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van der Waals interactions between excited-state atoms and dispersive dielectric surfaces
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van der Waals interactions between atoms and dielectric surfaces are reinvestigated. To describe the
nonretarded interaction potential between a dispersive dielectric surface and an atom in an arbitrary
internal energy state, we derive a general expression in terms of an integral, over real frequency, of the
combined atom and surface polarizabilities. It is shown that, for excited atoms, the expression is
equivalent to the one obtained by Wylie and Sipe [Phys. Rev. A 32, 2030 (1985)]. We thus demonstrate
how to extend this approach to excited atoms interacting with birefringent dielectrics. For isotropic
dielectrics, a method of integration in closed form allows us to derive an approximate formula for the
van der Waals interaction constant in terms of resonance frequencies and oscillator strengths of both the
atom and the dielectric. Frequency-dependent "dielectric reflection" coefficients are introduced for vir-
tual atomic dipole couplings either in absorption or in emission. In absorption, the reAection coefBcient
is always positive and smaller than unity. In emission, it may take arbitrary values, positive or negative
(corresponding to van der Waals repulsion). Such a behavior is shown to be related to resonant excita-
tion exchange between the atomic system and the dielectric medium, when an atomic transition frequen-
cy gets in resonance with a dielectric absorption band. Numerical calculations performed for& the
cesium-sapphire system are shown to be in good agreement with data obtained by selective-reAection
spectroscopy. Finally, experimental tests of the birefringent character of the sapphire response are dis-
cussed.

PACS number(s): 42.50.—p, 42.25.Gy

I. INTRODUCTION

Since the pioneering work of Lennard-Jones [1], the
theory of van der Waals (vW) interactions between isolat-
ed atoms and solid-state surfaces has been developed by
many authors over the past decades [2—13]. In the
nonretarded regime, the interaction between an atom and
a perfectly reflecting surface can be viewed as resulting
from the coupling of the atomic dipole with its electro-
static image in the surface. Due to the image correlation,
the dipole —induced-dipole interaction varies like z (z is
the atom-surface distance). Most of the previous theoret-
ical works have dealt with the interaction of ground-state
atoms with metallic or dielectric surfaces, for both nonre-
tarded and retarded vW forces [1—6,11]. Resonance-level
atoms interacting with perfect conductors or metals have
also been investigated, in relation with quantum electro-
dynarnic studies in the presence of an interface (cavity
QED) [7—10,12—14]. Of particular interest is the quite
complete study performed by Wylie and Sipe [12], who
derived a general expression of atomic level shifts in
terms of correlation functions from linear-response
theory.

Many experimental studies of the vW interactions be-
tween ground-state atoms and solid-state surfaces have
been performed [15]. On the other hand, recent experi-
mental investigations on selective-reflection spectroscopy
at an interface between a dielectric surface and a dilute
alkali-metal vapor [16—18] have attracted a renewed in-
terest in the problem of excited-state atoms interacting
with dielectric media. The experimental results are well
interpreted by assuming a nonretarded vW potential

varying in z . However, the precise interpretation of
the atomic frequency shift requires that one take into ac-
count the full, complex dielectric response at all the
wavelengths, due to the fact that some excited atomic
transitions may lie inside the absorption bands of the
dielectric medium.

In this article, we consider the nonretarded interaction
potential between an atom in an energy level ~a ) and a
dielectric surface characterized by a frequency-
dependent, complex, dielectric constant e(co). We derive
a general expression valid for an arbitrary atomic level
(Sec. II). The case of birefringent dielectrics is also con-
sidered. Model calculations are performed in Sec. III to
get an approximate analytical expression of the vW in-
teraction constant C3 in terms of resonance frequencies
and oscillator strengths of both the atom and the dielec-
tric. Sections IV and V are thus devoted to the particular
case of the dielectric response of the sapphire and to the
calculation of sapphire-induced energy shifts of cesium
excited states, including a comparison with the experi-
mental results. In Appendix A, the limit case of a dilute
dielectric medium is shown to give the well-known vW
potential between two atoms.

