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Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic
nonlinearity or an externally applied electric field
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We consider propagation of a light beam in photorefractive media in the framework of a three-
dimensional model. We formulate equations governing three-dimensional distribution of a nonlinear re-
fractive index. The distributions of electric charge, potential, current, refractive index, and the near- and
far-field output intensities of the beam are calculated. The conditions necessary for observing self-
focusing in photorefractive media are discussed.

PACS number(s): 42.65.Hw, 42.50.Ne

I. INTRODUCTION

Propagation of a hght beam through a nonlinear medi-
um is accompanied by a series of complex changes in its
spatiotemporal structure. A theoretical interpretation of
these phenomena is of key importance for gaining insight
into the nonlinear properties of a particular medium and
for contributing to our understanding of more general
questions of complex spatiotemporal behavior of non-
linear systems. Photorefractive media are a type of non-
linear media potentially promising for optical data pro-
cessing [1,2]. The nonlinearity exhibited by these media
difFers from the conventional Kerr-type nonlinear
response in many important ways. First, it is intrinsically
nonlocal in nature and second, many features of non-
linear beam mixing in such media are almost independent
of the intensities of the interacting beams, which deter-
mine only the characteristic relaxation time scales. In
addition, the photorefractive response can also be con-
trolled by externally applied ac or dc electric fields [1,2].

The physics of propagation of a single light beam
through a photorefractive medium is a topic of ongoing
research in photorefractive nonlinear optics. Previous
theoretical analyses [3—6] have concentrated mostly on
the case of no photogalvanic effect and/or an applied
electric field (see, e.g. , the two-dimensional analysis in
Ref. [6] and references therein). In the present paper we
formulate full three-dimensional equations governing dis-
tribution of the nonlinear refractive index, induced by a
single optical beam in a photorefractive medium. They
explicitly take into account the anisotropic nature of the
medium and allow for the presence of a photogalvanic
nonlinearity and/or an externally applied electric field.
The structure of the equations is essentially that of a non-
linear electrostatic problem. Their solution involves cal-
culation of a long-range electrostatic potential and re-
quires proper imposition of asymptotic boundary condi-
tions. The most important parameter in these equations
is the value of the normalized dark intensity. This pa-
rameter is the ratio of the rate of thermal excitation of
carriers to the rate of photoexcitation determined by a
characteristic intensity of the beam. We show that prop-

agation of the beam through the medium is accompanied
by the generation of macroscopic steady-state vortex
currents. We also calculate and analyze distributions of
electric charge, potential, refractive index, and output
near- and far-field intensity distribution of the beam, and
discuss conditions for self-focusing in photorefractive
media.

II. FORMULATION OF THE PROBLEM

Material response of a photorefractive medium is
governed by the set of equations [7]

ND =(p+sI, )(ND ND ) gn,—ND—8
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Here XD, ND, Nz, and n, are the density of donors, ion-
ized donors, acceptors, and conducting electrons, respec-
tively; p and s are the thermal and photoexcitation
coefficients; I, is the intensity of electromagnetic radia-
tion, g is the recombination constant, E is the amplitude
of the static electric field, e is the elementary charge, ep
the electric permeability of vacuum, e is the static dielec-
tric tensor; p and J are the charge and the electric current
densities, respectively, p is the electron mobility, re~is the
Boltzmann constant, and T is the temperature. The pho-
togalvanic tensor is assumed to have the largest com-
ponent p~z generating current along the direction of the
axis of spontaneous polarization of the medium (axis c),
and other components are neglected.

In Eqs. (1) the characteristic spatial scale of change of
the electric field is determined by the value of the Debye
wave number kD=(e N~/v&Teoe, )', and the charac-
teristic value of this field is determined by
E =z&TkD/e =—eX&/EpE' kD where e, is the component

1050-2947/95/51(2)/1520(12)/$06. 00 51 1520 1995 The American Physical Society



PROPAGATION OF AN OPTICAL BEAM IN A. . . 1521

5 N =I[1+gkn V.(e'„Vy)] nN, —
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av

—ckD[1+ykD V(e„Vy)] I, (2c)

where r=t/t0, 5=pe/@0', g is the ratio of the charac-
teristic relaxation time of the donor density to that of the
potential, y=Nz/(ND N~ ), e„—is the static dielectric
tensor divided by e„andE h =P hgN& /cps is the photo-
galvanic field.

In typical conditions, 5«1. Thus 5=(0. 1 —2)X10
for LiNbO3 and 5=(0.01—1)X10 for BaTi03 using
data given in Refs. [8,9]. Also, in a majority of cases of
practical interest, kD V (e„Vy)«1. This inequality
breaks down for very small diameters of the beam and for
very large values of the photogalvanic and/or an applied
electric field; analysis of such a situation is outside the
scope of the present paper. Under the above assumptions
Eqs. (2) can be reduced to one equation for the potential

I ' V (e„Vqr) +V U(q), I)+V lnI VU(y, I)
a7

&ph—k — — -c-7 lnI =0
E

where

(3)

U(y, I)=q& kD V (e Vy) —lnI—. (4)

The electric current J under the same assumptions is
given by the relation

of the static dielectric tensor along the c axis. The
characteristic density of electrons associated with
electromagnetic intensity ID is equal to no
=sID(ND N—~)/gN~ and the characteristic relaxation
time of the electric field is t0=e0e, /epn0. We introduce
the dimensionless densities of the ionized donors
N =ND /Nz and the electrons n =n, /n0, and define the
dimensionless potential of the static electric field y by the
relation Vtp = kDE—/E. Finally we introduce the dimen-
sionless intensity of the electromagnetic radiation, which
includes a contribution from the thermal excitation of
carriers: I=(I, +P/s)/ID= I, +—Id, where ID is some
characteristic intensity (e.g., in the center of the beam).
The term Id will be referred to as the normalized dark in-
tensity. In typical conditions Id «1, so this last term is
often neglected; for the problem we are considering, its
proper treatment is of extreme importance. The presence
of ld and its value will determine most of the physics to
be discussed below.

