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Hyperspherical-coordinate approach to one-dimensional models of two-electron quantum systems
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The applicability and accuracy of the hyperspherical-coordinate method for the study of reduced-
dimensional models of two-electron atoms and ions is discussed. We have calculated excitation spectra
and ground-state wave functions and compared them with their exact values, and with the values ob-
tained within different modifications of the Hartree-Fock approach.
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I. INTRODUCTION

The theoretical treatment of multielectron systems is a
problem of central interest in atomic physics. Most of
our current understanding of the structure and behavior
of atomic systems stems from models which regard each
electron as moving in the combined field of the nucleus
and the average field of the other electrons. A sequence
of approaches has been developed to deal with interac-
tions and correlated behavior of atomic electrons. One of
them is the use of the Slater determinant introducing the
"Pauli correlations" which result from the indistin-
guishability of electrons. Correlated atomic electrons can
be described by superimposing wave functions construct-
ed from independent-electron models with coefFicients
that stabilize the mean value of the Hamiltonian under
first-order perturbations. Various kinds of such varia-
tional wave functions have been used extensively to ob-
tain information about two-electron energy levels and au-
toionization rates [1].

One consequence of electron correlation in helium was
discovered in 1963 in the observation of the series of dou-
bly excited 'Po levels by Madden and Codling [2]. These
results were first understood in terms of linear combina-
tions of 2snp and 2pns excited states by Cooper, Fano,
and Prats [3], and in more detail by other authors later
[4]. Significant progress was made in 1968 when Macek
suggested an alternative way to study the correlated
behavior of the two helium electrons by introducing the
hyperspherical basis [5]. He explained the observed large
differences of brightness and spectral width of various
Rydberg series, and unified the results of previous investi-
gations within his approach. Later the hyperspherical
method was applied to the study of three-particle scatter-
ing problems [6]. Recent work using the hyperspherical
approach to study two-electron systems has been devoted
to the behavior of the wave functions at large distances,
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the estimation of errors due to nonadiabaticity, and the
study of the analytic properties of the wave functions in
the vicinity of adiabatic level crossings [7]. Extensive
lists of references can be found in review articles by Fano
[8] and Lin [9].

There are rather few studies [10,11] that apply the hy-
perspherical method to the interaction of two-electron
systems with electromagnetic radiation. Klar, Zoller,
and Fedorov [10] showed how adiabatic potential curves
can be modified by laser light and predicted field-dressed
two-electron states. Abrashkevich and Shapiro [11]used
an artificial-channel method in the hyperspherical basis
to calculate the photoionization cross sections for the
negative hydrogen ion and for helium.

Reduced-dimension studies represent another way to
explore the complexity of two-electron quantum systems.
Such studies have been inspired by the possibility to solve
numerically the full time-dependent Schrodinger equa-
tion. Although the full three-dimensional (3D) problem
is beyond the capability of today's computers, important
information about the behavior of 3D systems can be ex-
tracted from the analysis of their 1D analogs. Reduced-
dimensional systems resemble in many of their features
the corresponding 3D systems and reproduce qualitative-
ly the dynamical properties of their 3D analogs. On the
other hand, reduced-dimension analysis cannot recover
those properties of the 3D system that depend crucially
on the angular degrees of freedom.

One-dimensional models have the strong advantage
that exact fully correlated wave functions can be comput-
ed numerically [12], and this allows for an unambiguous
test of the accuracy of approximation schemes [13]. The
efFects of single and double ionization of two-electron
atoms driven by strong fields have also been successfully
investigated both quantum mechanically [14,15] and
classically [16,17]. Methods which combine classical and
quantum-mechanical descriptions have been proposed to
describe the ionization of multielectron systems [18]. In-
formation about the structure of highly excited states [19]
and the dynamical behavior of autoionizing decay [20]
have been used to check the applicability of various types
of Hartree-Fock methods [13,20]. Some studies have led
to the discovery of phenomena [21] based on strong
electron-electron correlation, and to measures for the de-
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gree of electron-electron correlation [22].
The hyperspherical approach applied to two-electron

atoms does not have a well-defined small parameter justi-
fying the approach a priori as in the related Born-
Oppenheimer approximation for molecules. However,
the hyperspherical approach has provided one of the ma-
jor theoretical frameworks in atomic physics for the cal-
culation of bare energies, states, and oscillator strengths
of multielectron systems. Its success in three spatial di-
mensions is based on the large difference between the cor-
responding time scales for the fast interelectron motion
and the slow collective motion described by the hyper-
radius. It provides a natural framework for classification
schemes of singly and doubly excited states [9).

