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Spatiotemporal dynamics of coupled-transverse-mode oscillations
in unidirectional photorefractive ring resonators
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We examine the spatiotemporal dynamics of the optical field that arises from two-wave mixing in a
multiple-transverse-mode unidirectional photorefractive ring resonator. Using the passive resonator s

transverse modes as a basis, we derive a set of difFerential equations that describes the mode dynamics
when both pump-mode and mode-mode gratings are formed. In the absence of intermodal gratings, this
set reduces to the Hopf bifurcation equations for nonlinear mode interactions. We have performed two
and three transverse-mode experiments using a photorefractive ring resonator with an Fe:KNb03 crys-
tal. Numerically simulated coupled-mode dynamics are shown to have good correspondence with the
experimental data.

PACS number(s): 42.50.Ne, 42.65.Hw, 05.45.+b

I. INTRODUCTION

There is much current interest in the spatiotemporal
dynamics of optical phenomena, both to develop an un-
derstanding of them and to determine their significance
in applications. In particular, the spatiotemporal dynam-
ics of optical oscillations in photorefractive [1—11] and
laser [12—16] resonators have recently received consider-
able attention. The analyses of these systems have
demonstrated many interesting phenomena, including
periodic and chaotic mode alternation, optical defect dy-
namics, and general spatiotemporal complexity.

Oscillations develop in a unidirectional photorefractive
ring resonator (UPRR) when light from a laser is used to
pump a photorefractive crystal within an optical cavity
[17]. The resonator beam interferes with the pump beam
inside the crystal and, when the crystal is properly orient-
ed, the resulting interference pattern creates index of re-
fraction variations that refract pump light into the reso-
nator. Consequently, the resonator field grows until satu-
ration effects balance the amplification. As in the laser,
the spatial pattern of the oscillations depends on the
geometry of the optical cavity and the characteristics of
the active medium.

Experiments by Arecchi et al. [5—7] and Hennequin
et al. [8] have demonstrated many of the interesting as-
pects of multiple-transverse-mode oscillations in a
UPRR. For example, Arecchi et al. have obtained
periodic and chaotic mode alternation and spatiotem-
porally chaotic optical vortex distributions. Spatiotem-
poral chaos was shown to occur in the large Fresnel num-
ber limit [5] and scaling exponents for various quantities
related to the observed optical defects were calculated
from the experimental data [6]. Hennequin et al. [8]
have demonstrated that periodic two-mode mixing occurs
in UPRRs, both with frequency degenerate families and

with nondegenerate families of modes. These and similar
results reported in the present work indicate the extent to
which mode coupling influences UPRR dynamics.

A basic theoretical description of multiple-mode
UPRR dynamics was first given by Anderson and Saxena
[2], who showed that there was stronger mode competi-
tion between modes with similar transverse distributions
than those with dissimilar distributions. Arecchi et al.
[7] have shown that periodic and chaotic alternation in
UPRRs with circular apertures can arise from an imper-
fect O(2) symmetry. A multiple-mode analysis that
neglects intermodal gratings but retains mode coupling
through a projection of the modes onto the refractive in-
dex grating has been developed by D'Alessandro [9]. Nu-
merical evaluations from this analysis were able to
demonstrate some of the spatiotemporal effects observed
in the experiments by Arecchi et al. [5,6]; however, the
general spatiotemporal complexity observed in the exper-
iments could only be duplicated with parameter values
that were inconsistent with the assumptions of the
analysis. Recently, Jost and Saleh [10] have shown that
the nonlinear spatiotemporal oscillations in a UPRR are
governed by a complex Ginzburg-Landau equation, thus
the UPRR may be a useful system for the general study
of the spatiotemporal dynamics of complex fields.