Using the functions defined above and under the stan-
dard assumption of N„))n„wesee that Eqs. (1) may be
rewritten in the form

J= I—V U(y, I)+ckD (I I—
d )

Eph

(recall that I=I, +Id ).
The amplitude B(r) of an electromagnetic beam propa-

gating in a photorefractive medium obeys the equations
[7]

Vi —iv B(r)=0,
Bl 2k

v(r)= n Ee (P„.Vp) e~,
2kD

where I is a direction of propagation of the beam, V~ is a
Laplace operator acting on coordinates perpendicular to
this direction, k =2mn/A. , (n is the index of refraction) is
the wave number of electromagnetic radiation in the
medium, 9,j is the electro-optic tensor, and e is the unity
vector in the direction of polarization of the beam. The
function v determined by relation (7) is simply the nor-
malized nonlinear addition to the refractive index of the
medium. The intensity of light I, entering into Eqs. (3)
and (4) equals ~B(r)~ .

The boundary conditions for Eqs. (3) and (4) depend on
the physics of the interaction. Thus in the case of no
externally applied electric field and nonconducting crys-
tal faces they may correspond to zero normal com-
ponents of electric current at the crystal faces: J„„=O.
If the characteristic beam diameter is considerably less
than the size of the crystal the condition J„„=Oapplies
to the entrance and exit faces of the crystal. Side faces
may be moved to infinity and the boundary conditions

J„,=0 replaced by the requireme~t that the electrostat-
ic potential y and, consequently, the function U, tend to
(different) constants when moving in the direction of
these faces. Once the function U is known, the potential

y is found by solving Eq. (4), which, in principle, requires
matching the solution of an outer electrostatic problem
for the potential with that inside the crystal. In practice,
this does not cause difficulties. Equation (4) contains the
spatial screening scale kD, which is very small. A sim-

ple analysis shows that the in6uence of the boundaries
(i.e., the particular boundary conditions at the input and
the output faces of the crystal) becomes small at distances
exceeding several kD '. Note that Eq. (3) does not have
such an independent scale. The characteristic scales of
change in function U are determined by those of the light
beam, which are in general considerably larger. In this
sense, proper boundary conditions are more important
for Eq. (3) than for Eq. (4).

III. PROPERTIES OF SOLVTIONS

In the following we analyze steady-state solutions for
Eqs. (3) and (4). We consider the following geometry of
interaction: the crystal is cut along crystallographic axes,
the beam is polarized along the axis z, propagates along
the axis x, enters at the face x=0, and exits at x=L,.
The side faces of the crystal are at infinity (the diameter
of the beam is much smaller than the size of the crystal)
and the photogalvanic current is generated along the z
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axis (c is parallel to the z axis). The external electric field
(if any) is also applied along the z axis. According to Eq.
(7) the nonlinear refractive index may be due to either r„~
(r32) or r„,(r33) components of the electro-optic tensor.
We assume that the corresponding component is r33 as is
the case in LiNb03, for example. Relation (7) in this
case reads v(r) =(k/2)n r33EG(r), where G(r)
=kD 'By(r)/Bz. Since v(r) ~ G(r), in the following we
shall refer to function 6 as the normalized nonlinear re-
fractive index. This function is simply the normalized
amplitude of the z component of the static electric field

First we show that both the photogalvanic nonlinearity
and the nonzero applied electric field in the open circuit
configuration can be treated in a unified way. Indeed,
suppose we have the potential di6'erence V between two
faces of the crystal perpendicular to the axis z. In the ab-
sence of the beam this potential di6'erence would corre-
spond to the field E,„,= —V/L, directed along z (L, is
the size of the crystal along z). The boundary conditions
for the potential y correspond to g(z=L, /2) =kD V/2E,
y(z = L, /2) =—ka V /2—E. The appearance of kD and
E in the previous relation is connected to our choice of
normalization for y. Instead of functions y and U obey-
ing Eqs. (3) and (4) we introduce the renormalized func-
tions y„=p+kD(E,„,/E)z and U„=U+kri(E, „,/E)z.
The equation for U„reads as

I ' V (F.„Vp„)+VU„(p„,I)+V lnI VU„(y„,I)a7.

The boundary conditions for Eq. (9) are F(ri =0) is finite
and F( ri ~ 00 )~0.