In this paper we investigate whether the hyperspheri-
cal approach can be applied to reduced-dimensional sys-
tems as well. We describe the static properties of 1D
two-electron systems and compare the energy-level posi-
tions found within the hyperspherical approach with
their exact values and also with values found from
different kinds of Hartree-Fock approximations. We find
that the hyperspherical approximation works remarkably
well even in one spatial dimension.
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II. THE MODEL
AND THE HYPERSPHERICAL COORDINATE

APPROXIMATION

.u.)

Let us begin with a brief description of our two-
electron system. It is characterized by a nucleus of posi-
tive charge Z fixed at the origin at x =0 and two elec-
trons whose spatial coordinates are x, and x2. Its bare
Hamiltonian is (in atomic units, a.u. )

FIG. 1. The total two-electron potential V(x &,x~ )
=ZV(x

& ) +ZV(x2 ) V(x ~ x2 ) as defined in Eq. (2.1) (a) as a
function of electron coordinates x& and x2,' and (b) as a function
of the hyperspherical coordinates R and a.

H'(x, x2) = + +ZV(x, )+ZV(x2) —V(x, —x2),
5'z

1 2 2 2

(2.1)

The energy eigenstates can be classified as having a
different spatial parity or being even or odd with respect
to the permutation of both electron coordinates:

where the soft-core Coulomb potential has been chosen
as

V(y) =— 1

y +1
(2.2)

This potential has been studied extensively in the one-
electron context, mostly for strong laser interactions [23],
and its behavior has proved remarkably useful. In the
present case it permits the two electrons to move past the
nucleus and past each other so the entire x axis is avail-
able for both electrons. In Fig. 1(a) we show the total
two-electron potential as a function of coordinates x, and
x2. The spine along the line x, =x2 indicates that it is
energetically not favored to find both electrons on the
same side of the nucleus. The potential, and thus the
bare Hamiltonian, is invariant under the two symmetry
operations:

H(x],x2)=H( —x„—x2), H(x],x2)=H(x2, x]) .

(2.3)

e(x],x2) =+%'( —x],—x2),
'u(x], x2) =+]Il(x2,x] ) .

(2.4)

Thus the time-independent Schrodinger equation for the
energies and eigenfunctions can be decomposed into four
independent subspaces. This property is important for
the applicability of the hyperspherical method described
below.

We introduce the hyperspherical coordinates R and a:
& —=Q(x, +x ~ ) and tana =x, /x2, (2.5)

where the hyperangle a describes the ratio of the dis-
tances from the nucleus to the electrons. Note that in the
one-dimensional case these coordinates are identical to
the usual polar coordinates with the angle a ranging from
0 to 2m. The hyperspherical coordinates are collective
coordinates for the electron pair and thus they are con-
venient for the description of strong electron-electron
correlation. In fact the Hamiltonian in hyperspherical
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the symmetry and asymptotic properties of the Hamil-
tonianH .

For small R the angular Hamiltonian H multiplied by
R tends to the sum of the a-kinetic energy operator plus
a constant negative potential:

0.4—

I ~ I I I I I ~ I I I ~ ~ I I ~ I I I I I I ~ I ~ I ~ I I ~

1R H ~—— —— (R~O) .
2 Ba~ 8

(2.13)

0-

Its spectrum is purely discrete due to the required period-
icity of the eigenfunctions. The lowest eigenvalue is
e, =

—,', and all other eigenenergies are pairwise degen-
erate: ez, =e2 +, =

—,'v —
—,
' (for v=1,2, 3, . . . ). Corre-

spondingly, the eigenenergies of H tend to plus or minus
infinity as R ~0:

1 v /2 —1/8
u&(R )~—,u2 (R)-u2, +, (R )~

8R R

(for v=1, 2, 3, . . . ) . (2.14)

For large R the spectrum of H is fourfold degenerate.
This is due to the fact that the effective potential in R H
has four minima, each of them corresponding to one of
the two electrons close to the nucleus [see Fig. 1(b)]. The
depth of these valleys tends to infinity with an increase of
radius R, corresponding to the fact that one of the elec-
trons is localized near the nucleus while the other one is
far away. The angular wave function can be localized in
any of these valleys and, as they become deeper with in-
creasing of R, the fourfold degeneracy of the levels be-
comes apparent. In the limit R ~ m the functions u, (R)
converge to the ionization thresholds. This can be seen
by rewriting H in terms of a variable y=aR, and as-
suming a large R while leaving y finite. In this limit H
becomes p /2+ V(y), which describes the core-electron
system in the absence of the other electron. Its bound-
state energies are exactly the ionization thresholds of the
corresponding two-electron system.