In this paper, we examine the effects of intermodal
gratings on the spatiotemporal dynamics of multiple-
transverse-mode UPRR oscillations. In Sec. II we gen-
eralize the work of Anderson and Saxena [2] and
D'Alessandro [9] to include intermodal gratings in the
coupled-mode equations that govern the optical field and
refractive index gratings amplitudes. Additional distinc-
tions from previous analyses are that we include the
effects of the photorefractive time constant's total intensi-
ty dependence, and we retain the time constant's and the
coupling constant's complex forms. These two constants
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are complex when there is either an applied dc field
across the photorefractive crystal or when photovoltaic
effects are substantial. In Sec. III we present examples of
the field and grating dynamics obtained from the numeri-
cal integration of the coupled equations. Section IV de-
scribes UPRR experiments performed using an
Fe:KNb03 (iron-doped potassium niobate) crystal. This
section provides detailed reports on the transverse-mode
dynamics in a UPRR without an applied electric field
across the crystal. The spatiotemporal data from the ex-
periments are shown to be in general agreement with the
theoretical description of Sec. III. We summarize and
discuss our results in Sec. V.

and

f W, (r) Wk" (r)dS =S~5,k,Sc
(2.2b)

where I.z and S& are the cavity length and cross section,
respectively, and L,1 and S1 are the Ith cavity mode's
length and cross-section normalization constants, respec-
tively.

We consider the uniform (mean) field limit
[2,7,9,10,12,15,17], where the cavity gain and losses are
sufticiently small that slowly varying longitudinal varia-
tions of the resonator modes can be neglected. Hence the
active resonator field can be written

II. COUPLED-MODE EQUATIONS
E& (r, t ) =g I eI VI(t) WI(r)exp[i(kI r —~&t ) ] +c

1

We consider the unidirectional UPRR configuration
shown in Fig. 1. The resonator contains a photorefrac-
tive crystal illuminated with an undepleted uniform
pump beam described by its electric field

Ep(r, t)=epEp exp[i(kz r cozt)]—+c.c. , (2.1)

where e~ is the pump polarization vector, EI, is the com-
plex pump field amplitude, and k~ and co& are the pump
beam wave vector and frequency, respectively. We have
chosen a spatially uniform pump to simplify our analysis;
however, a nonuniform pump is expected to affect the
spatiotemporal dynamics [10].

The active resonator field is assumed to comprise a
complete set of passive cavity modes. Modal decomposi-
tion has been used in numerous theoretical resonator
analyses [2,4, 7—9, 11,12, 14] and has shown good
correspondence with experimental results. We write the
modes as general complex amplitude spatial functions
e& W&(r)exp(ik& r) where 8'&(r) is the slowly varying
complex spatial amplitude of the 1th passive cavity mode,
k1 is its corresponding wave vector, and e1 is its polariza-
tion vector. These functions are chosen to have unity
maximum magnitude; that is, they are normalized to
have maxI W&(r)I =1. Also, they are assumed to satisfy
the normalization conditions

I(r, t ) = —,
' [E~(r, t )+E~ (r, t ) ]

=Io(t) +I, (r, t ),
where

(2.4)

(2.3)

where VI(t) is a slowly varying temporal envelope, and
each l corresponds to a unique set of integers (m&, n&, qI )

with m1, n1 denoting the transverse-mode structure and q1
denoting the longitudinal mode. In addition,
k&

= Ikr I
=&&V'poe where kr and 0& are, respectively, the

wave number and oscillation frequency of the Ith passive
cavity mode with Q1=coz,' and po and e are the linear
permeability and permittivity of the medium. We assume
that the resonator beam travels along the z axis; the
pump and resonator beams are linearly polarized perpen-
dicular to the photorefractive material's crystal axis and
they are propagating at small angles to one another; and
that the active mode frequencies are nearly equal to the
pump frequency with any differences between them small
enough to be included in the slowly varying complex am-
plitudes of the resonator beam.

An optical intensity pattern is formed within the crys-
tal by the interference between the pump and resonator
beams,

exp(ikI r)exp( i kk. r)dl —=L&5&k
Lc

(2.2a) I,(t)=IE,I'+y IV, (r) ' (2.5)

and
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FIG. 1. The experimental configuration for the unidirection-
al photorefractive ring resonator.

with K„=kz—k„,K1„=k1—k„,and all beams are as-
sumed parallel polarized. Also, we have neglected terms
with a 2cuz time dependence because they are not expect-
ed to be supported by the resonator [2].