II. POTENTIAL ENERGY OF ATOMS
NEAR A DIELECTRIC SURFACE

A. The electrostatic image model

Let us recall that, in electrostatics, the effect of an arbi-
trary Sat dielectric surface (dielectric constant e, ) 1) on
a charge q located in vacuum at distance z from the sur-
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face can be modeled by assuming the presence of an im-
age charge —

q [(E,—I )/(e, + 1)], located symmetrically
at position —z [19]. Similarly, the effect of the dielectric
surface on an electric dipole p is equivalent to an image
dipole p with components parallel to the surface

fgVg(z)= —
2 f du[a „(iu)+a (iu)

16mz

+2g()]s(iu)1
E(iu)+ 1

(6)

c —1S

Pxy +1 Pxy
S

and normal to the surface

1S

Pz +1Pz .
S

(2)

ng represents the component along x; of the tensorial
polarizability of the ground-state atom. For an isotropic
ground state, ag~„=ag~=a„=ag and Eq. (6) reduces to
[4-6]

Vg(z)= —
3 J ag(iu) du .

E(iu) —1

4~z o E(iu)+1

One may introduce in Eq. (6) the well-known expression
for the polarizability of the ath atomic state

This leads to a dipole-image dipole interaction energy of
the form a'„(co)=—g ?2'"

~

+1
&s 1 Px+Py+2Pz

16z
(3)

in which to,„=(E„E,)/A is—the a~n transition fre-
quency (positive for E„)E„negative for E„(E,) and
p„'" is defined by Eq. (5). We obtain

The case of a perfect reflector is given by the limit
~ oo.
The corresponding quantum-mechanical interaction

operator V is given by Eq. (3), where p is now the atom
electric dipole moment operator. At first perturbation or-
der, the energy shift of the atomic level a & is given by

E, —1 &a~p'+?2,'~a &

&a/V[a &= — '
~, +1 16z'

E, —1

y[ an~2+
~

an~2+2~ an 2]
16z' ~, +1 „

(4)

in which

p,'"=&a p„~n &

is the ~a &~~n & transition dipole moment along direc-
tion x; and the summation is performed over all atomic
levels ~n & connected by electric dipole transitions to ~a &.

Equation (4) is valid if we assume the dielectric to
respond instantaneously at any atomic transition frequen-
cy. When some of the electric dipole transitions of the
atom lie inside the absorptive or dispersive ranges of the
medium, the dielectric response is characterized by a
frequency-dependent, complex, dielectric permittivity
c,(co) and Eq. (4) no longer applies.

B. van der Waals interactions between
ground-state atoms and dispersive dielectric media

The vW interactions between an atom in the ground
state and a dielectric surface has been derived by several
authors [4—6, 11,12] on the basis of either QED ap-
proaches or the linear-response theory using quantum-
mechanical perturbation approach. In the nonretarded
regime, the vW interaction may be simply expressed as an
integral, over pure imaginary frequencies (iu), of the op-
tical responses of the atom and the solid:

V (z) = —
3 &( Ip„"I + Ip "I +2 I?2,"I1

~ E(lu) 1 ~gn
d (9)

o E(iu)+ 1 to2„+u 2

which can be also written as

V (z)= — g(~p, „"~ + pg"~ +2~pe~ )r(oo „)1

7l

(10)

2 ~ E(iu) —1 ~o
r (ohio)

=—,du
77 0 E(lu)+ 1 oio+u

(in which coo=cog„)0). For long wavelengths (electro-
static limit coo —+0), ro = [E(0)—1]/[E(0)+ 1], where E(0)
is the static dielectric constant. It follows, from the prop-
erties of E(oi) [20], that E(iu) is real, positive, and falls off
monotonically to one as u increases. Thus r(coo) is also
monotonically decreasing from ro(coo=0) to zero

(ohio~ ca ). For E(oi) =E„r(oi)=(e,, —1)/(E, +1), and Eq.
(10) reduces to Eq. (4).

The integral of Eq. (11) over the imaginary frequency
axis can be turned into an integral over real frequency
axis by using the integration contour of Fig. 1. For this,
one notes that the function [E(co)—1]/[c(o~)+1] has no
pole in the upper complex plane. It can be shown indeed
[20] that, because of causality principle, E(co) is not real
in the upper complex plane, except on the imaginary axis,
where c is real and positive. Thus, by integrating

I [s(to) —I]/[E(co)+ I] j [coo/(coo —co )] over the contour
of Fig. 1, one obtains r as

2 ~ E(co) —1 ohio E(coo) —1
r (coo) = PJ Im— dco+Re

o~o +1

(12)

if we introduce a frequency-dependent "dielectric
ref?ection" coe+cient as
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Im m V, (z)= — f du[a' (iu)+a' (iu)16''
+2a,', (iu)] E(iu) —1

E lu +1

s(co,„)—1

s co,„+I
(15)

0
/

Re w

FIG. 1. Integration contour for turning the integral of Eq.
(11) into an integral over the real frequency axis.