Consider the solution of Eq. (9) for a Gaussian beam
I( ri ) =exp( 8—r i /d ) +Id. A small Id allows one to use
the approximation (lnI )'= —

16ri /d for ri (r „and
(lnI)'=0 for ri & r~, where r„=(d/8) lnId '. The solu-
tion of Eq. (9) then takes the form

8r~
1 —ciM —,2;rj= (10a)

—1c2g (lob)

where a = i/ n. 1nId ' /4.
If we know the function F and the distribution of in-

tensity I, we can determine the distribution of current J.
It is given by

where g, =8r, /d =lnId ', M( —,', 2;rI) is the Kummer
function, and c„c2are constants. Using asymptotics of
the Kummer function for large arguments M( —,', 2;g)
=m '~

7)
~ exp(g) and matching (10a) and (10b) we

find ci =Qmg, exp( —g~) and c2=r)~(1 rl, '). —The
Taylor expansion of the Kummer function at small values
of its argument is M( —„2;7))=1+rj/4+, so function
F in the central region of the beam (8ri/d ~ 1) has the
form

2rgF(ri)=1 —8aId +. . .

Eeet+ EIh—k c VlnI=O .D E
J=ckD I[1 F(ri)]—ck—i, Id

Note that Eq. (8} has the same form as Eq. (3). The func-
tion U„(p„,I) is still determined by Eq. (4) with the re-
placements y —+y„,U~U„. If boundaries of the medi-
um are at infinity (the size of the crystal is considerably
larger than the characteristic diameter of the beam), the
boundary conditions for y„and U„along transverse
directions correspond to those functions tending to con-
stants when their arguments tend to infinity. After solv-
ing for qv„, the electrostatic potential y is obtained
through the relation y =y„—kD(E,„,/E )z. The struc-
ture of Eq. (8) shows that the photogalvanic nonlinearity
is analogous to the applied electric field.

If there is no photogalvanic nonlinearity and no ap-
plied external electric field, the solution of Eq. (3) yields
U(q&, I)=0. Note that this solution corresponds to the
absence of current in the crystal: J=O. The case of
nonzero photogalvanic nonlinearity and/or applied elec-
tric field is more interesting. Consider the situation in
which the intensity of the beam is radially symmetric:
I(x,y, z)=I(ri), where ri='t/y +z . The structure of
Eq. (8) then immediately reveals that its solution in the
steady state should have the form U„(x,y, z )

=(E,„,+E~h)E 'kDzF(ri}, where the function F obeys
the equation

rj E,„,+Eph
kD IzF'(ri } .

r~

Equation (lc) in the steady state reads as V J=O. Ac-
cording to Eq. (12), in the absence of the photorefractive
nonlinearity and the applied electric field, this means
J=O. For nonzero values of E,„,and/or E h this is no
longer true and JAO. The relation V J=O implies that
the current has a vortex structure and loops on itself.
The current should generate a magnetic field. This situa-
tion is well known in plasma physics, for example, where
such magnetic fields result in anomalous transport prop-
erties of plasma (see, e.g. , [10]). In photorefractive media
the magnetic field is small and may be neglected.

Having calculated the function U„weare in a position
to find the electrostatic potential from Eq. (4). In typical
conditions the characteristic diameter of the beam is
much larger than the inverse Debye wave number, so
that the second term in this equation containing deriva-
tives is relatively small and for the purposes of a qualita-
tive analysis may be neglected. The distribution of the
potential then is governed by the relation

E,„,+E h E,„,
qr(y, z) =lnI(ri)+ kDzF(ri) — kdz,E E

r&F"+ [3+re(lnI )']F'+(lnI )'(F—1)=0 (9) (13)

and the primes denote di6'erentiation with respect to r~. where function F obeys Eq. (9). Equation (13) shows that
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y(y, z) =— J. t ph Tj
2

+ — kDZ 1 —8aId 2E d2

kDz .
E

(14)

The refractive index (7) according to Eq. (14) is given by
the expression

v(y, z) = —k——a— +—,'kn'E „r„,z k3z+y, 2

b Nj
(15)

where lb=kDd l8n r33E and lNt =d ISn r33(E,„,
+E h)Iq.

The last term in Eq. (15) gives a uniform renormaliza-
tion of the refractive index and may be ignored. Since
lNz ~Id ', the limit of zero dark intensity Id~0 corre-
sponds to vanishing of the second term. Hence, despite
nonzero values of E h and E,

„„

their contribution to the
nonuniform part of the refractive index equals zero. The
physical reason for this phenomenon is the screening of
the photogalvanic nonlinearity andior the applied elec-
tric field by a redistribution of charges. The relevant
physics will be discussed in more detail in Sec. IV. Note
that the dark intensity in the case of an applied electric
field may also include any additional erasure intensity.
Our results indicate that to observe steady-state self-
focusing or self-defocusing of a light beam in a pho-
torefractive medium it may be advantageous to il-
luminate the crystal with an additional expanded light
beam incoherent to the primary one. Note also that Eq.
(15) corresponds to a steady state. The situation may be
different in the transient regime when the redistribution
of charges is still incomplete. Since the characteristic re-

the electrostatic potential consists of three terms, and
that both the photogalvanic nonlinearity and the applied
field contribute to the potential additively. The first term
lnI for a radially symmetric light beam is symmetric in z,
whereas the second term proportional to zF(r~) is an-
tisymmetric. The nonlinear refractive index is propor-
tional to Bp/Bz. The contribution from the first term will
be antisymmetric in z whereas the second term will give a
symmetric contribution. The third term will give a uni-
form addition to the refractive index.

