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Nonlinear surface optical waves in photorefractive crystals
with a diffusion mechanism of nonlinearity
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A nonlinear optical phenomenon, namely, the surface waves in photorefractive crystals with a
diffusion nonlinearity (of the gradient type), is suggested and analyzed. These waves can be guided along
the boundary of the crystal with a metal, a dielectric with a lower average refractive index, or a similar
photorefractive crystal with the opposite sign of the diffusion nonlinearity. Our estimates predict that
for a typical photorefractive crystal such as BaTi03 this mechanism can ensure e%cient concentration of
light power in a crystal layer of —10 pm thickness.

PACS number(s): 42.65.Jx, 42.65.Hw

I. INTRGDUCTIGN [(d /dx +d /dz )+co e~QE(x, z)]E(x,z)=0 . (1)

First experiments on spatial soliton propagation in
photorefractive crystals (PRCs) were reported recently in
[1,2]. It was demonstrated in these papers (see also the
theoretical papers [3,4]) that stable propagation of spatial
solitons needs a "quasilocal" drift mechanism of pho-
torefractive nonlinearity similar to that observed in Kerr
nonlinear optical media. As it was also shown in [3], the
diffusion (gradient-type) mechanism of nonlinearity can-
not support stable propagation of the spatial solitons in
unlimited PRCs.

On the other hand, some serious efforts were also spent
recently for investigation of photorefractive properties of
planar waveguide layers formed on the surface of
different electro-optic crystals (see, e.g., the review paper
[5]). The main practical goal of recent investigations in
this area is to increase the light power density in different
configurations of photorefractive phase conjugate mirrors
based on BaTi03 and thus to increase the speed of their
operation [6].

We suggest and analyze nonlinear surface waves in
PRCs with dominant diffusion mechanism of nonlineari-
ty. These guided, spatially confined waves can propagate
along the boundary of the crystal with a metallic or a
dielectric layer of a lower refractive index or with a simi-
lar PRC with the opposite sign of the nonlinearity. In
other words, we consider self-channeling of the laser
wave along the surface of the PRC without any initially
prefabricated waveguide layer.

II. NONLINEAR WAVE EQUATION
AND ITS SGLUTION

The basic equation we use below in our analysis is a
standard scalar two-dimensional wave equation for the
monochromatic light wave [with the frequency co and
complex amplitude E(x,z)] propagating in an unlimited,
optically transparent medium with some spatial varia-
tions of the dielectric constant e(x,z):

E(x,z) =E(x)exp( iPz)—, (2)

where P is the propagation constant of the wave. Since
the steady-state nonlinear refractive index changes in
PRCs depend on the light intensity but not on its phase,
the photoinduced dielectric constant changes also depend
on the x coordinate:

e(x,z)=a+5@(x) . (3)

Here and below the average (spatially uniform) initial
dielectric constant e is supposed to be much higher than
its photoinduced change [e»

~
5e(x ) I ]

Below we limit our consideration to the light waves
with real E(x) amplitudes, i.e., to those with plane per-
pendicular to z-axis wave fronts. This approach is usual
for considerations of spatial soliton waves, but by using it
we can lose some possible solutions —in particular, in our
case, conventional plane waves EDexp( iK r) with —the
K vector not parallel to the z axis. Indeed, these waves
have a uniform distribution of the light intensity and, as a
result, they propagate through the photorefractive crystal
with diffusion nonlinearity as through an optically linear
medium. The stability of such waves as wel1 as the possi-
bility of propagation in PRCs of essentially nonlinear sol-
itonlike waves with non-plane wave fronts need, however,
additional more detailed analysis.

Substituting Eqs. (2) and (3) into Eq. (1) results in the
following equation for E(x):

This equation is widely used in analysis of the light
diffraction from the volume gratings (see, e.g., [7]) and, in
particular, in photorefractive crystals (see, e.g. , [8]). Un-
like this standard problem, however, the dielectric con-
stant e(x,z) is not fixed here. In our consideration it de-
pends on a spatial light intensity distribution in the prop-
agating wave and is also to be found in a self-consistent
way.

Below we shall look for the waves propagating along
the z axis which have some fixed profile along the x axis.
The complex amplitude of such waves can be written as
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[d /dx +(Ko P—)+K05e(x)/e]E(x)=0, (4)

5e(x) =2n r(kz T/e)[dE(x)/dx)/E(x) . (6)

Here r is the linear electro-optic coefBcient corresponding
to this particular orientation of the PRC and the polar-
ization of the light. For simplicity, here the PRC is as-
sumed to be optically isotropic, which gives e=n, where
n is the average refractive index of the sample.