To make the analysis tractable, we have assumed that
the spatial intensity maxima of the modes overlap in the
same location and we have used the maximum value of
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3
a 1 . Vns reff+ bn(r, t)=i I, (r, t),
Bt r( t 2m~ Ip

(2.7)

where

(t)
r(t) = [(E„+Ed)(E +Ed )+Ep

(E +Ed ) +Ep

+iEp(E„E)]—
is the intensity-dependent complex time constant,

(2.8)

the mode amplitude
~
W&~=1 in place of the spatially

varying amplitude
~
Wi(r)~ in the expression for Ip(t).

The latter simplification is reasonable because Ip(t) deter-
mines the saturation value of each mode's amplitude.
Since each mode has a spatial intensity that is fixed as a
function of location relative to any other point on its
wave front, the saturation of one point on the wave front
within the amplifying medium —that with the highest
intensity —wiH determine the saturated intensity of the
entire modal wave front. The former approximation on
the mode overlap location may alter the particular mode
amplitudes relative to the case in which the full spatial
variations are taken into account; however, we expect the
general nature of the results to remain unchanged.

The refractive index change An is related to the modu-
lated intensity I, through the differential equation [17,18)

assume that the external field and the intensity ratio satis-
fy the two conditions for our analysis. As a consequence,
the refractive index variation can be expanded in the
same subset of modes as the field distribution. Thus we
write the refractive index in the form of the intensity dis-
tribution

bn(r, t)=g [G (t)W (r)exp[i(K r)]+c.c. ]

+g g [Gp (t)Wp(r)W'(r)
m pram

X exp[i(Kp .r)]+c.c.], (2.10)

where

where G (t) W (r) is the pump-mode coupling contribu-
tion, and Gp (t)Wp(r)W*(r) is the mode-mode coupling
contribution to the refractive index change's slowly vary-
ing spatiotemporal amplitude.

Substituting Eqs. (2.6) and (2.10) into Eq. (2.7), and
matching wave numbers so that K&=K„for l =n and
IC „=IC~&for l =num =p, we obtain the equations for
the nth and mnth slowly varying index grating com-
ponents

dG„(t)=D. V."(t)+I'. IEp I'+y
I
Vil' G. (t),

y =
2 2 [Ed(Eq +Ed ) Ep(EU Ep )

(E +Ed) +Ep

+i [E (E, —Ep)+EdE„]j

D„=iEpI„, (2.12a)

(2.12b)

(2.9)

is the complex coupling constant, and r, =rIp/Ip is the
complex photorefractive time constant. This equation
has been obtained from a reduced set [10,17] of the
Kukhtarev equations [19]. In Eqs. (2.8) and (2.9), Ep is
the total external dc electric field, E„is the photovoltaic
field, Ed -Ez is the diffusion field, E —1/Kz is the lim-
iting space-charge field, E„—1/Ez. is the drift field, and
rt —1/Ip is the photoproduction time. Note that Kz is
equivalent to K„orK&„depending on the context and
that r(t) and y are mode dependent even though we do
not explicitly indicate it here. Also, we have defined the
complex photorefractive time constant r, =r(t)Ip(t)/Ip
since r( t )- 1/Ip( t )

We desire an explicit solution for the refractive index
change in Eq. (2.7) and, under certain conditions, a rela-
tively simple form is possible. First, for d~/dt &(1, the
solution to Eq. (2.7) is space-time separable [17,18].
Second, recent steady-state studies indicate that when the
external field is small (Ep «10 kVcm ') and there is a
relatively large probe-to-pump ratio [approximately
1))(Ip Ip)/Ip ))0—.01], the refractive index distribu-
tion within the photorefractive crystal is approximately
proportional to the optical intensity distribution [20].
Note that when these conditions are violated, the refrac-
tive index distribution becomes spatially distorted (rela-
tive to the intensity) and the index may contain longitudi-
nal variations that invalidate the uniform field limit. %'e

with I „=y„n,r, tt/2Ipr, „,n, the static refractive index,
and r,ff the effective electro-optic coefficient of the pho-
torefractive material. For m An,

dG „(t)=D „V„*(t)V (t)
dt

+Z „JE,/'+g JV, J' G „(t),
I

(2.13)

where

D „=t'II „,„,
Fmn

~P +emn

(2.14a)

(2.14b)

with I „=y„n,r,ff/2I+~, „.Also, we have now ex-
plicitly shown the mode dependences of all the relevant
constants. In our model, modes which have significantly
smaller values of I „and I

„

than the others are simply
expected not to oscillate and can be excluded from con-
sideration.