For a Gaussian beam in the region where I &&Id, the z
derivative of lnI in Eq. (13) gives a refractive index that
varies linearly across the beam. This results in a bending
of the beam trajectory toward the c axis. An explanation
of this phenomenon in the framework of a two-
dimensional model and in the absence of the photogal-
vanic nonlinearity and/or an applied electric field has
been given in Ref. [3]. The term lnI is also responsible
for asymmetric arnplification of a spatially broadband
noise (fanning) [11]. The relative contribution of this
term to the refractive index becomes larger for smaller di-
ameters of the beam.

The second term in Eq. (13) may result in a self-
focusing or defocusing of a light beam, but only if the
dark intensity Id is not very small. Indeed, substituting
Eq. (11) into Eq. (13) results in the following expression
for the potential y:

laxation time of the potential is inversely proportional to
the local intensity [see Eq. (8)], the buildup of the refrac-
tive index is faster in the highly illuminated regions of the
beam. This means that even if the steady-state self-
focusing or defocusing is impossible, one may observe
some focusing or defocusing in the transient regime.

Previous analysis shows that the structure of the poten-
tial y in the general three-dimensional case is relatively
complex. Some useful insight may be gained by resorting
to a two-dimensional model, i.e., by considering only one
transverse coordinate z. Solution of Eq. (8) in this case is
trivial and, assuming that the characteristic diameter of
the beam is much less than the transverse size of the
medium, is given by the expression

Eph +Eext z IdU„(z)= '"
kD z —J dz' (16)

Equation (17) explicitly demonstrates the effect of
screening of the external electric field and shows that the
term responsible for self-focusing or self-defocusing of the
beam is directly proportional to the value of the dark in-
tensity Id. To make further progress we may use the
standard aberrationless approximation and consider the
amplitude of the beam in the medium of the form

[z —zo(x )]
B(x,z) = exp —4

f(x) d'f'(x)
1

+i [z —zo(—x ) ]0

+ikg(x )z+ikg(x ) . (18)

Here d is the initial diameter of the beam and f, zo, 8,
and P are functions depending only on the longitudinal
direction of propagation x; a prime denotes
differentiation with respect to this coordinate. The prod-
uct df(x ) is the local coordinate-dependent diameter of
the beam in the medium, zo is the position of its center,
R (x ) =fIf ' is the radius of curvature, and 8(x ) is the
angle of the tilt of the wave front with respect to axis x.
The initial conditions correspond to f(x =0)= 1,
zo(0) =0, and 0(0)=0.

Substituting the intensity corresponding to the field
(18) into the expression for the nonlinear refraction index
(7), Taylor expanding around the maximum of the inten-
sity and keeping only terms up to the second order, as-
suming that the characteristic diameter of the beam is
much larger than the inverse Debye wave number, and
discarding coordinate-independent terms, one gets [com-
pare to (15)]

Substituting Eq. (16) into Eq. (4) results in the following
expression for the potential y:

y(z ) —kD y(z ) =lnI+ kDz
E h

a'z' E
ph+ ext ~

p
Id

kD dz' . (17)I
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d 1 1

dx2 I2f 3 I2

1 ~, ~' dx"
z, (x)= ——J' dx fIb o o f~(x")

(20a)

(20b)

8(x)= zo(x)= ——I1 x 8x
(20c)

dx 1b o f~(x')
i

where lz =kd /8 is the characteristic diffraction length
of the beam.

The physical meaning of the above equations is quite
transparent: in propagating through the medium the
beam is changing its diameter in accordance with Eq.
(20a). These changes are governed by the diffraction
length ld and the nonlinear refraction length lNL. The
square of the nonlinear refraction length lNL may be ei-
ther positive or negative depending on the sign of the
product »33(E,„,+Eph). The positive sign corresponds to
nonlinear focusing and the negative to defocusing of the
beam. Equation (20b) shows that as it is focusing or de-
focusing, the beam is bending toward the optical axis of
the crystal. The magnitude of the transverse displace-
ment zo is governed by the nonlinear bending length l&.
Note that lb is independent of either the external or the
photogalvanic field, i.e., the bending takes place in any
photorefractive medium. Finally, the local tilt of the
wave front 8(x ) is equal to the derivative of the displace-
ment, as demonstrated by Eq. (20c), i.e., the plane com-
ponent of the wave front is perpendicular to the local
direction of propagation. Equations (20) in the limit
l NL

—+ ao were discussed in Ref. [4].
The first integral of Eq. (20a) for an initially collimated

beam [f(x =0)= 1,f '(x =0)=0] has the form

2

(1+f 2Pf )—
dx If (21)

where P =
l& /l Ni .