Substituting Eq. (6) into Eq. (4) gives the following final
differential equation, which in fact proves to be linear:

[(d /dx )/Ko+(2yd ldx)/Ko —26K/K ]Eo( )x=0 .

Here bK =(p—Ko) is supposed to be much lower than

Ko and y =Kon r (k~ T/e) is the numerical constant
characterizing the strength of the diffusion photorefrac-
tive nonlinearity, which can vary remarkably in different
PRCs. For a typical visible wavelength A, =0.5 pm, y is
-3X10 in BaTi03 and Sr„Ba& „N1206 (SBN) and
—10 in Bi&zSi02o, Bi&2Ti020, and GaAs (see, e.g., [8]).
Note that the parameter y introduced above relates to a
widely used photorefractive two-wave mixing gain factor
I (=2m.n rED/A, where the diffusion field ED =KkeT/e,
K is the spatial frequency, and A=2m. /K is the fringe
spacing of the grating [8]) in a simple way I =Ky.

Note here that the final linear equation (7) was ob-
tained from the initial nonlinear one, Eq. (1), where e(x)
depended on the light intensity. It is clearly a direct re-
sult of some special "gradient" diffusion photorefractive
nonlinearity [Eqs. (5) and (6)]. Since Eq. (7) is of the
second order, it is satisfied in particular by two exponen-
tial solutions and every linear combination of them also
satisfies the same equation. Physically this means that
different nonlinear waves with the same co and p can
propagate simultaneously through the crystal without an
interaction. It is not true, however, for the waves with

where Ko =co+ee~o is the wave number of the light in
an optically linear medium with average refractive index
~e. To solve this equation it is necessary to specify the
value 5e(x), which means introducing some material
equation which determines the dependence of 5e(x) on
E(x). For PRCs with the diff'usion mechanism of non-
linearity this can be done rather easily (see, e.g., [8]). Un-
der the steady-state conditions of illumination (when
nothing is changing with time) the space-charge electric
field arising as a result of drift-diffusion equilibrium
equals

E„(x)= —(k~ T/e)[dI(x)/dx]/I (x),
where I(x} is the light intensity. Here we a,ssumed a
purely electronic type of photoconductivity and neglected
possible thermal ionization (i.e., dark conductivity) and
saturation of the impurity photorefractive centers in crys-
tal [8].

Taking into account that [dI (x ) /dx ]/I (x )

=[2dE(x)/dx]/E(x) for a purely real function E(x)
and that transformation of the space-charge electric field
relief to the refractive index changes is ensured via a
linear electro-optic effect [8],we obtain

different propagation constants p.
Looking for exponential solutions E(x) ~ exp(Kokx) of

Eq. (7) we obtain

k) ~
= —y(1 + +1+25,K/Koy ) . (8)

If for simplicity (without any restrictions of generality)
we assume positive y in the following consideration,
these solutions will decay in the positive direction of the
x axis with the exponential factor yKO [Fig. 1(a)]. It is

clear that these solutions are nothing but simple interfer-
ence patterns (with the fringe spacing
A= A, /n "v/2~6, K

~ /Ko) of two plane waves propagating at
the angles 8=+ arcsin+~bK~/2KO-—+(/~bK~/2KO
counted from the z axis. The amplitudes of these waves,
however, are not constant. Because of a unidirectional
energy exchange due to two-wave mixing at the pho-
torefractive diffusion hologram recorded in the crystal
[i.e., the periodic 5e(x) distribution] both of their ampli-
tudes decay exponentially along the x axis.

Note an important difference between the process un-

der consideration and a standard two-wave mixing at a
transmittance grating, which is usually analyzed in the
photorefractive literature [8]. In the latter case the light
wave amplitudes are constant along the x axis (i.e., per-
pendicular to the grating fringes) and are changing along
the z axis. Here we have another configuration of the
two-wave mixing process. For the same orientation of
the grating fringes (parallel to the z axis) the interacting
wave amplitudes are supposed to be constant along the z
axis and are changing along the x axis. This means, in
fact, that we have two-wave mixing at the reflectance dy-
namic hologram where intensities of the waves are chang-
ing along the direction perpendicular to the grating
fringes (i.e., along the x axis in our coordinate system).

On the other hand, large positive hK results in solu-
tions similar to standard evanescent waves in optically
linear media. There is however, additional decay (for
positive y) of these waves along the x axis with the same
exponential factor yKO (k, 2= —y T +2~bK

~ /Ko) [Fig.
1(b)]. This additional decay clearly results from some
uniform change of the refractive index [5e(x)=const(x)
in this case, as follows from Eq. (6)] induced by these two
exponentially decaying waves. Note that these two waves
decaying in opposite directions produce the refractive in-
dex change of the opposite sign.