» Eq. (12), P stands for the principal value of the integral
and Re and Im denote real and imaginary parts, respec-
tively.

C. Excited-state atom interaction

Equations (10) and (12), yielding the nonretarded vW
interaction for a ground-state atom, are generalizable to
any atomic state since they are expressed in terms of real
atomic and dielectric frequencies. They can be obtained
directly via Fourier-transform methods from quantum-
mechanical perturbation theory applied to any energy
level of the atom-dielectric system. The vW shift for an
excited level Ie ) is

(13)

with r given by Eq. (12). Let us note that, now in the
summation on the right-hand side of Eq. (13), there may
be a state

I n
' ) of lower energy than that of state

I
e ),

which means co,„.& 0 (i.e., virtual dipole coupling in emis
sion). For co,„.&0, r(co,„), as given by Eq. (12), is no
longer equivalent to expression (11). Indeed, when carry-
ing out the reverse transformation by means of the in-
tegration contour of Fig. 1, one easily shows that, for
negative frequency, the dielectric reAection coefficient is
given by

where 6 is the Heaviside function. This expression was
first derived by Wylie and Sipe [12],who gave a very gen-
eral approach (in the retarded and nonretarded regime) of
the interaction between atoms and solid-state surfaces.
They have interpreted this energy shift by associating the
first part of the right-hand side of Eq. (15) with the forces
induced by pure quantum mech-anical ji'uctuations (which
yield the only shift for ground state or metastable atoms),
while they have shown that the second part, coming from
atomic transitions associated with emission processes, is
the quantum-mechanical analog of the energy shift of a
classical oscillating dipole, interacting with a solid-state
surface. Our approach shows that both Eq. (9} for the
ground-state atom and Eq. (15) for excited state derive
from a unique potential, which can be expressed in terms
of real frequency [Eq. (12)]. The general meaning of Eqs.
(10}—(15) will be analyzed in more detail when we will
consider their application to a particular dielectric.

D. Birefringent dielectrics

e(iu) = [E~~(iu)Ei(iu)]' (16)

where c.
I~

and c~ are the dielectric permittivities for elec-
tric fields parallel and normal to the interface, respective-
ly. This leads to a "dielectric image" coefficient for the
ground state similar to Eq. (11)

2 ~ E(iu) —1 o'o
r(coo)= — du .

E(iu)+1 coo+u
(17)

The interaction between a ground-state atom and an
anisotropic solid has been derived by several authors
[21,22]. They have shown that, for a homogeneous
birefringent dielectric with the symmetry axis normal to
the interface, Eqs. (6) and (7) still apply if one replaces E

by c., with

2 e(iu) —1 laiol
r( —Icool)= ——

2
dQ

o E(iu)+1 coz~+u2

e(lcool )
—1

c( Icoo I
)+ I

(14)

Note that, since E(iu) is real and positive, e,(iu) is univo-
cally defined by Eq. (16).

A generalization to the excited state is easily per-
formed via the procedure detailed in Sec. II 8 to trans-
form Eq. (17) into an integral over real frequencies

where we have used the well-known relation
E'(co') = E( —co). It is shown in Appendix A that, in the
limit case of a noninteracting, dilute dielectric medium,
this expression allows us to derive the well-known binary
vW potential between two different atoms [cf. Eq. (A3)
and the following].

Relation (14), when inserted in Eq. (13), with the help
of Eq. (8), yields the following potential energy:

2 ~ E(co)—1 ~o
r(coo) = Pf Im- dco+ Re

o E(co)+ 1 coo

E(coo) —1

E(coo)+ 1

(18)

In Eq. (18), Z(co), now complex, is given by the deter-
mination of [E~~(co)e~(co)]', which analytically extends
e(iu) over the upper complex plane of Fig. l. Equation
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(18) leads to a reflection coefficient for negative frequen-
cies (corresponding to dipole coupling in emission) similar
to Eq. (14), with E replaced by s.

In the electrostatic limit (co&~0), r is equal to
(s, —1)/(s, +1) with s, =Qs~~, si, . This result can be
obtained by extending the image model to birefringent
dielectrics, which is possible if the birefringence axis is
normal to the surface (Fig. 2). Indeed the cylindrical
symmetry around the surface normal and the continuity
conditions on the interface for both the tangential electric
field and the normal displacement field allow one to show
that for a charge q at distance z from the interface (i) the
field inside the birefringent dielectric [23] is equivalent to
that produced by a fictitious charge qadi

= [2s, /(E, +1)]q
located at distance zi, =z(sl, /s~~, ) from the surface
and (ii) the field in the vacuum is equivalent to the one
produced by the charge q and an image charge
qr= —q(E, —1)/(E, +1) located at position —z. This
shows that for an electric dipole p, the interaction poten-
tial with birefringent dielectrics is given by Eq. (3), with
c., replaced K, .