Equation (21} shows that in the defocusing case P & 0
(lNi &0) the diameter of the beam monotonically grows
with the longitudinal coordinate x. In the focusing case
P & 0 (1NL & 0) the diameter is a periodic function of the
longitudinal coordinate x bounded by two limiting
values:

f~= (1+&1+8P ) .1

4P

(22a)

(22b)

The first (f, ) of these limiting values corresponds to the
beam diameter equal to its initial value at the entrance to
the medium. The second (fz ) is larger than the initial di-
ameter for P(1 and smaller for P&1. They become
equal (self-channeling) for I& = 1Ni (P = 1) or, equivalent-

z —zo k (z —zo}'
v(z) = — f—k

INL 4f' INLf

Substituting Eqs. (18) and (19) into the electromagnetic
equation (6) and matching terms up to second order in
the transverse coordinate z results in the set of equations

f (x)=1+ 1

l2
d

X

lN„2 (23a)

1 cx xf,(x ) =1+ ——3
ld lN„2 (23b)

zo(x ) =—X

2lb
(23c)

X8(x)= ——.
l~

(23d)

These formulas are valid for
~ f» —1

~

&& 1 and

~f, —1 «1. Note that the refractive index is propor-
tional only to the z component of the electrostatic field,
so one might think that the nonlinearity would not affect
propagation of the beam along the transverse coordinate
y at all. This is indeed the case for the part of the refrac-
tive index that is independent of either Eph or E t and is
responsible for the bending of the beam, but is not true
for the part that is due to the presence of an applied elec-
tric field and/or the photogalvanic nonlinearity. The
reason is the global nature of the electrostatic problem as
described by the elliptic equation (8). Indeed, the func-
tional form of the solution U„~zF(ri ) for a radially sym-
metric beam follows from the boundary condition
U„(y~m,z~oo )~z that should be fulfilled along any
direction in the (y, z) plane. Analogously, determining
the behavior of function F near the center of the beam
[Eq. (11)] involves using a boundary condition for this
function at infinity F(ri~~)~0. Ironically, in one-
dimensional plane-wave analyses the part of the refrac-
tive index due to the presence of an external electric field
usually is referred to as a "local response. " In our
analysis this part is expressed by the function U„.The
above discussion demonstrates that finding U„ is the
most unforgiving intrinsically global part of the problem
of calculating the refractive index in the three-
dimensional treatment.

The physics described by Eq. (23) is qualitatively simi-
lar to that of the two-dimensional model (20}. The new
part is the explicit description of the anisotropic nature
of self-focusing in the three-dimensional case. As before,

ly, for d =2&2/k'1/ n r33(E,„,+Eph)I~.
The aberrationless approximation can also be used to

analyze the first stage of evolution of an initial radially
symmetric Gaussian beam in the three-dimensional case.
According to Eq. (15) the refraction index created by
such a beam is not radially symmetric. In the aberration-
less approximation the beam becomes elliptical in propa-
gating through the medium and should be characterized
by two diameters, d (x ) =f (—x )d and d, (x ):—f, (x )d,
giving its widths along y and z axes, respectively. For an
initially collimated beam f» (x =0)=f, (x =0)= 1,
f'(x =0)=f,'(x =0)=0; using Eq. (15) and repeating the
steps analogous to those of the two-dimensional model,
we find the following expressions for the normalized di-
ameters f» and f„the transverse displacement zo, and
the local tilt of the wave front 0, as functions of the longi-
tudinal coordinate x:
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changes in the diameters of the beam are determined
by the relative values of the difFraction length ld and
the nonlinear refraction length lNL. For negative l~L
and for positive lN„such that INL ~3+i„ the beam
initially diverges along both transverse directions; if
3ald ~ lNL ~aid it experiences focusing along the z axis,
but still diverges along the y axis. Finally, if aid ~lNL,
the beam is self-focusing along both transverse directions
[one should keep in mind that Eq. (23) describes only the
initial stage of evolution].

The above examples allow one to get a feeling for the
parameters governing propagation of the beam in a
photoreAective medium in the presence of the external
electric field and/or the photogalvanic nonlinearity. One
of their limitations is that Eqs. (20) and (23) describe
propagation of the beam reasonably well only when the
value of the dark intensity Id is relatively high. In the
opposite case, the quadratic expansion of the refractive
index is insufficient and the aberrationless approximation
is a bad choice. This issue will be addressed in Sec. IV.

IV. NUMERICAL RESULTS

We now present numerical solutions of the above equa-
tions describing the material response of the photorefrac-
tive medium together with the parabolic Maxwell equa-
tion for the amplitude of the light beam. As is clear from
Sec. III, all the results pertain equally to both the pho-
torefractive nonlinearity and the applied electric field
with certain evident modifications.

Figure 1 shows lines of current surrounding a light
hearn for the case of a photogalvanic nonlinearity and no
applied electric 6eld. The calculations were carried out
for the Gaussian beam I, =exp[ 8(ril—d) ] with the
beam diameter d=0. 1 mm. The dark intensity equals10, the Debye wave number kD/ko=kiiA, /2m=0. 66,

H

lX
Q
C)

COORDINATE Y

FIG. 1. Distribution of current in the cross section of a
Gaussian beam propagating through a medium with photogal-
vanic nonlinearity. The diameter of the beam d=0. 1 mm,
E„h/E=—5, Id =10,kD/k0=0. 66. The circle of diameter d
shows the position of the beam, the arrow indicates the direc-
tion of the c axis.

A, =0.514 pm, n =2.2, and E~&= —5E. The equation
V J=O implies that the current has a vortex structure
and loops on itself, as indeed is seen in the figure. The
negative sign of Eph means that the current created by
the photogalvanic term c(E~h/E)(I Id —) in Eq. (5) fiows
in the negative direction of the c axis. This photogalvan-
ic current results in a redistribution of charges, creating
an electrostatic 6eld. The 6eld generates a second
current [first term in Eq. (5)], which tries to counterbal-
ance the current created by the photogalvanic term. In
other words, the redistribution of charges tries to block
the photogalvanic nonlinearity. The current shown in
Fig. 1 is the net remaining current as a result of this pro-
cess. The amplitude of this current is small. The max-
irnum current created by the photogalvanic nonlinearity
in the center of the beam equals —5 and the maximum
value of the current in Fig. 1 equals —0.02. If the sign of
the photogalvanic field E h is reversed, the distribution of
current also changes sign. The distribution of current
created by a beam for zero photogalvanic field and
nonzero applied electric field is very similar to that
shown in Fig. 1. Generation of the current loops by the
photogalvanic nonlinearity has been discussed also in
Ref. [12].