In general, significant intermodal gratings do not re-
quire K„to be parallel to K „,since the change in the
refractive index depends on the orientation of the grating
vector with respect to the crystal directions having a
large electro-optic coefficient. The crystal may not be
aligned for maximum index change in conjunction with
K„.Nor does it require K„=E„,since the index
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change can increase with decreasing angle between beams
when there is an applied electric field [21] or when photo-
voltaic effects are significant. This is important because
K „((K„dueto the angular dependences of the wave
vectors and because the index change typically decreases
with decreasing grating wave number in the absence of
bulk electric field eff'ects [21].

For simplicity, we consider a photorefractive medium
that has a single axis having a strong electro-optic
coefficient and that it is aligned with the crystal axis. In
the pump-mode interaction, we assume that energy is
unidirectionally given up by the pump to the mode beam,
i.e., in the direction of the grating vector (taken to be ap-
proximately aligned with the crystal axis). In the mode-
mode interaction, we assume that there is a mutual ener-

gy exchange [22] between the modes with 1 „=I
This bidirectionality of the energy exchange between
modes permits coupled-mode oscillations when there are
intermodal refractive index gratings.

We consider a cavity with longitudinal losses due to
cavity imperfections that are described by the loss
coefficient aL. Hence the resonator field must satisfy the
wave equation [10,17]

aL BE~ 0 E~
V Ez ")/poe po~

277 at Bt

1 8 PNL
V( V 'PNi. ) +Po

Bt

pn= 8' r 8'„*r
n n c c

X exp[i(k —k„)r]dS dl,
where p„=l, /Lc is a filling factor, and

(2.18c)

f IIV (r)l'IIV. (r)l'dS .
E'„Sn c

(2.18d)

du„(t)
dt

=a„u„(t)+b„g„'(t)+g c „u (t)g*„(t),
mWn

(2.19)

dg„(t)=d„v„*(t)+f„1++ Iv)(t)l g„(t), (2.20)

and for mAn

d —g „(t)=d „u (t)u„*(t)
dt

We note that the coupling coefficient Eq. (2.18d) is of the
same form as the two-mode steady-state coupling
coefficient calculated in Ref. [2].

A suitable normalization for the study of Eqs. (2.11),
(2.13), and (2.17) is obtained by letting u„=V„/Ep,
g„=G„/It, and g „=G

„

/Ii, where Ii, = IE~ . Conse-
quently, these equations become

(2.15)

where

PNi(r, t) =2eo[E~(r, t)+Ez(r, t )]6n(r, t ) (2.16)

with

is the nonlinear polarization of the cavity medium. We
see that PNL comprises modal amplitude spatial functions
through Ez. Thus a projection procedure can be used to
simplify Eq. (2.15).

Substituting Eqs. (2.3) and (2.16) into Eq. (2.15), using
the slowly varying envelope and mean field approxima-
tions, multiplying by E~, integrating over the cavity
volume, and matching phases on both sides of the result-
ing equation, we obtain the cavity field equation

dV„(t)= A„V„(t)+B„G„*(t)+g C „V(t)G"„(t),
dt mWn

(2.17)

+f „1++lu, (t)l g „(t),
1

where

a n

C
(aL„+ia T„)—i( Q„—(o~ ),

4m

COpb„=iIp pn,
E

d„=iI„,
and

7

cn

d „=iII

+cmn

c „=i f W (r)l'IIV„(r)l'dS,6'„S„

(2.21)

(2.22a)

(2.22b)

(2.22c)

(2.22d)

(2.22e)

(2.22f)

(2.22g)
C

( „aLi+aT„)—i(Q„—(op ),4~
(2.18a)

COpB„=iEp pn,
E~

(2.18b)

where the mode-dependent longitudinal and transverse
loss coefficients nL„and aT„,respectively, have been in-
troduced; and aT„hasbeen obtained from the projection
procedure. The other coefficients are defined by

For N transverse optical modes generating N+(N, 2) (bi-
nomial coefficient) gratings, Eqs. (2. 19)—(2.21) define the
N +N complex, coupled, nonlinear ordinary differential
equations necessary for the description of coupled-mode
UPRR dynamics. This is the main result of our analysis.

