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Ionization of hydrogen Rydberg atoms by circularly polarized microwaves is studied numerically
within the framework of classical mechanics. Both the simplified two-dimensional model (in which
the plane of polarization coincides with the orbit plane) and a fully three-dimensional system are

considered.
frequencies except the low-frequency limit.

It is shown that the ionization proceeds in the diffusive manner for all microwave
The threshold for diffusive excitation as well as the

diffusion speed is strongly dependent on the initial state of the system for smooth pulse excitation.
In a high-frequency limit the ionization threshold rises sharply—the atom is much more resistant
to the excitation. Two distinct regimes of stabilization windows (regions where ionization decreases
with increasing field amplitude), one in the strong short-laser-pulse domain and the other in the
weak microwave domain are identified and discussed.

PACS number(s): 32.80.Rm, 42.50.Hz, 34.50.Gb, 05.45.4+b

I. INTRODUCTION

The pioneering experimental study of ionization of
highly excited hydrogen atoms by linearly polarized mi-
crowaves (LPM) [1] was the beginning of an intensive
study of the problem in the past twenty years. The first
theoretical understanding of the ionization process was
obtained [2] using Monte Carlo classical simulations, as-
sociating the ionization threshold with the onset of clas-
sical chaos in the system. Since then a great number of
contributions appeared which treated the problem either
classically or quantum mechanically at various degrees of
approximation. At the same time improved experiments
provided a stimulus and new puzzles for the theory (for
recent reviews of the theory see [3—7]; experimental de-
tails may be found in [9,10]).

It has now become common knowledge that the fre-
quency dependence of the threshold in LPM ionization
may be roughly divided into a few regions character-

ized by distinct features. The relevant parameter is
the ratio of the microwave frequency w to the Kepler

frequency on the initial orbit wg. For the scaled fre-
quency wo = w/wg <K 1, the quasistatic limit is real-
ized, the classical ionization is due to over barrier es-
cape (like in the static, homogeneous electric field), and
quantum corrections are due to tunneling (which may be
taken into account semiclassically using, e.g., the com-
plex path method [8]). For higher frequencies (but still
for wg < 1), the onset of classical chaos and the breakup
of Kol’'mogorov-Arnol’d-Moser tori well approximate the
quantum ionization threshold; the diffusive gain of energy
by an electron is a main mechanism leading to ionization
with additional modifications due to classical resonances.
The agreement between classical and quantum predic-
tions breaks up for wg > 1; the quantal thresholds are
significantly higher due to the phenomenon of quantum
localization, analogous to Anderson localization in disor-
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dered solids. It is this frequency domain that received
most experimental and theoretical attention in recent
years [3-7,9,10] in relation to “quantum chaos” studies
and the semiclassical limit.

Much less is known about the ionization process in
the presence of circularly polarized microwaves (CPM).
Despite early analysis [11,12], the systematic studies are
only beginning to emerge [13-20]. Experimental setups
used for hydrogen ionization in LPM have to be signifi-
cantly modified to allow for CPM excitation. The exper-
iments carried out for alkali-metal atoms by Gallagher
and co-workers [21,22] have clearly shown the importance
of the nonhydrogenic core; thus their results cannot sub-
stitute for hydrogen studies. On the other hand, a de-
tailed theoretical, both classical and quantum, analysis
may be carried out practically only for hydrogen. Fortu-
nately, just now experiments with hydrogen atom ioniza-
tion by circularly polarized microwaves are in progress
[23]; this makes the theoretical analysis of the process
timely and important.