The charge density distribution created by the beam
for the parameters of Fig. 1 is shown in Fig. 2(a); the
cross section of the charge density along axis z is depicted
in Fig. 2(b). Parts of Fig. 2(a) above the plane corre-
spond to positive charge densities. The arrow indicates
the direction of the c axis. The distribution shown in Fig.
2(a) is symmetric along the y coordinate and asymmetric
along the z coordinate. Note that the charges accumulate
in a circular region where the intensity of light becomes
comparable to the dark intensity. For the chosen param-
eters (Id =10 ) this corresponds to a circle of diameter
=2d as is clearly seen in Fig. 2(b).

The distributions of the electrostatic potential y and
the cross section of this distribution along axis z are
shown in Figs. 3(a) and 3(b), respectively. The values of
the principal components of the normalized dielectric
tensor e for Figs. 3(a) and 3(b) are equal to e', =1 and
e =2. Note the long-range nature of this distribution
that reaches far beyond the region occupied by the bulk
of the energy of the beam. Large absolute values of the
potential are related to our choice of normalization and
should not be surprising in light of the fact that the
static electric 6eld is determined by the relation
E= —(E/kD)Vy. The potential changes on the scale of
the beam diameter d, so E ~ Ey/kDd (kDd && 1).

The distribution of the refractive index G(r) and its
cross sections along axes z and y are shown in Figs.
4(a) —4(c). As is seen from these figures, the value of G in
the central region of the beam is very close to Eph/E,
which is to be expected. Indeed, the redistribution of
charges almost blocks the photogalvanic term and hence
creates the electric field equal to —E h. The distribution
of the refractive index G(r) may be visualized as a strong
nonparabolic lens, induced by the beam in the medium.
The central part of this lens corresponds to negative
changes in the refractive index, whereas peripheral re-
gions along the z axis produce positive additions to the
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refractive index. The cross section along the y axis shows
only negative changes. This character of the distribution
of the refractive index was experimentally observed in
Ref. [13] using a probe beam with a diameter consider-
ably smaller than that of the primary beam. Our analysis
bears out the phenomenological model developed in Ref.
I13] to explain this phenomenon.

Propagation of a light beam through such a medium
results in changes in its spatial distribution and Fourier
spectrum. In Fig. 5 we show the output Fourier power
spectrum (equivalent to the far-field intensity distribu-
tion) of the input Gaussian beam after it has propagated
through a photorefractive medium with the photogalvan-
ic nonlinearity for the previous values of parameters.
The cross sections of this spectrum along axes z and y are
shown in Figs. 5(b) and 5(c), respectively. All three
graphs are plotted on the logarithmic scale. The dashed
curves in Figs. 5(b) and 5(c) represent the input Fourier
spectrum of the beam. The near-field output intensity
distribution of the beam is not much different from the
input one and is not shown. The length of the medium
equals L =3 mm and kn r33EL =4. Figures 5(a), 5(b),
and 5(c) were obtained by direct numerical solution of
Eqs. (3), (4), and (6). The spatial derivatives along the

direction of propagation x in Eqs. (3) and (4) were
neglected as compared to those along y and z. This as-
sumption is justified by the small divergence of the beam
in the medium.

Figure 5 illustrates that, in general, changes in the
Fourier spectrum of the beam cannot be described in
terms of simple focusing or defocusing but rather should
be characterized as broadening. This is because the non-
linear lens created by the beam is strongly nonparabolic.
Thus for the parameters of Fig. 2 the central part of the
refractive-index distribution is almost Oat, which means
that the central region of the beam does not experience
any appreciable lensing, whereas the wings of the beam
propagate through regions with strong gradients of the
refractive index (the question of what parameters deter-
mine the shape and the width of the refractive-index dis-
tribution will be discussed in more detail below). Chang-
ing the sign of E h inverts the distributions of the refrac-
tive index shown in Fig. 4, but the output Fourier spec-
trum (far-field intensity distribution) of the beam looks
very similar to that shown in Fig. 5. In both cases the
output Fourier spectrum of the beam has two symmetric
petals aligned along the c axis (see Fig. 5). This picture is
qualitatively similar to that usually seen when a light
beam propagates through a piece of LiNb03, but the
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FIG. 2. Charge density distribution created by a Gaussian
beam for the parameters of Fig. 1 (a), and its cross section along
axis z (b). The arrow indicates the direction of the c axis. The
size of the picture in (a) is equal to six beam diameters along ei-
ther direction.
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FIG. 3. Electrostatic potential y, created by a Gaussian
beam for the parameters of Fig. 1 (a), and its cross section along
axis z (b).
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tracted. The induced changes in the refractive index near
the center of the beam (relative to the periphery) are of
positive sign. Nevertheless only for large values of the
dark intensity (Id=10 ) does this refractive index have
a somewhat parabolic shape that can be visualized as a
nonlinear focusing lens. For smaller dark intensities the
central part of the distribution has linear slope along the
z axis and is flat along the y axis. This means that the
central part of the beam for small dark intensities does
not experience any nonlinear focusing or defocusing, but
just bends toward the c axis. At the same time the wings
of the beam will undergo strong scattering off sharply
changing peripheral regions of the refractive-index distri-
bution. Calculations of the output Fourier spectrum of
the beam in this case result in pictures that are qualita-
tively analogous to those presented in Fig. 5 despite the
fact that the sign of the refractive-index change is
different.