In the absence of intermodal gratings we can neglect
Eq. (2.21) and when Ir I

« Ir, I
we can adiabatically

eliminate Eq. (2.19) [10,17] so that Eqs. (2. 19)—(2.21)
reduce to
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dv„(t) b„f„"— "d„'v„(r)+f„'v„(r)g ~v, (r)~'.
Cln I

(2.23)

TABLE I. Values of the Hermite-Gaussian mode coupling
integrals, I „,which are defined by Eq. (3.1).

This is the normal form equation for Hopf bifurcations in
nonlinear mode interactions, which has been extensively
examined [23].

When small geometrical asymmetries exist in an other-
wise circularly symmetric cavity, a perturbation term
equal to g &„E„u (t), where s

„

is a small mode-
dependent complex constant, is added to the right-hand
side of Eq. (2.23) [7,23]. In this case, we obtain the bro-
ken symmetry Hopf bifurcation equation. Although the
set of coupled-mode equations in general does not reduce
to the broken symmetry Hopf equation, it is likely that
intermodal gratings have an effect that is similar to
geometrical asymmetries.

With the full coupled set [Eqs. (2. 19)—(2.21)], one can
still adiabatically eliminate Eq. (2.19) [9,10,17]. This
reduces the phase space variables to g„(t)and g „(r).
However, because of the coupling term on the right-hand
side of Eq. (2.19), adiabatic elimination does not lead to a
significant simplification of the governing equations even
if the mode coupling is weak. Consequently, further ex-
aminations consider the full set of coupled-mode equa-
tions.

X

0.3398
0.2855
0.2559

0.2500
X

0.3331
0.2815

0.1875
0.2973

X

0.3263

0.1563
0.2336
0.3034

X

1(r, r)= g co„(xy)exp[i/„(r)]a„(t)exp[i8„(t)]

=g ~„'(x,y)a„'(r)

+ g ~„(x,y)~ (x,y)a„(t)a (r)
n, mWn

even if they have relatively large differences in their loss
coeScients.

To determine the physical significance of our results,
we write u„(t)=a„(t)exp[i8„(t)]where a„and 8„are
real. The total normalized intensity at the output of the
resonator can then be written

III. NUMERICAL EVALUATION X cos[b 8„(t)+b P„(r)], (3.2)

Imn Hom x~y Hon x
n c

Xexp[ —2(x +y )/JYo]dg (3,1)

that appear in Eq. (2.22c). These coefficients were calcu-
lated assuming that the Hermite-Gaussian modes are
aligned along the resonator's axis and normalized to uni-
ty maximum value. In the absence of mode coupling,
c n-I n

=0 and one mode always dominates in our
simulations of Eqs. (2. 19)—(2.21). By including the
effects of intermodal gratings in our model, we have
found that multiple modes can coexist in the resonator

We have evaluated the coupled-mode equations [Eqs.
(2. 19)—(2.21)] by numerically integrating them with the
stiff differential equation solver of the advanced continu-
ous simulation language [24]. In our simulations, we
have calculated the mode coupling coef5cients by assum-
ing the occurrence of a few low-order Hermite-Gaussian
modes within the resonator (this choice of modes is not
critical to the outcome of the simulations). In particular,
we consider modes limited in one dimension to the funda-
mental mode of the resonator. We also assume that only
one family of longitudinal modes can exist in the resona-
tor. Consequently, the modes can be written
W„(r)=co„(x,y)exp[i/„(r)] where co„and P„are real
and co„(x,y) =Ho„(x,y)exp[ —(x +y )/Wo] with Wo
the beam waist. H

„

is the label for the Herrnite-
Gaussian function with m and n integers that denote the
spatial structure in the x and y directions, respectively.

Table I provides examples of the coupling integrals

where the intermodal phase differences are
b8 „(t)=8„(t)—8 (t) and bP„(r)=P„(r)—P (r).
The final term in Eq. (3.2) is an interference term whose
contribution to the total intensity depends on both the
amplitudes of the modes and their phase differences as a
function of time and space. For Hermite-Gaussian
modes in a cavity with a large Rayleigh range zo )&I.c,
b.P„ is negligible; hence we will neglect it in our analy-
ses. In general, ~cos[b8„(t)]~can be expected to vary
from 0 to 1.