For the case of low b,K (i.e., when 2~6,K ~/Koy && 1),
the solutions are, however, quite different from those for

Below we analyze the solutions presented by Eq. (8) in
two limit approximations: 2~6K ~/Koy &&1 (the approx-
irnation of a large deviation of the propagation constant P
from Ko) and 2~6,K ~/Koy &&1 (the small deviation b,K
approximation).

Large negative values of hK in Eq. (8}result in the two
solutions with complex, phase conjugate amplitudes from
which it is possible to construct two purely real oscillat-
ing solutions

E
&
(x ) =exp( yKox—)cos(x +2 ~

5K
~ Ko ),

Ez(x) =exp( —yKox)sin(x+2~6K ~KO) .
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the linear medium:

E, (x)=exp(k, Kox) =exp( —2yKox),

E2(x) =exp(kzKox) =exp(bKx/y) .
(10)

solutions decaying in the same direction for negative AK
[Eq. (10)], ~hK~ proves to be low ( ~Koy/2). For the
boundary value ~b,K

~ =Koy /2, the transfer of the oscilla-
tion type of the solutions into the relaxation one is ob-
served.

For the positive sign of y, the first ("shallow" ) wave will
decay along the positive direction of the x axis [Figs. 1(c)
and 1(d)] with an exponential factor 2Koy. Unlike the
conventional evanescent waves (which are observed for
positive b,K only), this exponentially decaying wave exists
for both positive and negative AE and its decrement does
not depend on the hE value.

In its turn, the second wave Ez is growing along the x
axis for positive AE and decaying for negative AK. Since

~ k, ~
&&

~ k2 ~, the exponentially decaying wave of this type
(or the "deep" wave) can penetrate into the crystal much
deeper than the "shallow" wave.

Note here that all these types of nonlinear waves (oscil-
lating and relaxation) are possible in any PRC with this
particular y without any changes in the experimental
conditions. Our above separation of two limit cases
means that for oscillating (with negative b,K) solutions
presented by Eq. (9), ~b,K~ proves to be rather high
( &Koy/2). On the other hand, for the relaxation-type

III. LOCALIZED SURFACE WAVE SOLUTIONS

Below we are interested in the consideration of the
guided waves which can propagate along the boundary of
the photorefractive medium (which in the following
analysis is supposed to occupy the semiplane with posi-
tive x & 0) and can be constructed using the solutions ob-
tained above. For this purpose only the solutions for neg-
ative AK are suitable. Indeed both functions presented in
Figs. 1(a) and 1(c) decay in the positive direction of the x
axis. As a result, by taking some linear combinations of
two functions obtained for the same value of negative AK
one can satisfy necessary boundary conditions and obtain
the guided solution decaying with x

We will discuss three basic cases: (i) the boundary
PRC —ideal metal, (ii) the boundary PRC —optically linear
transparent dielectric with lower refractive index
n, =n 5n, and —(iii) the boundary PRC —PRC' (with the

10

-10
x (arbitrary units)

-10 x (arbitrary units) 10

(a) (c)

x (arbitrary units) -10 x (arbitrary units)

(b)

FIG. 1. Complex amplitude E(x) in typical nonlinear waves for the photorefractive crystal with diffusion (gradient-type) non-
linearity: (a) oscillating sinusoidal and cosinusoidal solutions for large negative AE (curves correspond to yKO = 1 and
K =+2~bK ~Ko =10); (b) evanescent waves for large positive bK (curves correspond to yKo =1 and +2~ 6K~Ko =3; (c) exponential
solutions for small negative AK (curves correspond to yK0=1 and ~bK~/y= —,'~; (d) exponential solutions for small positive EK
(curves correspond to yKO = 1 and ~hK ~!y=

—,'~).
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same n, but with negative y). Here we limit our con-
sideration to only these three cases, having in mind that
there can be more complicated situations which need
more detailed analyses. Even in this case we simplify the
analysis by assuming that the boundary between two
different media does not possess any particular properties
(e.g., surface trapping centers, blocking properties for the
charge transfer, surface photogalvanic effects, etc.).