III. MODEL CALCULATIONS

In this section we consider an isotropic dielectric in
which c, as a function of co, can be modeled by the usual
expression

2

s(co)=1+C+g
2 2CO„CO I y „CO

where C is a constant and the third term on the right-
hand side describes resonances in the dielectric medium
around frequencies co„, with f„and y „ the strengths and
widths of these resonances, respectively. I.et us first con-
sider a model with a single resonance. Then we obtain,
after some elementary algebra,

2flylrol , fl
(2+C) ' 2+C (21)

we thus have

f (ro) =&il (Q2 2)2+ 2 2 (22)

We first evaluate the integral in Eq. (12) by using the
identity

Pf f(ro) dro
0 CO0 CO

CO COO d CO

0 CO0 CO

With f (ro) defined by Eq. (22) we find

(23)

[f(ro) —f (le&l)]
CO0 CO

X)
D ( ro )D ( coo )(

l Coo l
+ ro )

x [ —Qi+~l~ol( —2Q'i+~'+~l~ol+~o+y'i}],

(24)

where we have set D ( ro)= ( Q,
—co ) + y2iro2.

%'e now consider the limiting case where the resonance
around Q, is extremely narrow, i.e., its width is negligible
compared to all other characteristic frequencies of the
system. In particular, the atomic frequency lcocl is as-
sumed to lie outside the resonance in the dielectric. Then
we may neglect y& in the last factor on the right-hand
side of Eq. (24) and, since the relevant values of ro are
close to Q „use the approximation 0,=coQ, and
—2Qi+co +colrool = —Q, +Ql lrool. Hence we write

f (ro)=Im E(co)—1

2f i'y idol

(2+C}
2 2 +y

2 2

2+C 1

(20)

1 CO0 i CO

[f (ro) —f ( I rool ) ]

If we further neglect the term y&co& in the expression for
D (coo} so that we have

By introducing the quantities D(roc) co2 —Q' '

the integral defined by Eq. (23) takes the form

qD P f f(co) dro=
0 CO0 CO

+1 f' oo CO

~2,—Q', ". D(~)" (25)

ZD

Z

l-Z

J4
birefringent dielectric q&

vacuum

' s//s

K~
P f f(co) de=

0 COo COo &I 2y, Q
(26)

In the limit of vanishing y &, the calculation of the
remaining integral yields the value m/2y, Q, . Hence we
obtain the expression

FICx. 2. Equivalent charges in the case of a birefringent
dielectric.

It remains to evaluate the second term on the right-hand
side of Eq. (12) for which we use again the approxima-
tion of negligible width of the resonance. We then have
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s(coo) —1
Re

e(coo)+ 1

(f i + C)co i
—co&C

(2+ C)(ni() —0, )
(27)

TABLE I. Resonances of sapphire dielecielectric constant (co; and

y; are given iniven in units of 10' Hz) (from Ref. [24]).

By adding the expressions for the two termerms we thus ob-
tain the final result

2 1

2+C ru —~iCOO

Cii =2.2

1

2
3
4

11.55
13.26
17.07
19.05

0.17
0.13
0.34
0.38

0.3
2.7
3.0
0.3

2rucf indi

(2+C)Qi
(fi+C)roi —cooC

2

c,j(a))
Cq =2. 1

12.
17.54

0.24
0.61

6.8
1.7

where in Eq. , a(26) K has been replaced by its value as
given by Eq. (21). This result with coo=co,„.can now

into E . (13) for the van der Waals potential.
co ossesses severalIn the more realistic case where e(co) possesses sev

1 there is no simple expression re-resonances at va ues co„,
lating f (co) to the quantities C and co„. However, i e
resonances are su cien y nffi

'
tl narrow, we can approximate

~ ~f (co) as a sum of Lorentzian-type resonances by wn ing
it in the form

surface. Sapp ire is ah' '
birefringent material. The dielec-

tric permlttivitles 0 ef th ordinary mode s~~(ro) and t e ex-
traordinary mo e c,~ md ( ) can be expressed via analytica