A. Two modes

In this section, we consider a UPRR that is limited to
having only the Hoo and Ho& Hermite-Gaussian modes in
oscillation. We present an example from our simulations
and we surnrnarize some of the general trends we have
found.

In our model, we have found that two-mode intensity
oscillations of the form shown in Fig. 2 may occur. Fig-
ure 2(a), which shows the variations in the peak intensi-
ties of the two modes, demonstrates the effects of two-
mode coupling in this case. We show how these mode in-
tensities vary with respect to each other in Fig. 2(b). We
find that the intensities evolve toward a limit cycle attrac-
tor.

The effects of the interference term appearing in Eq.
(3.2) are most easily determined from a plot of
~cos[b8O&(t)] ~

versus the intensity of one of the modes as
shown in Fig. 3. We find that ~cos[680&(t)]~ varies from
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nearly zero at the minima and maxima of the mode inten-
sity variations to a value near 0.7 in the middle region of
the curve. When the modes are at nearly the same inten-
sity, this term is approximately 0.62. The interference
term adds the most to the total intensity when the two
modes are the same intensity and the least when the
modes are at their minima or maxima. This is typical
behavior for a dynamical system that oscillates between
two complex variables.

The spatiotemporal evolution of the transverse intensi-
ty distribution as a function of time is shown in Fig. 4.
We have selected a short time segment that includes os-
cillations from one mode to the other and back again, as
seen in Fig. 2. We have found that the two modes mix in
a specific manner, as can be observed from the sequence
we have shown.

Finally, through numerous numerical simulations we
have observed the following trends from our model.

(i) If a„„anda„,are substantially different for two
modes, the modes no longer exchange large amounts of
energy and their intensities vary only slightly. In some
cases, we have also found a reduction of the contribution
from the interference term in Eq. (3.2) when a„„)a „and
a„;=a;.This may correspond to the experimental re-
sult of Hennequin et al. [8], who found that the interfer-
ence term did not provide a significant contribution to
the total resonator intensity for certain two-mode com-
binations that have a significant difference in their losses.

(ii) As d „,becomes much greater than d„,the mode
alternation proceeds more rapidly. This is due to the in-
crease in the mode coupling, which allows more rapid en-
ergy transfer. For d „!approximately equal to or
greater than !d„andwhen!r, „!is slightly smaller than
!r,„!,two-mode coupling will occur. Consequently, very
large applied or photovoltaic fields are not necessary to
achieve mode coupling.

(iii) If!r, „becomes much smaller than!r,„!intensity
spiking occurs. In this case both modes simultaneously
become large, decay, and then grow again in a repeated
process.

B. Three modes

C3
C3

C3
0. 00 0. 04 0. 08 0. 12 0. 16

FICr. 2. (a) Oscillations of the intensities of the Hoo mode
~vp (solid line) and the Ho, mode ~vI ~

(short-dashed line) as a
function of normalized time. (b) Intensity ~v, ~

vs ~vP showing
the attracting limit cycle. Parameters values are representative
of those for a UPRR containing a KNb03 crystal:
ao= —1.6X10 —i1.6X10 s ', al = —1.601X10 —i1.61X10
s ', ho =b& =i92S X 10' %'s ' cm, co, =i2.313X10'
W's 'cm, clo=i3 143X10' Ws 'cm, do=d& =1 0
X10 +i4.0X10 cm W 's ', doI =dI0=4do, fo=f,= —1.25+ i l.25 X 10 ' s ', and fOI

=fIo
=f 0 /2.

In order to determine mode coupling effects on a large
number of modes, we have examined the three-mode dy-
namics as a special case. In this case, we consider a
UPRR that is limited to having only the Hoo, H, o, and
H2o Hermite-Gaussian modes in oscillation. An example
of the time dynamics possible with three-mode coupling,
and multiple-mode oscillations in general, is shown in
Figs. 5(a) and 5(b).