III. CLASSIFICATION OF BARE ENERGIES
AND EIGENSTATES

As we have mentioned above, the eigenstates can be
classified as having different spatial parity and symmetry

I
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I I ~ I
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I I I I
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[
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FIG. 3. The first four angular wave functions y„(R,a). The
value of the hyper-radius R is 3.5 a.u.

with respect to electron permutation, as in (2.4). A corre-
sponding classification is also possible for the potential
curves. In our (R,a) basis the action of the parity
operator (x„x2)~(—x&, —x2) corresponds to the
change a~a+ m, and the electron permutation
(x&,x2) —+(xz, x, ) is equivalent to the substitution
a~m/2 —a. The potential V(R, a) is invariant under
both transformations. The symmetries of the eigenfunc-
tions y (R,a) alternate with the increase of the state
number v, and therefore with the increase of the state en-

ergy u (R), as follows:

electron permutation (spin)

y, (R,a) =(p, (R, 7r/2 a)—
y2(R, a ) = —y2(R, m /2 —a )

qo, (R,a ) =qo, (R,~/2 c()—
p4(R, a) = —y&(R, n/2 —a)

spatial parity

and y, (R,a) =y, (R,a+ n. )

and y2(R, a)= y2(R, a+a)—
and qr3(R, a)= y3(R, a+a)—
and g4(R, a)=(p4(R, a+a)

(3.1a)
(3.1b)
(3.1c)
(3.Id)

The symmetry properties of every fourth one of the states

g (R,a) are identical. In Fig. 3 we display the four
lowest-lying angular wave functions calculated at the ra-
dius R =3.5. The energies of the states are determined
by the number of zeros they have and by the location of
these zeros with respect to the maxima and minima of the

potential V(R, a). The state y& has no zeros and has the
lowest energy. The states y2 and y3 have the same num-
ber of zeros but their location is different. The state y2 is
spatially asymmetric and has odd parity, and its zeros are
located at m/4 and 5m/4 where the potential has maxi-
ma. On the other hand the state y3 has its zeros near



51 HYPERSPHERICAL-COORDINATE APPROACH TO ONE-. . . 159

(
a2

g„(R,«) z q«(R, «)l «(R«) —««(R),
BR

q„(R,«) q„(R,«)l(&«„(R|—«„(R),a
BR

(3.2)

3~/4 and 7n/. 4 where the potential V(R, a) has low val-

leys between its two minima. For these reasons the ener-

gy of the odd-parity symmetric state y3 is higher than
that of the odd-parity asymmetric state y2. Analogous
arguments classify the higher-lying potential curves as
well.

The level classification is relevant in deciding whether
the hyperspherical approximation is appropriate for a
description of 1D two-electron systems. Indeed, the hy-
perspherical method described is applicable if the com-
mutator [right-hand side of Eq. (2.10)] can be ignored.
The condition for that requires that the energy separation
between potential curves is large enough compared to the
rate of change of the eigenfunctions y„(R,a) with respect
toR:

-0.5

-1.5-
l

-2-
O

-2.5

(23) =
(2,2)

Z=2 .

0 2 4 6 8 10
R (a.u. )

FIG. 4. The relevant lowest-lying He atom potential curves
for two-electron wave functions which are even with respect to
electron permutation. The energies of the ground state as well
as the first few singly and doubly excited states are also present-
ed. We have used independent-electron labels.

where absolute magnitudes are understood on both sides.
The larger the differences between the potential curves
u „(R), the better the reliability of the hyperspherical ap-
proach. Figure 2 indicates that both at small and large
values of R some potential curves become infinitely close
to each other. However, this does not lead to inapplica-
bility of our approach because these curves belong to
different symmetry classes and cannot interfere with each
other. The relevant potential curves that should be taken
into account in criterion (3.2) are those whose indices
differ by 4. Those curves are indeed well separated and,
in contrast to the 3D case, we did not find any avoided
level crossings for the lower-lying potential curves.

From now on we will restrict our analysis to spin
singlet states corresponding to wave functions that are
even under electron permutation. We discard from our
discussion every second potential curve and use the labels

n =1,2, 3, to enumerate the relevant potential curves
u„(R) from below.