~ ~ ~

equations of the type of Eq. , y19) b using data given in
the literature for the visible and infrared ranges A, )

two resonances,( ) has four resonances and ei co
c~~ co as

ro. , ) of which arethe characteristic parameters;, co;,y, o

(II2 2)2+ I 2 2
n CO n

analo to the single resonance case. ot,..ote however,
e the dam ing constantsth t in contrast to this latter case, e p'a in

'
n for e(co). Ford'ff t from those of the expression

en a ain be usedthe integral the result of Eq. (26) can then aga'
so that we have

100

and

X„f(ro) d
m ~ n

P
2 2dCO-

COO Q)
(30)

0
0. 0.25 0.3

s(coo) —1
Re

s(coo)+ 1

fn run
C+& z

Q)„COO
2

fnninC+2+ g
N „COO

(31)

-100—

K and I in the case of multiple reso-Expressions for „an
d

'
d

'
Appendix B. Then Eqs. (30), (31)nances are derive in ppen

'

and (12) give

Im c//
300—

n +r (n)o) =coop

2
fn runC+& z

COn COO

fn runC+2+g
CO„COO

(32)

200—

100 L

m irical choice made in the mod-
eling of the dielectric constant [in Eq. (19, s~
cg —&+ oo].

IV. AN EXAMPLE OF DIELECTRIC RESPONSE:
THE SAPPHIRE SURFACE

0
0.1 0.'I 5 0.2 0.25 0.3

In this section, wee apply the previous theoretical ap-
sa hireproach to pre ict ed' th dielectric response of a sapp

of 10'4 Hz) for the sapphireFIG. 3. c~~(u) versus m (in units o
(a) real part and (b) imaginary part.
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2—

1.5—

0.5—

resonances co( and coII contribute to the small peak be-
tween them.

In Fig. 6, we draw the function f(co)=1m[ E(co)
—1]/[s(co)+1], which presents seven maxima, the posi-

+1.tion of which coincides with the minima of ls(co)
Note that, for birefringent dielectrics, we cannot get an
approximate expression of the type o q.f E . (29) for the
function presented in Fig. 6.

In Figs. 7 and 8, we present the dielectric reQection
coefficient defined in Sec. II by Eqs. (11)and (14) for co) 0
and co &0 with

2
fncon

E(iu ) = 1+C +g
n ~n+9 +Tnt

where we have introduced the parameters given at the be-

0.1

i

0.15 0.2
I

0.25 0.3

Re s
FIG. 4. 1m[el(co) —I]/[sl(co)+ I] versus co (in units of 10'

Hz) for sapphire.
50

given in Table I. As an example the frequency depen-
dence of all is given in Fig. 3.

The dielectric response of a plane sapphire interface is
characterized by the function E(co)=[E(co)—1]/[E co

+1]. Its imaginary part f (co)=lrnF(co) is given in Fig.
4 for an ordinary index f~~(co). The approximate expres-
sion o J~llff ( ) as a sum of Lorentzian-type resonances Eq.
(29)] yields values that cannot be distinguished in Fig.
from the exact representation of f l(co) such as that calcu-
lated with sl(co) [Eq. (19)]. Note that in general f (co) has
resonances at frequencies A„, which are q

h' h are uite diferent
from the resonances of the bulk dielectric permittivity
co„. Surface resonances are given by the roots of
E(co)+ 1 =0 (with y„=0). The characteristic parameters
of the resonances of f~~(co) and fi(co) are given in Table
II.

In fact, we have shown in Sec. II that, for a
birefringent dielectric, the important observable is
E(co)=+El(co)si(co), which we present in Fig. 5. Note
that, for all co, we have chosen the root with a positive
imaginary part. The general shape of these figures results
f the mixing of the six resonances. For example, inrom

h tFig. 5(b) we can notice that co2 and co( are so close tha
they give only one resonance and that the wings of the

0—

-50—

A
Im c

80—
II

67, 072

60—

40—

/it

4@3 602

0.3

TABLE II. Resonances of plane sapphire interface [Q, and

rf are giveninunitsof 10 HzandKl inunitso (
12 312 f(10' Hz) ~.