The spatial intensity distribution in the three-mode
case at two times is shown in Fig. 6. We have found that
the intensity variations in these distributions are not as
distinct as in the two-mode case. This is due to the
simultaneous overlap of the multiple modes, which tends
to obscure some of the interference effects. It also leads
to the central beam location having a higher average in-
tensity than the off-axis regions, since two of the modes
have large central beam amplitudes.

In other numerical simulations, we have found that
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FIG. 3. The magnitude of the intermodal
phase difference ~cosh 80, (t) ~

vs the intensity of
the Hoo mode,

~ vo ~, for the same parameter
values used to obtain Figs. 2(a) and 2(b). A
similar plot results if ~vo~ is replaced by ~v, ~

for the abscissa.

~ ~ ~ ~ ~ ~

CO0
V C) ~ ~ ~ ~

~ ~ ~ ~ I ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ P ~ ~ ~ ~ I ~0 '* ~ ~ ~ ~ ~ ~ ~
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0.00 0.080. 04 0. 12 0. 16 0 ~ 20

three modes can coexist even if they have a fairly large
difference in their loss coefBcients. Simulations run
without intermodal gratings indicate that this will not
occur. Consequently, in our model, intermodal gratings
permit the simultaneous multiple-transverse-mode oscil-
lations in UPRRs.

and nearly uniform beam from an argon ion laser operat-
ing at 514.5 nm. The pump power density was approxi-
mately 50 mWcm at the crystal surface. The pump
and resonator beams made an angle of 30 . The cavity
was 150 cm long and contained a lens with a focal length
of 100 cm to stabilize the optical oscillations. To limit
the resonator oscillations to only a few modes, we placed
an adjustable rectangular aperture inside the cavity. Spa-
tiotemporal data were obtained by placing a charge cou-
pled device (CCD) array camera at the output and
recording the results on a videotape.

The resonator losses, which were measured to be ap-
proximately 40%%uo, were dominated by the reAection and
absorption losses at the photorefractive crystal. The par-
tially transmitting mirror reduced the resonator intensity
by less than 5%. Consequently, the mean field approxi-

IV. EXPERIMENTAL RESULTS

Multiple-mode UPRR experiments were performed us-
ing the setup shown in Fig. 1. An Fe:KNb03 crystal,
which is photovoltaic, was used as the gain medium. In
conjunction with our theoretical model, we attribute the
occurrence of the strong mode coupling to the photovol-
taic electric field.

The crystal was optically pumped using an expanded

~/gr+Ag. s

p

.jV

g~
p'.
4k~ yr'

FIG. 4. Theoretical results showing the spatiotemporal evolution of the intensities of the two lowest-order resonator modes for the
same parameters used to obtain Figs. 2(a), 2(b), and 3. Time increases from the upper left figure, across the top row, to lower left and
across the bottom row. (Compare with the experimental results of Fig. 7).



1546 B. M. JOST AND B.E. A. SALEH 51

~ ~ ~

C3 C3

C3 I

C3

ly
I. )
4y
I'e
s, ,I' I

~ ~ ~ ~ ~ r
0 ~

~ ~ ~
I ~

I

u
gI
~ I

I
I

'I'

yl
( I

) ~

e
I
I

I

Iy
I

I
I

I
I
I
I

I (
I
I
I
s
I

& ~ e-

I
1

II
I

I
I
I
l
l

A ~
I
I

C3

C3

C3

TH

C3

C3

C3

C3

((
)p 250

C3
C3

O. 08 0. 12

(a)

ode dynamics when the UPRR is limited to three-mode oscillations. (a) Intensities of the H mod
~

~2 ( lid li ),
io o

I i I' (. ort-dashed line), and Hzp mode I~a I
(long-dashed line) as a function of normahzed time. (h) Intensities ~u, ~' ( o1

I
zl' (short-dashed line) vs IUol Parameter values are similar to those used to obtain the results shown in Fi . 2:

&
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+i 1 25 X 10. ' s ', and fp,

=f&p
=f,z

=fz, =fop =fop =fp I2.

mation that was used in Sec. II, which requires small cav-
ity losses, is probably near the limits of its applicability.
Note that, as in other experiments of this type [8], the
stability of the resonator oscillations depends on external
factors such as table vibrations, air Row, heating or cool-
ing of the crystal, and pump laser variations. As a result,
we expect the resonator to be stable for only short
periods of time, roughly on the order of one minute.