Propagation along the idealized metal surface (i.e., the
case when the tangent components of the electric field
equal zero at the boundary of PRC) is the most simple.
The first type of the guided wave (for the large negative
hK}, the oscillating guided wave, is represented here by
the second, sinusoidal oscillating solution [Eq. (9)]; see
Fig. 2(a). The second type of guided wave can be con-
structed as a linear combination of the shallow and deep
exponential waves with small negative b,K [Eq. (10)]:

PRC. On the other hand, the other (relaxation-type)
guided wave can have a much larger penetration depth
do =y/~hK ~, increasing inversely proportionally to

For the case of a boundary with the linear dielectric
medium with a lower average refractive index (5n )0},
the guided waves can be easily constructed for the case of
large negative AK. Here the solutions of Eq. (9) corre-
spond to the standing wave along the x axis (with addi-
tional comparatively slow decay). So the behavior of the
guided wave near the boundary [Figs. 3(a)—3(c)] reminds
one of a conventional planar dielectric waveguide with
approximately the same refractive index difference 5n be-
tween the core and the cladding [9].

The penetration depth into the dielectric medium can
be expressed through 5n and the spatial frequency of the
grating in the PRC (K}is given by

E(x)=exp(EKx/y) —exp( 2y—K&x); d, =(2K25n/n K2) —1/2 (12)

metal PRC

see Fig. 2(b).
One can see that the first (oscillating) guided wave is

characterized by the fixed penetration depth do —1/y, in-
dependent of the interference fringe spacing K inside the

This means in particular that the higher the spatial fre-
quency K of the interference pattern in the PRC, the
higher the refractive index change 5n one needs to ensure
propagation of the surface guided wave (5n
=nK /2Ko).

In the same way, the relaxation type of guided waves
[Fig. 3(d)] can be constructed for this boundary from the
solutions for small hK [Eq. (10)]. In this case

d i
= (2Ko5n /n —2K~y/do ) (13)

(g

~Q

metal

x (arbitrary units)

(a)

and the minimal 5n value necessary for wave guiding
equals 5n '"=ny/Kodo As in th. e previous case, if the
condition 5n )5n '" is satisfied, the larger the 5n, the
lower the observed penetration depth in the dielectric
[Figs. 3(a) —3(c)].

For the boundary between two PRCs with the opposite
sign of y, both symmetric and antisymmetric types of
guided waves are clearly possible. Their structure for
both large and small negative hK is presented in Fig. 4.
Note that the antisymmetric solution in the volume of
every PRC corresponds to that for the boundary with the
ideal metal surface (Fig. 2), which clearly results from the
imaging property of an ideal metal surface. Nonsym-
metric guided waves, which are linear combinations of
symmetric and antisymmetric solutions, can also be ob-
served for the boundary of two PRCs.

4

~+
4

-20 x (arbitrary units) 20

FIG. 2. Complex amplitude E{x)in surface nonlinear waves
near the plane boundary PRC —ideal metal: (a) for large nega-
tive AE' {curve corresponds to yKO = 1 and
K=+2~6K~K0=10) and (b) for small negative hK (curve cor-
responds to yK0=1 aud do ' =

~AK /y =
—,
' ).

IV. DISCUSSIGN

Let us estimate the possible penetration depths into
typical PRCs of the guided waves under consideration.
For oscillating guided waves do is fixed and equals
(yKo), which, in accordance with the y values given
above, results in do = 10 pm for BaTi03 and =2 mm for
cubic PRCs of the Bi&2Si020 family. Even larger penetra-
tion depths are expected for GaAs since we use longer
wavelengths here.

This means that the most promising PRC for experi-
mental observation of the nonlinear surface waves is fer-
roelectric photorefractive BaTiO3 or SBN. Here the
efficient concentration of the propagating waves in the
surface layer with the thickness comparable to that [6]
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typical for the prefabricated planar waveguides can be
observed for the simple di6'usion mechanism of non-
linearity. So this self-channeling of the light waves near
the PRC surface can probably be used for efficient con-
centration of the light beam power in di6'erent phase con-
jugate configurations in these ferroelectric PRCs.

There is also an efficient way to increase y (and, as a
result, to reduce the penetration depth of the guided
waves) in cubic PRCs, namely, to apply the ac electric
field. It is known [8] that in this case it is possible to
record efficient shifted phase holograms corresponding to
the gradient type of photorefractive nonlinearity. Instead
of k~T/e one can formally substitute prE„ in Eq. (5)
(here p and r are the mobility and the lifetime of the car-
riers, respectively, and E„is the amplitude of the applied
square-wave electric field). For E„=10 kV/cm and

pal=10
' cm'/V, typical for Bi»SiO,O and Bi»TiO»

crystals [8], this also gives y-3 X 10, i.e., the value of
y obtained above for highly efficient BaTi03.