11.63
14.42
18.82
24.96

0.17
0.18
0.37
0.3

E~

2.73 X 10-'
0.5885
0.4423

49.85

0—
0.1 0.15 0.25 0.3

15.25
24.20

0.4
0.45

3.668
77.079

FICr. 5. Qs~~(co)e~(co) versus co (in units of 10' Hz) for the
sapphire (a) real part and (b) imaginary part [coI) and co; indicate,

~ ~

respectively, the sl(co) and si(co) resonances positions].
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g(m) i&

2—

1.5—

0.5—

. SAPPHIRE-INDUCED ENERG& SHIFT
OF EXCITED CESIUM

6S -7p . s 0 e cesiumt is worth applying the previous result t th
] /p 3/p transition (p =455 nm), for which det 'led

experimental results have been publisl ed [18]
evi ence of the effects related to the nature of the dielec-
tric medium. A striking feature is th ta an important con-
tribution to the vW interaction (7P ~6D
ies in the sapphire absorption range. A detailed list of

t e various virtual couplings which contribute to the vW
interaction for an ideal reQecting surface was previously
given in [18]. It is schematically represented in Fig. 11.

Considering the case of a sapphire surface, one finds a

(
0
0.1 0.15

I

0.2 0.25 0.3 rli ( m&())

FIG. 6. Im[ [Qe(((co)Eg(co) 1]/[Qe()(co)eg(co)+ 1]j for sa
phire (m in units of 10' Hz).

»»

co c& co or sap-

~ ~

ginning of this section, respectively, for the ordinary
mo e [rl~(co)] and for the extraordinary mode [r~(to)].
We note that rico) 0', '0~ is, as predicted, a monotonically
decreasing function starting fro thm e static value
ro(to=0) = [E(0)—1]/[E(0)+1]; [r(0)=0.809 and r~(0
=0.841]. Note that, in absorption (to&0), the influence
o sapphire birefringence is quite small and r»» and r~
have very close values. This is not the
(co (0 wher

o e case in emission
co(,where r presents sharp variations around the as-

sociated surface resonances Q' or Q (
—

»

from 22.36 to —21.47 for»to~ =QJ and r~( —
~co») varies

attraction or repulsion for an excited atom in front of the
sapphire surface if this atom has a resonant transition for

In Fi . 9n Fig. 9, we compare r((co), given by Eq. (32) for our

B
approximate method developed in Sec III d A

, to the exact results presented in Fig. 7. We can see
that for the two cases (to&0 or (0) th
method is excellent and can be used for the vW potential
except if the atom transitions coincide with the dielectric
resonances. The same conclusion can be reached for r~.

The difference between r»» and r~ shows the need to ful-

y account for the birefringent behavior. In Fig. 10, we
present the dielectric reAection coefticient for the

ire ringent case, where we have used Eqs. (11) and (14)
with E(iu)=s(iu) given by Eq. (16). r(to)0) decreases
monotonically from r(0) =0.826 and is not very difFerent
rom r~~ and r~ On the ot.her hand, r(to(0) presents

strong variations particularly around th k f J
ig. ). We have noted the corresponding positions in

n peak (6), r(to) varies from 18 to —17 (r=0 for

can infer that peak (3) mainly originates in resonance Q)
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Calculated
C ( (approximate)
(exact)

C3
(kHzpm )

13.81
13.81

Calculated
C 3 (approximate)
(exact)

13.81
13.80

TABLE III. Theoretical values for the surface vW coefFicient
associated to the 6S&y2-7P3/2 Cs transition, for different limiting
cases of the birefringent sapphire, compared to the experimental
estimate.

vW attraction, quite independent of the window
birefringence and of the various approximate models (see
Table III). The calculated value is on the order of 14
kHz pm, in better agreement with the experimental
determination (20 kHz pm +25%) than the previous
crude theoretical estimation (11 kHz pm ) [18]. One
notes that, as all major couplings are the virtual absorp-
tion type, it excludes the possibility of a resonantly
magnified vW interaction. This also explains why the
birefringent nature of sapphire does not sensitively affect
the theoretical predictions.

Conversely, for the 6D level of Cs, which is, as already
mentioned, strongly coupled to the 7I' level, the coupling

Calculated
C3 (birefringent)

Measured
[18]

13.81

20 (4)

2 I F// {(I))O)

rg( m)O)
'I (a)

0.1

CO

0.5

0.9—

0.8

0.7

0.6

0.2 0.4 0.6 0.8
20

+rll (~(O)

«X( to(o)

(b)
10—

10—
0.1, 0.4

Icol

0.5

0.2 4 0.6 0.8
-10—

-10—
-20—

FIG. 8. ri(co) versus co (in units of 10' Hz) for sapphire: (a)
co )0 and (b) a) & 0.