A. Two modes

In the two-modes case, we adjusted the size of the
aperture until only two of the lowest-order modes could
oscillate, in which case the aperture size was about 1.0

mm by 1.2 mm. The evolution of the spatially varying
resonator beam intensity as a function of time is shown in
Fig. 7. This series of snapshots clearly shows the mode
mixing. One mode initially dominates. It slowly de-
creases in amplitude until the second mode dominates.
The situation then reverses with the second mode de-
creasing in amplitude until the first mode dominates.
This process repeats itself in a periodic manner, with the
two modes mixing in the manner shown. These results
are in generally good agreement with the theoretical re-
sults of Fig. 4. Similar experimental results showing
periodic two-mode oscillations, while using an applied
electric field on a Bi,2Ge02O crystal, have recently been
obtained by Hennequin et al. [8].

C

C

FIG. 6. Theoretical results showing the spa-
tiotemporal evolution of the intensities of the
three lowest-order resonator modes for the
same parameters used to obtain Figs. 5(a) and
5(b). The excerpts were taken at two diferent
values of t/~r, „~:left excerpt at 300 and right
excerpt at 400. (Compare with the experimen-
tal results of Fig. 8.)
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FIG. 7. Experimental results showing the spatiotemporal two-mode interaction. Time increases from the upper left figure, across
the top row, to lower left, and across the bottom row. The snapshots are sequentially separated in time by approximately 1 s.

B. Three modes

In the three-mode case, we adjusted the size of the
aperture until three of the lowest-order modes could os-
cillate, in which case the aperture size was about 1.4 mm
by 1.0 mm. A very weakly oscillating fourth mode was
also observed but we expect the effects of this mode to be
negligible because of its small magnitude. However, be-
cause the fourth mode was weakly oscillating, it is
reasonable to assume that the losses of the three stronger
modes were comparable.

Snapshots of the spatial intensity distributions at two
times are shown in Fig. 8. These results show good
correspondence with those from the theoretical investiga-
tion (Fig. 6). We also observed the temporal variations in
the spatial intensity distribution due to changes in the
various mode amplitudes. This behavior was in general
agreement with the theoretical description of Sec. III.

V. DISCUSSION

It is clear that the modal decomposition significantly
simplifies the description of the resonator spatiotemporal
dynamics when there are only a few modes. However, as
the number of modes increases, so does the number of pa-
rameters that need to be specified and so do the cumula-

tive errors in any calculations based on uncertain param-
eter values. Consequently, a partial-differential-equation
description of the resonator field, like that given by the
photorefr active ring resonator complex Ginzburg-
Landau equation [10], may be a more efficient approach
to the analysis of the spatiotemporal dynamics when
many modes can oscillate. The trade-off, of course, is the
increase in computational complexity in the evaluation of
such an equation.

In our analysis, we have assumed that longitudinal
variations of the slowly varying complex variables were
negligible and that the pump remained undepleted.
Modifying the present theory to include both longitudi-
nal resonator and pump beam variations would lead to
improvements in the accuracy of the results and extend
the domain of parameters over which the theory is valid.
Taking a more complete account of the effects of the
transverse variations would also improve the accuracy of
the theoretical description. Such analyses are expected to
be straightforward but would require a more complicated
description of the resonator. However, these
modifications would be a significant step toward the de-
velopment of a complete description of photorefractive
ring resonator phenomena.

In conclusion, we have derived a set of equations that

FICx. 8. Experimental results for the spa-
tiotemporal evolution of the resonator modes
with three-mode coupling at two times. The
left snapshot is separated in time from the
right snapshot by 36 s.
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describes coupled-mode interactions in unidirectional
photorefractive ring resonators when intermodal gratings
are formed. We have also performed experiments to ob-
serve two- and three-mode coupling effects. Despite
many simplifying approximations, we obtained good
qualitative agreement between the theoretical analysis

and the experimental data. Hence our results indicate
that modal interactions can have a significant effect on
the dynamic evolution of the mode fields within pho-
torefractive ring resonators, particularly when there are
externally applied or photovoltaic induced electric fields
across the crystal.
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