In the remaining part of this section we will calculate
the . hyperspherical energies for a specific reduced-
dimensional two-electron system with a rich structure of
singly as well as doubly excited states. We will investi-
gate whether the excitation spectrum for 1D helium can
be predicted by the hyperspherical method and compare
it with its exact values. When substituted into the radial
equation, each potential curve u„(R) provides a set of
eigenstates for the total system. Each state is then
characterized by the number of the potential curve and
by the state number within this particular potential curve
(Fig. 4). It is important to note that one can identify
some of the states in the hyperspherical picture (n, m)
with the states enumerated by two principal quantum
numbers ( n &, n 2 ) in the independent-electron picture ap-

TABLE I. The lowest-lying states of the 1D helium atom. Note that, in general, sharp energies of
autoionizing states depend always on details of the approximation scheme used to couple bound states
to a continuum. The three autoionizing energies presented here (see the asterisks) were obtained by S.
L. Haan from a partitioned Hilbert-space diagonalization approach [20].

Exact
energy
(a.u. )

—2.238
—1.704
—1.626
—1.567
—1.545
—1.483

Hyperspherical
energy
(a.u. )

—2.185
—1.725
—1.629
—1.570
—1.542
—1.483

Classification
by independent-

electron
excitations

(1,1)
(1,2)
(1,'3)

(1,4)
(1,5)
(j., aa)

Potential-
curve

number

1

2
1

2
1

1 and 2

State No.
within

potential

—1.045*
—0.882*
—0.857*
—0.772

—1.085
—0.897
—0.864
—0.772

(2,2)
(2,3)
(2,4)
(2, ~)

3
4
3

3 and 4
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proach. The ground state of the lowest potential curve
u, (R) for 1D helium has an energy —2. 185 a.u. and is
naturally identified with the (1,1) ground state when both
"independent" electrons are not excited. The next
eigenenergy generated by the curve u, (R ) corresponds to
the second excited state (1,3) with energy —1.629 a.u.
Both of these states have even parity as both of them are
proportional to the same angular state y, (R,a). The
first excited state is calculated from the potential curve
u2(R). It has an energy —1.725 a.u. and is associated
with the state with one single-electron excitation (1,2).
The wave function of this state is odd with respect to
change of the electron coordinate signs. The second ex-
cited state found in the second potential curve u i(R) cor-
responds to the (1,4) excitation and its energy is —1.570
a.U.

The first autoionizing state, or in other words the (2,2)
state with both electrons excited, corresponds to the
lowest state generated by the third potential curve. It has
energy equal to —1.085 a.u. The first excited state
—0.864 a.u. in the third potential curve would be labeled
(2,4). Both of these autoionizing states have positive pari-
ty, while the lowest state in the fourth potential curve at
—0.897 a.u. was identified with the negative parity state
(2,3).

As was mentioned above, the hyperspherical method
yields exact values for the ionization thresholds. The po-
tential curves converge at large values of hyper-radius R
to the known [20] values of the ionization thresholds.
Table I compares the energies obtained within the hyper-
spherical method with their exact values and with the re-
sults of Hartree-Fock calculations and of a partitioned
Hilbert space diagonalization approach [20]. This quan-
titative comparison shows that the hyperspherical
method predicts remarkably accurately (error ( S%%uo ) the
excitation spectrum for the helium atom even in reduced
dimension. This accuracy is especially surprising in view
of the fact that in 1D the hyperspherical coordinates
reduce to simple polar coordinates.

IV. GROUND-STATE ENERGIES
AND WAVE FUNCTIONS

OBTAINED FROM VARIOUS
APPROXIMATION METHODS

In this section we present the ground-state wave func-
tions and energies as computed according to three
different approximation techniques. We focus on a com-
parison of the approximate ground-state energies and
wave functions with the exact ones obtained from direct
numerical computations.

Table II summarizes our results for the ground-state
energies of the first five ions of the isoelectronic series be-
ginning with H . The second column shows the energy
obtained from the hyperspherical coordinate approach
discussed in Sec. II. The third column reproduces the en-
ergies obtained from the Hartree-Fock (HF) approach in
which the functional form of the wave function is re-
stricted to a product of two identical single-electron or-
bitals: %(x „xz)=g(x, )g(x2). The fourth column is ob-
tained from an approximation method which is similar to

Z=1
Z=2
Z=3
Z=4
Z=5

—0.731
—2.238
—3.896
—5.615
—7.371

—0.726
—2.185
—3.797
—5.472
—7.187

—0.692
—2.224
—3.888
—5.610
—7.367

—0.656
—2.132
—3.752
—5.437
—7.162

'Values from Refs. [12]and [20].

the traditional HF method, but the product wave func-
tions are different and presented in the hyperspherical
coordinates: %(x&,x2)=R '~ F(R)G(a). The ques-
tions are whether this combination of hyperspherical
coordinates can lead to better results than traditional HF
calculations and how these two methods, the hyperspher-
ical method and the exact calculations, are related to
each other.