FIQ. 9. r~~(co) versus co (in units of 10' Hz) for sapphire (a)
co) 0 and (b) co &0. Thick hne, exact values (numerical integra-
tion); thin line, approximate closed-form expressions. Note that
outside the resonances, the closed-form predictions exactly
coincide with the numerical calculations.
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TABLE IV. List of the main contributions to the surface vW interaction for the 6D Cs levels (in
kHzpm'). The ideal reflector and various limiting cases for birefringent sapphire are considered.
Atomic data are taken from [26]. The sign ( —) in column 2 is for emission coupling.

Levels a~a'
6D5/2 6P3/2

7P3/2
8P3/2
4F
5F
6F

g„. (pm)

( —)0.918
( —) 14.59

3.17
5.44
2.30
1.76

Perfect
reflector

0.44
8.05
0.47

12.43
0.33
0.18

Ordinary
sapphire

0.22
16
0.27
7.6
0.19
0.10

Extraordinary
sapphire

0.22
19
0.27
7.6
0.19
0.10

Birefrin gent
sapphire

0.22
17
0.27
7.6
0.19
0.10

C3 (6D5/2) 27 25

6P i/2

7P3 /2

8P l /2

4F5/2
5F
6F5/2

( —)0.876
( —) 12.15
( —) 15.58

3.21
5.31
2.28
1.74

0.32
3.87
1.63
0.41

11.60
0.33
0.18

0.16
75
2.5
0.24
7
0.19
0.1

0.16
—44

2.9
0.23
7
0.19
0.1

0.16
—61

2.6
0.24
7
0.19
0.1

C3 (6D3/z) 85 —33 —50

f (co) =1m[(E—I)l(E+ I)] [12,27]. Indeed, because of
the imaginary part of the dielectric constant, the image
dipole has a component out of phase with the atomic di-
pole, introducing a dissipation process in the dipole-
dipole interaction. This near-field divergence of the line
broadening, which does not exist for perfect conductors
or transparent dielectrics, may reduce the excited-state
lifetime notably and partly hinder the observation of such
level shift enhancements.

The above situation represents a case study of a strong
interaction between an excited microscopic system and a
macroscopic ("classical" ) dielectric body, or, in other
words, an example of resonant coupling between a
discrete quantum level (initial excited-state atom and
ground-state dielectric) and an energy continuum (deex-
cited atom and excited dielectric). Selective-refiection
spectroscopy [16—18] off'ers a unique means of exploring
this type of resonant interaction, by using an excited
atomic system as a selective detector of the quantum
response of the dielectric-vacuum interface at a set of
discrete atomic frequencies.

It should be quite interesting to check the inAuence of
birefringence in the dielectric response. As noted for the
case of sapphire, birefring ence introduces distinct
features for atomic frequencies inside the dielectric ab-
sorption bands. In this respect, the 6D3/2 Cs level should
represent a stringent test of the birefringent behavior.

An interesting extension of this work lies in the
analysis of the retarded, long-range, interaction between
excited atoms and dispersive dielectrics, with such ques-
tions like the possible existence of an oscillatory behavior
of the atom-surface potential or its interferometric can-
cellation at a given separation. Other extensions include
the excited-atom —dielectric-microsphere interactions
around the absorption bands.

APPENDIX A: THE BINARY INTERACTION LIMIT

It is illuminating from a theoretical point of view to
derive the well-known binary vW potential [28] between
two atoms of diferent species from our general expres-
sion (13). To do so, we assume that the atoms of the
dielectric do not interact with each other and we only
consider binary interactions of these atoms with the atom
outside the dielectric. This amounts to making, for the
dielectric, the low-density approximation

c —1 1~—(e —1)=2~XaD,v+1 2
(A 1)

where N is the number density of atoms in the dielectric
and aa is the polarizability of one of its atoms. For the
polarizability of an arbitrary atom inside the dielectric we
introduce the expression

aD(co) =
m d QPdd Q) jPdd

(A2)

where d labels the ground state of the atom and d' desig-
nates any state connected to the ground state by a virtual
transition with frequency ~dd and damping constant ydd .

