 4 ~ J, = 3 atomic tran-
sitions. Higher angular momentum states could also be
considered, expanding the range of possibilities for the
preparation of superposition states.

Finally, the requirement of strong atom —cavity —mode
coupling relative to spontaneous emission and cavity loss
rates is fundamental to the scheme. Our emphasis has
been on parameter regimes that are hopefully within
reach of present state-of-the-art cavity QED experiments
using cesium atoms in an optical Fabry-Perot cavity,
where parameter ratios g:I': K 7.2: 5: 1.2 have
been achieved [27].

An alternative and interesting prospect for experi-
ments in cavity QED, alluded to at the end of Sec. VI,
is the dielectric microsphere [42—44]. Optical ("whisper-
ing gallery" ) modes circulating just inside the surface of
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FIG. 14. Mean cavity-mode photon number (n) (solid line)
and cavity-field Mandel Q parameter (dashed line) as a func-
tion of time for parameters appropriate to a microsphere con-
figuration (see text). An atomic J~ = 4 —+ J, = 3 transition
is considered with initial system state ~g 4) I3 ~0). The param-
eters are I' = 5, g = 125, 0 = 150, and K = 0.0035.
The Gaussian pulses g(t) and O(t) have FWHM T = 1 and are
centered at t = 2.7 and t = 3.4, respectively. The population
in the atomic state ~g+s) following the transfer is 0.974.
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APPENDIX: MONTE CARLO
WAVE-FUNCTION SIMULATION

The procedure we follow is that described and imple-
mented in the papers of Dum et al. [31], so for more

the sphere possess an evanescent component external to
the sphere which can interact with atoms close to the sur-
face. These modes exhibit extremely large quality factors
Q and, because of the very small electromagnetic mode
volumes associated with microspheres, large atom-field
coupling coefIicients g can simultaneously be realized.
For example, calculations presented in Ref. [44] suggest
that a parameter set g:I':K 125:5:0.0035 could be
achieved for cesium atoms brought close to the surface
of a microsphere of radius B 9 pm and coupled to a
mode of quality factor Q 10 . In Fig. 14 we plot the
mean photon number and Q parameter as a function of
time (as in Sec. III B) for this parameter set and for a
J~ = 4 ~ J = 3 atomic transition with initial atomic
state ~g 4) (i.e. , we attempt to generate a seven-photon
Fock state of the field). The results are seen to be close
to ideal and the long lifetime of the Beld state makes the
microsphere scheme of special relevance to the ideas pre-
sented in Secs. IV—VI for the preparation of macroscopic
superposition states and for sequential measurements of
cavity Belds.
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details the reader is referred to that work. The basic
approach is summarized by the following steps.

(i) For each atom, or trajectory, we begin with an ini-
tial state lvP(t = 0)) describing a decoupled atom and
cavity mode (for example, ]gal) I3 IO), „).

(ii) A uniform random deviate r E (0, 1) is generated
and the wave function is propagated according to

1+
6 lgo) (e-~

I
+

7+
12 lg+s&(e+2I + lg+4) (e+s I

5
—, I g+2) (e+~

I

8
&, l4 (t)) = —iH.ff(t) l@(t)) (A1)

II l&(t )) II'=r (A2)

[the norm of the wave function decays because the effec-
tive Hamiltonian H, ff (t) is non-Hermitian].

For the case of a J~ = 4 ~ J = 3 transition, as we
consider in the numerical simulations presented in this
paper, the explicit form for H, ff(t) is

[where H, ff(t) is given by Eq. (18)], until such time as
the norm of the wave function satisfies

(iii) At the time tf, a wave-function collapse, or quan-
tum jump, occurs, corresponding to either (a) a photon
emission Rom the cavity or (b) a spontaneous emission
&om the atom with polarization o = 0, +1. The rela-
tive probabilities for these jumps are obtained from the
quantities

I@(t.)& II' I'
ll &-l@(t )& II' ( = o +1) (A7)

Dividing up the interval (0, 1) according to these relative
probabilities, another uniform random deviate is gener-
ated and its position on this interval selects which one
of the four possible jumps occurs. The wave function is
then transformed as

H ff (t) = (~ —iI'/2) ) le )(e I
i —a a

7n= —3

—iO(t) (A+, —At+, ) + ig(t) (atAo —Rota),

(A3)

l@(t )&
al&(t )) „&-l@(t))

II a14(t )& II II &-l@(t )) II

(~ = 0, +1). (AS)

with

lg-2) (e-2I

5 2

12 Ig q)(e ql
—

3 lgo&(eol lg+q)(e+il

One then returns to step (ii) and repeats the process until
the propagation has reached the desired endpoint.

The number of cavity emissions per atom is recorded
and the entire procedure is repeated for many atoms so
as to generate a probability distribution. The density
operator for the system at a particular time t can also
be obtained by averaging over many single-atom trajec-
tories:

7
Ig+2) (e+2I — —Ig+s) (e+s I (A4)

(~(t)l~(t))
(A9)

7
lg-4) (e-s

I
+

12 lg-s) (e-2I

5 5+ —lg-2) (e-il + —, Ig-i) (eo I
+

1 1+
12 lg+~) (e+2I +

36 lg+2) (e+s I

lgo) (e+il

(A5)

We have computed p in this way and found good agree-
ment with the direct numerical solution of the master
equation.

We also note that the wave-function simulation tech-
nique offers the potential for a much more comprehen-
sive analysis of the adiabatic passage configuration than
is presented here. A variety of other factors influencing a
realistic experiment could be straightforwardly incorpo-
rated into the calculations.
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