The ground states and their energies for both versions
of the HF method have been found by imaginary time in-
tegration of the HF equations. The equations of motion
for the HF wave functions F(R) and G (a) were found by
minimizing the time-dependent Raleigh-Ritz functional
for the HF wave functions F(R) and G(a) were found by
minimizing the time-dependent Rayleigh-Ritz functional
[24]. The general procedure for finding these equations is
as follows. Typically, the two-electron Hamiltonian has
the form H +H + V„and the HF approach requires us
to minimize the following functional:

(f(x)g(y)~ i +—H +II +V„~f(x)g(y)) . (4.1)
. a

We used two modifications of the HF method, with x and
y being either the usual electron coordinates x, and x2
[20] or hyperspherical coordinates R and a. In the
second case the resulting equations of motion for
%(R,a)=R ' F(R)G(a) are

a = 1a'
i F(R)= —— ~F(R)+(G(u)~V(R, a)~G(a))F(R),

2 g~~ (4.2)

i G(a) = ——(F(R ) ~R ~F(R ) ) G(a)1 —2

at 2 Bcx

+ (G(a)
~
V(R, a)

~
G(a) )F(R) .

They have been integrated numerically on an (R,a) grid
with 1024X256 points with hyper-radius R ranging from
0 to 30 a.u. If we substitute the time t by an imaginary
time then any initial state in F and R will relax into the
state of lowest possible energy (for more details, see [12]).
The ground-state energies obtained are presented in
Table II together with the results of the usual HF ap-
proach, the hyperspherical method, and the exact ener-
gies.

By examining the predicted ground-state energies for
all five one-dimensional two-electron systems, we con-
clude that the hyperspherical approach provides surpris-
ing accuracy. This accuracy seems even to increase with
increasing electron correlation (decreasing Z). The hy-

TABLE II. Ground-state energies (a.u. ) of the isoelectronic
series of 1D two-electron ions beginning with H

Energy levels

Nuclear Hartree-Fock' Hartree-Fock
charge Exact Hyperspherical x &,x2 R,a
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perspherical method is accurate within 0.6% for the neg-
ative hydrogen ion, and the accuracy decreases slightly to
2.3% for the helium atom. Note that in the hydrogen ion
the correlation of the two electrons is more important
than it is in helium. When the nuclear charge becomes
larger, the accuracy of the method (estimated by the
values of the ground-state energy predicted) decreases to
2.5%, which is comparable to the HF method accuracy
in (R,a).

The accuracy found for Z =1 in three spatial dimen-
sions is also known to be excellent. Using the adiabatic
approximation (only one-channel functions) for the 3D
H ground level energy one obtains —0.5273 a.u.
( —0.5277. . . a.u. is exact).

So far we have restricted our discussion to energies. In
the following we will also analyze the eigenfunctions. We
focus on the negative hydrogen ion and compare the spa-
tial electron-density distribution of its ground state as
computed in four different ways: through the approxi-
mate methods mentioned above and via the exact one.
The logarithmic contour plots are presented in Fig. 5.
For comparison we have included the contour plot of the
exact ground state in Fig. 5(a). Figure 5(b} shows the
state as computed by the hyperspherical approximation.
The agreement between both states is especially impres-
sive for larger values of the hyper-radius R. For smaller
values of R the hyperspherical state develops two maxi-
ma, corresponding to both electrons localized on opposite
sides of the nucleus. This illustrates again that the hyper-
spherical method can exaggerate the importance of elec-
tron correlation.

In order to make a supplementary evaluation of the
quality of the hyperspherical state we have also calculat-
ed the expectation value of the (exact) Hamiltonian (2.6)
in this state. The expectation value obtained was 0.69
a.u. which difFers by only 5% from the exact value.