This case needs, however, a more detailed analysis
since the nonlocal (gradient-type) photorefractive non-
linearity under the external ac field was investigated ear-
lier mainly for sinusoidal interference patterns with low
contrast. The real penetration depth of the surface wave

in Bi,zSi020-type crystals will probably be somewhere be-
tween these two estimates (2 min and 10 pm) obtained
above.

Note that the crystal cut for observation of the non-
linear photorefractive surface waves sometimes is the
same and is sometimes not the same as that for the stan-
dard holographic experiment; this is true in particular for
BaTi03 [8]. Without discussing the details (optimal crys-
tallographic orientation and the light polarization can
differ in different PRCs), note that efficient propagation
of the surface waves is possible along the sample boun-
daries parallel to the layers of the holographic grating,
which is efficiently reconstructed in this PRC for this
particular light polarization.

Another very important characteristic feature of the
nonlinear photorefractive waves under consideration is
their independence of the light intensity. It is a direct re-
sult of a very special optical nonlinearity mechanism for
which the photoinduced refractive index changes do not
depend on the light intensity [Eq. (3)]. This means that,
as in the experiments with photorefractive spatial solitons
[1,2], very low (pW) levels of cw laser power can be used
here.

Note that rather fast decay of the surface wave intensi-

PRC
1 dielectric

N

~Q

PRC

~ Q

4
llew

x (arbitrary units) x (arbitrary units)

(a) (c)

dielectric PRC

4
~Q
A4
td

x {arbitrary units) -20 x (arbitrary units) 20

(b) (d)

FIG. 3. Complex amplitude E(x) in surface nonlinear waves (of TE type) near the plane boundary PRC —dielectric with lower
average refractive index: (a) —(c) oscillating solutions for large negative b,K [curves correspond to yKO = 1, K =+2~ b,K~Ko = 10, aud
d, '=1, 10, and 30 for (a), (b), and (c), respectively]; (d) exponential solution for small negative b,K (curve corresponds to yKO =1,
do

' =
~
AK

~ /y =
—,', , aud d, ' = 1).
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PRC' PRC

tQ
4

~rf
R4

x (arbitrary units)

(a)

-20 x (arbitrary units)

(c)

20

1
PRC' PRC PRC'

x (arbitrary units) -20 x (arbitrary units) 20

(b)

FIG. 4. Complex amplitude E(x) in surface nonlinear waves (of TE type) near the plane boundary PRC-PRC' with the opposite
sign of nonlinearity: (a) and (b) symmetric and antisymmetric solutions for large negative AE (curves correspond to yEO=1 and
K =+2~bK~KO=10); (c) and (d) symmetric and antisymmetric waves for small negative hK (curves correspond to yKO=1 and
d =[~K(r) =

ty along the x axis means that the above analysis is appli-
cable basically to rather thin (in the x direction) samples
of PRCs. Indeed, for a bulk sample the photoconductivi-
ty induced by the light wave will sooner or later be com-
parable to the dark conductivity of the sample. This
means that the original approximation of the negligibly
low thermal ionization rate in Eq. (5) is not valid for this
region. Clearly this complication needs additional, more
detailed analysis, but qualitatively the main effect is the
following (see also [10]). The dark conductivity reduces
the efficiency of the photorefractive two-wave interaction
(i.e., the efficient value of y). As a result, the steep decay
of the surface wave near the boundary will be replaced by
a flatter one in the depth of the sample, where the photo-
conductivity is comparable to the dark conductivity.

The detailed analysis of the exponentially decaying
("evanescent") nonlinear waves in the PRCs presented
above is closely related to another interesting problem,
namely, to bistability in the reflection from the boundary
of dielectric and photorefractive media. This problem
was analyzed originally for conventional Kerr optical
nonlinearity in [11]. Recently bistability in the reliection
properties of a boundary between linear and photorefrac-
tive media was considered in [10,12] as well.

V. CONCLUSION
Summarizing, we suggested and analyzed an optical

nonlinear effect —the guided surface waves in pho-
torefractive crystals with the diffusion (gradient-type)
mechanism of nonlinearity. The analysis predicts that in
ferroelectric photorefractive BaTi03 it is possible to ob-
serve efficient waveguiding near the sample surface
within the layers of —10 pm thickness.

Some other important questions are to be investigated
in relation to these nonlinear photorefractive surface
waves. Among them are the above-mentioned influence
of the crystal dark conductivity, the stability of the self-
guided solutions obtained, and the interaction of the non-
linear waves with different propagation constants.

Note added. After this manuscript was submitted for
publication, Daisy and Fisher published another, more
extended, paper [13] with a theoretical analysis of bista-
bility in the reflection from the interface between linear
and photorefractive media.
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