Another interesting feature of Fig. 7(a) is the linear
slope of the curves in the central part. This is a signature
of the first term in Eq. (13). Of course this slope is also
present in Fig. 4(b}, but since the value of the photogal-
vanic field in Fig. 4(b) is five times larger and the diame-
ter of the beam twice as large as in Fig. 7, its relative
magnitude compared to that of the second term in (13) is
ten times smaller and thus cannot be clearly seen. Figure
7(c) show the cross section of the refractive index along
axis z for a Gaussian beam with the diameter d =10 pm.
The linear slope in the central part of the distribution is
now much more pronounced.

We have already discussed (Fig. 5) the output charac-
teristics of the beam after propagating through a pho-
torefractive medium having low values of the dark inten-
sity. Figure 8 shows the output intensity profile of the in-
put collimated Gaussian beam after propagating through
a photorefractive medium having relatively high value of
the dark intensity Id =10 . The initial diameter of the
beam is d =30 pm, the length of the medium I.=4 mm,
e~/e, =2, n =2.3, E,„,/E= 1, kD/k0=0. 4, A, =0.633
pm, and kn r33EL =16. The Fourier spectrum in this
case does not exhibit any small-amplitude high-
divergence halo. The near-field output intensity distribu-
tion is more informative.

Figure 8(a) shows the cross section of the output inten-
sity profile along the z axis. The solid curve is the output
intensity of the beam, the dashed curve is its input inten-
sity, and the dash-dotted curve is the output intensity of
the beam without the nonlinearity. The center of the out-
put beam is displaced from its input position. This dis-
placement is due to the symmetric part lnI of the poten-
tial q& in Eq. (13). Figure 8(b) is the slice of the output in-
tensity profile along axis y. The solid, dashed, and dash-
dotted curves have the same meaning as in Fig. 8(a). The
slices were taken through the maxima of the intensity dis-
tributions. Since the output beam has walked off in the z
direction, the z coordinate of the solid curve in Fig. 8(b)
is different from that of the other two curves. Figures 7
and 8 confirm that for large values of Id the photorefrac-
tive nonlinearity indeed may result in stationary self-
focusing. Note that the characteristic width of the out-
put beam along the z direction is less than along y, i.e.,
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FIG. 8. Output intensity distributions of the beam after pass-
ing through the medium with an applied electric field for large
value of the dark intensity Id=10 '. (a) the cross section along
axis z; (b) the cross section along axis y.

the beam is focused preferentially along the axis of spon-
taneous polarization. The change in sign of the applied
electric field E,„,results in the self-defocusing of the
beam. In the limit of relatively large Id, photorefractive
response has some features in common with the saturable
Kerr-type nonlinearity [14],although this analogy cannot
be stretched too far.

Figure 8 demonstrates that in propagating through a
photorefractive medium, the initially radially symmetric
beam becomes elliptical and should be characterized by
two principal diameters d and d, determining its
widths along the axes y and z, respectively. Figure 9
shows the normalized diameters f~(x }=d„(x)Id and

f, (x ) =d, (x )/d (d is the initial diameter of the beam) as
functions of the longitudinal coordinate x inside the pho-
torefractive medium for the parameters of Fig. 8. The
dashed curve is the normalized diameter of the beam in-
side the medium in the absence of nonlinearity. In this
case f~(x ) =f, (x ) =+[1+(x/ld ) ], where ld =kd /8,
so for the parameters of the calculations, the output di-
ameter is about 1.85 times larger than its input value. In
the presence of the nonlinearity the beam experiences an-
isotropic self-focusing. It affects both transverse coordi-
nates, but the magnitude of the effect is different along y
and z. Thus the diameter of the beam along the axis y



A. A. ZOZULYA AND D. Z. ANDERSON 51

remains approximately equal to its input value. The di-
ameter along the axis z first decreases down to about 0.54
of its input value at x =2.5 mm, and then increases again
to the output value f, (x =l )=0.86. The diameters
d and d, in Fig. 9 were calculated according to
the formulas: d =16P ' fdri(y —yo) I, (ri), where
yo=P ' fdriyI, (ri) is the y coordinate of the center of
the beam, and P= fdriI, (ri) is its total power; the
same procedure was used for d, .