The HF wave function calculated in (x„xz) coordi-
nates [Fig. 5(c)] shows more correlation and gives a better
approximation to the exact wave function than the HF
ground-state wave function calculated in coordinates
(R,a) [Fig. 5(d)]. The original two-electron Hamiltonian
H(xt, x2) can be decomposed into a sum of two one-
electron Hamiltonians plus a correction term:
H(x, )+H(x2)+C(x„xz). The optimum correction
term C(x „xz ) can depend on the state as well as on the
coordinate system. Good values of the HF ground-state
energies obtained in (x„x2) indicate that the two-
electron correction term C(x„x2) for the ground state is
small. In the hyperspherical coordinates the correspond-
ing correction term in HJt(R )+H (a)+C(R, a) seems
to be larger. The a dependence of V(R, a} is very
different at various values of R. This decreases the accu-
racy of the HF approximation in the hyperspherical coor-
dinates. Indeed the HF-method assumption that the
wave function has the form of a product of functions de-
pending either on R or on a, %(R,a)
=R '~ F(R)G(a), cannot give a good approximation to
the exact ground-state wave function at all values of R.
The radial wave function F(R ) has the wrong asymptotic
behavior at small values of the hyper-radius: it tends to
zero too fast such that the total wave function
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V(R, a) =R '~ F(R)G(a) is zero at the origin. The spa-
tial distribution associated with the hyperspherical HF
wave function has two shallow maxima corresponding to
the two electrons located on the opposite sides of the nu-
cleus.

The hyperspherical method, on the other hand, is
based on adiabatic quasiseparability in R and u, and this
is different from the HF assumption of complete indepen-
dence in R and e. Let us also mention that the hyper-
spherical wave function gives the best agreement with the
exact one. The qualitatively accurate representation of
the atomic wave functions within the hyperspherical ap-
proach can be important for the collective response of the
two electrons to the action of light. We hope to return to
this topic in the future.

V. DISCUSSION AND CONCLUSIONS

We have tested whether the hyperspherical approach
can be applied for reduced-dimensional two-electron sys-
tems. We have compared several hyperspherical energies
for various 1D atoms and ions with their exact values,
and found that this method works and that it even gives a
remarkable accuracy. The applicability of the hyper-
spherical approach to one-dimensional systems is sug-
gested by the symmetry properties with respect to parity
and electron permutation. It follows from these sym-
metries that those potential curves which might contrib-

FIG. 5. Contour plot of the spatial distribution of the exact
ground state ~%' (x&,x2)

~
of the negative ion (Z =1)compared

to that calculated within three different approximation schemes.
The eight contours shown in the figure correspond to

~ %g (x „xz ) ~

= 10 ', for c =2, 2. 5, 3, . . . , 5.5. (a) Exact electron
density distribution. (b) Hyperspherical approximation
~R

' f(R)4(R, a)~ . (c) Hartree-Fock approximation
lg(xi)g(xz)l . (d) Hyperspherically modified Hartree-Fock ap-
proximation ~R

'~ F(R)G(a)~ .
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ute to the nonadiabatic coupling are separated by at least
three other potential curves and have different asymptot-
ic behavior at both small and large values of hyper-radius
R. This suggests that each potential curve is only weakly
coupled to other potential curves.

The results for the ground-state energies indicate in-
teresting features of the hyperspherical method in one
spatial dimension: the accuracy of the hyperspherical
method increases with the increase of electron-electron
correlation, or equivalently, with the decrease of the nu-
clear charge Z. This feature is opposite to the behavior
of HF-like calculations in 1D which are more accurate
for ground-state energies of atoms with Z ~2. We also
compared the spatial distribution of the ground state ob-
tained within different approaches, and found that the
hyperspherical method exaggerates the profile shaping of
the ground-state wave function associated with the elec-
tron correlation. To the contrary, the Hartree-Fock-like
methods provide the wave functions with a rounder
shape than it should have. We conclude that the hyper-
spherical method and the Hartree-Fock method are com-
plementary to each other in the shape of the probability
distribution they produce and in their applicability.

We also compared two versions of the HF approxima-
tion scheme: one applied in polar and the other one in
Cartesian coordinates. The (x„x2) form of the HF ap-
proach gives a better approximation to ground-state ener-

gies and wave functions than its polar coordinate version.
This suggests that the Hamiltonian is less separable for
the ground state in polar coordinates than in Cartesian
coordinates.

The overall good reliability of the hyperspherical ap-
proximation in one dimension justifies a further explora-
tion of 1D two-electron systems into regions of very
high-lying singly and doubly excited states for which ex-
act numerical computations are beyond the present capa-
bilities of supercomputers. This approach might prove
quite valuable especially in studies of strong-field interac-
tions in which the induced level shifts and widths exceed
the error uncertainty due to the hyperspherical approxi-
mation. We will return to this project in another note.
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