With our approximation [Eq. (Al)], we then have

Then, with the result of Eq. (26), we find the expression

f (~)=Im c.—1 2+Re dd'~ dd'~

E+1 m ( zz, — ) +y&z,

if we restrict ourselves to one single transition
~d )~~d'). This expression can be identified with Eq.
(22) if we set

2

fag 1'aa 1't =ra~
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1
&

fen'fdd'Vz= ——A' N
4 m Z „d CPen Codd (CPen +~dd')2 3

(A3)

This result can easily be related to the binary vW poten-

pP Im
2 2

dcp=nN
0 ~ dd' ~0 ~dd'

With the same type of approximations, i.e., ydd small
compared with all characteristic frequencies, we have, us-
ing Eqs. (Al) and (A2),

e(~p) —1 e'
fdd

c, cop +1 m codd' coo

Hence Eq. (11) yields the expression

e ~0 1 1r(cpp)=2~N fdd
0 ~dd' dd' 0

I

2 1=27TN fddt
~dd'( ~P +~dd' )

By substituting this result into Eq. (13), with cop=co,„,we
find

7T8 1 1V(z)= —— N, g Ip,.I'fdd
Z „' d' ~dd'(~ '+~dd')

By introducing the oscillator strength f,„defined by the
relation

2 m 2fen'
3 z ~en' IP'en' I

3 A'e

we write V(z) in the form

Then, by summation over binary interactions between the
atom outside and all the atoms inside the dielectric
one obtains, for the constant C6, the relation C6
=(6/n )(1/N)C3, with C3 defined by the relation
V(z) = —C3/z . By extracting C3 from Eq. (A3) we thus
find

3C =—
6

e fen'f dd'

' d' ~ n'~dd'(e '+~dd')2
n,

3 e h fen'f dd'

2 m (277) n d &„»dd(&en +&dd )

This well-known result I29] has been widely used for cal-
culating vW constants for ground- and excited-state po-
tentials.

APPENDIX 8: APPROXIMATE CALCULATION
IN THK CASK OF MULTIPLE RESONANCES

We present a method that allows us to write the quan-
tity f (cp)=lmI(e —1)/(a+I)] as a sum of Lorentzian-
type shapes involving N resonances at frequencies Q„and
linewidth parameters I „,assuming that e(co) is represent-
ed by an expression of the type of Eq. (19). Our method
is valid in the case y„«co„, i.e., for narrow lines in the
spectrum of the dielectric. Starting from Eq. (19) we can
write

tial between two atoms at distance R, as given by the ex-
pression

C,
V (R)=—

F=(e—1)/(E+1)= CII(co„co i—y„cp—)+gf„coz g(c02 co2 iy—;co)—
n iAn

(C+2)II(co„co iy„67)—+yf—„cp„g(co, c02 I y, cp—)—'

n iPn

According to the approximation stated above we restrict ourselves in both the numerator and the denominator to
terms linear in the y„.This yields

cII( '. — ')+Xf. '. ll( '; — ') —c Xr.II( '; — ') — XXf. 'r II
n n iAn n iAn n iAn jXi j =n

x (c+2)II( '.— ')+Qf. .II(,' — ') —(c+2) gr. II( '; — ') — graf. '. r; II (,—
n n iAn n iWn n iAn jWi,jWn

If we write this expression in the form F = ( 2 i coB)/(D i coE), its i—magin—ary part is given by

co( AE BD)—
(D 2 +cp2E 2 )

Now we introduce the roots of the quantity e(co)+1 for the case y„=O and designate them as Q„. Then we obtain,
after some algebra, the expression

f (cp) =2co gy„ II(cp; co )gf„co„+—(co; c0 ) gg—f„co—„y; II (co —co ) II(cp„—cp )

n iAn

where the denominator

n iAn n iAn jAi jAn n

2)=(c+2) II(Q'„— ')'+ ' (c+2)gy„II(,'— ')+g g f„'„y; II (
n n iAn n iPn jAi,jAn

(B3)
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Finally, the numerator of the right-hand side of this expression can be further reduced so that we have

f (co)=2co gy„f„ro„'+(co2—co')' '

(84)
n iXn

With the assumption of small y„s, the damping term in the denominator of Eq. (84) can be considered to be small com-
pared to the distance between resonances as defined by the different values of Q„. Under this condition we can write
f (to) as the sum of N terms, each one describing a resonance centered at frequency Q„.The shape of each term can be
deduced easily from the structure of Eq. (84). Hence we can write

E~ co

~ (Q2 2)2+I 2 2f (co) ='V

where the parameters K„and I „are given by the expressions

2+y; f;ro, g(co Q„)—
i jwi

(C+2)2g(Q~ —Q~ )2

iWn

(C+2)gy;g(coj —Q„)+gf;co;gyj + (cok —Q„)
i jWi i jAi kXi, kXj

(C+2)g(Q; —Q„)
iXn

(85)
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