Figure 10 presents time evolution of the output diame-
ter of the initially collimated Gaussian beam calculated in
the framework of a nonstationary two-dimensional mod-
el. It follows from Eqs. (6) and (8) by discarding the
transverse coordinate y. All relevant parameters in Fig.
10 are as in Figs. 8 and 9. The time is normalized to the
characteristic relaxation time corresponding to the max-
imum intensity of the input beam. Two curves corre-
spond to the values of the dark intensity Id equal to 0.1

and 0.01. At zero time the output normalized diameter
of the beam equals f, =1.85. As the photorefractive
nonlinearity builds up, the beam starts focusing inside the
medium and its output diameter decreases. This first
stage happens at times of the order of several characteris-
tic relaxation times. After that the output diameter rela-
tively slowly relaxes to its steady state value. This value
corresponds to f, =0.7 for Id=0. 1 and to f, =1.37 for
Id=0.01. Figure 9 shows that the initial phase of self-
focusing (until about ten relaxation times for the parame-
ters of the calculation) is almost independent of the value
of the dark intensity. At larger times, when the charge
carries have had time to redistribute themselves, the evo-
lution is directly determined by the value of Id. The
comparison of Figs. 9 and 10 also indicates that the out-
put diameter of the beam as predicted by the two-
dimensional model may be considered a reasonable ap-
proximation to the results of the full three-dimensional
treatment.

Experimental observations of self-focusing of a light
beam in a photorefractive medium with an applied elec-
tric field were recently reported in Refs. [15,16]. A two-
dimensional theoretical model of this phenomenon was
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FIG. 10. Time evolution of the output diameter of the beam
calculated in the framework of a two-dimensional model for
Id =10 and 10 '. All relevant parameters are as in Figs. 8 and
9.

V. CONCLUSIONS

published in Ref. [17]. The physical interpretation of the
experimental results in [15,16] is contradictory. The
theory of Ref. [17] which predicts steady-state self-
focusing does not include the dark intensity (Id =0); on
the other hand, experimental results and qualitative
analysis in [16] indicate that this dark intensity is neces-
sary and should be large enough. Our analysis confirms
the arguments given in Ref. [16] and contradicts the
theory of Ref. [17]. The reason for the discrepancy be-
tween our results and those of Ref. [17] is as follows:
Ref. [17] used a particular solution of linearized two-
dimensional versions of Eqs. (2) with the amplitude of a
light beam consisting of two plane waves. A general solu-
tion for an arbitrary transverse distribution of the beam
was assumed to be a linear superposition of such solu-
tions with plane waves being all possible pairs from the
Fourier decomposition of the beam amplitude. This as-
sumption is incorrect, as indicated by the analysis of the
present paper. For example, the effect of screening was
lost.

Ooz f (x)

1 2 3
PROPAGATION DISTANCE [mm]

FIG. 9. Normalized diameters of the beam inside the medi-
um for the parameters of Fig. 8.

We have considered propagation of a light beam
through a photorefractive medium in the framework of a
three-dimensional model. We have formulated the set of
equations governing three-dimensional distribution of a
nonlinear refractive index induced by the optical beam in
the medium. It explicitly takes into account the aniso-
tropic nature of the photorefractive medium and allows
for the presence of a photogalvanic nonlinearity and/or
an externally applied electric field. Solution of these
equations involves calculation of a long-range electrostat-
ic potential and requires proper imposition of the bound-
ary conditions, as in any electrostatic problem. We have
shown that the most important parameter governing
beam propagation through the photorefractive medium
in the presence of a photogalvanic nonlinearity and/or an
externally applied electric field is the value of the normal-
ized dark intensity Id. This parameter is the ratio of the
rate of thermal excitation of carriers to the rate of pho-
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toexcitation determined by a characterization intensity of
the beam. In a typical situation Id is much smaller than
unity. Nevertheless it is extremely important that Id be
properly accounted for, since its value determines the
shapes of the spatial distributions of charge and electro-
static potential induced by the beam in the medium. It
also determines the shape of the nonlinear refractive in-
dex and the output spatial and spectral distributions of
the beam.

We have shown that in the presence of the photogal-
vanic effect or an externally applied electric field, propa-
gation of the beam through the medium is accompanied
by generation of macroscopic steady-state vortex currents
satisfying the equation V'.J=O. The magnitude of these
currents is proportional to the product of the dark inten-
sity and the value of the photogalvanic or externally ap-
plied electric field.

We have calculated and analyzed the distributions of
the electric charge, the potential, and the refractive index
created by the beam. The underlying physics may be de-
scribed quite simply as the tendency of the photorefrac-
tive medium to counterbalance and screen the action of
the photogalvanic term or of the applied electric field.
This screening is achieved by a redistribution of charges.
These charges accumulate mostly at the periphery of the
beam, where its local intensity becomes comparable to
the dark intensity. For low values of the dark intensity

the screening is nearly absolute in the central part of the
beam. The electrostatic potential in this region is equal
to the potential that would be created by the beam in the
absence of the photogalvanic and/or applied electric field
(plus possibly a linearly changing term that uniformly re-
normalizes the refractive index). The steady-state distri-
bution of the nonlinear refractive index for small values
of the dark intensity is characterized by the relatively
smooth central part with a slope and by the sharply
changing peripheral regions. Propagation of the beam
through the medium in such conditions results in a
broadening of its spatial spectrum, independent of the
sign of the induced refractive index. For relatively large
values of the dark intensity Id the effect of screening is
not absolute. The photorefractive nonlinearity in these
conditions resembles the conventional saturable Kerr-
type nonlinear response. In particular, propagation of
the beam through the medium may be accompanied by
its stationary self-focusing or defocusing depending on
the sign of the induced refractive index. For small values
of the dark intensity the beam may experience only tran-
sient self-focusing or defocusing.
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