There is a basic difference between ionization by LPM
and CPM. In the former case the projection of the angu-
lar momentum on the polarization axis is conserved; thus
the problem considered is effectively a two-dimensional
one. On the contrary, the CPM ionization requires, in
principle, the treatment of a fully three-dimensional sys-
tem since no constant of motion is known to exist (ex-
cept for the approximate one in the purely perturba-
tive regime [24]). Fortunately, significant insight may
be obtained from simplified lower-dimensionality mod-
els. Again, the situation is much simpler for the LPM
case where the simplest atomic model may be one di-
mensional. Such a model may be quite useful for initial
states extended along the polarization axis [4-7]. For the
CPM ionization problem the simplest model is two di-
mensional. Here the electron motion is confined to the
polarization plane. In fact, most of the studies of the
problem assumed such a configuration [13,14,16-19].
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Even then quite contradictory predictions have been
obtained, e.g., for low-frequency ionization threshold be-
havior [13,21,22]. This regime was considered in most of
the theoretical analyses. The controversy has been re-
solved very recently [18,19]. The motion in this regime
is mainly regular. However, since even the most sim-
plified model is two dimensional, the ionization thresh-
old is strongly dependent on the initial state (and/or on
the choice of the left or right circularly polarized radia-
tion), as shown in [17] (see also a detailed study of the
low-frequency regimes in [19]). This sensitivity was con-
firmed by the only quantum analysis performed up until
now [18].

Much less is known about the ionization process (in
CPM) for higher-frequency regimes. The classical Kepler
map analysis [14], performed at a frequency wo = —1,
suggests that the electron motion, at least for circular
or low eccentricity initial states is quite regular. For
the high-frequency regime wg > 1, important domains of
highly chaotic nearly circular orbits have been obtained
in [16]. There a diffusive character of ionization has been
stressed and the ionization thresholds has been estimated
by the resonance overlap criterion. It is most important
to obtain reliable classical information about the ioniza-
tion threshold and the mechanism of the classical ioniza-
tion for comparison with the quantum studies. Since the
process of ionization in CPM is three dimensional, it is
by no means clear whether the localization phenomenon,
which dominated the LPM ionization studies in recent
years, may be observed in CPM ionization. Recall that
in solids, an analogous Anderson localization is strongly
dependent on the dimensionality of the problem.

Due to technical difficulties there is still a long way to
go before a full understanding of the ionization of hydro-
gen in CPM will be obtained. The aim of this paper is
to provide understanding of the classical features of the
ionization by means of a detailed numerical study. We
concentrate mainly on the ionization of hydrogen pre-
pared initially in well defined circular or elliptical states.
This is motivated by recent advances in the preparation
of such Rydberg states, e.g., by the crossed fields method
[25,26]. In that way states strongly oriented in space are
produced. If the microwave polarization plane is chosen
to match the initial states orientation, a simplified two-
dimensional model of the ionization should be a good
approximation of the truly three-dimensional situation.

The paper is organized as follows. The model and the
numerical methods used are described in Sec. II. In Sec.
IIT numerical estimates for the ionization thresholds are
presented for different simulations of the initial states.
The importance of the shape of the microwave pulse is
pointed out. The analysis is mainly carried out in the
simplified two-dimensional model, although we discuss
also fully three-dimensional system and, in particular,
different initial orbit orientations with respect to the po-
larization plane. Finally, the conclusions and future per-
spectives form the content of Sec. IV.

II. THE THEORETICAL APPROACH

We shall consider the following classical Hamiltonian
describing, in the dipole approximation and in atomic

units, the hydrogen atom in the field of the circularly
polarized radiation

_Retpytrl 1

H 2 r

—Ff(t) [z cos(wt + p) + ysin(wt + p)], (2.1)

where r = /22 + y2 + 22 and F, w, and ¢ are the max-
imal amplitude, the frequency, and the initial phase of
the microwave field, respectively. Note that a change in
the sign of w is equivalent to a change from right CPM to
left CPM. We shall explore this possibility below and al-
low w to take both positive and negative values to study
both types of polarization. In (2.1) f(¢) describes the mi-
crowave pulse shape chosen to represent “flat-top” pulses,
as realized, e.g., in experiments by Koch [9],

sin? (7t/27), o<t<rT
) = 1, T<t<T-—T1
FO =19 cos? {nft — (T —7))/27}, T—7<t<T
0 elsewhere.

(2.2)

T and 7 describe the pulse duration and its rise (and
falloff) time, respectively. Note that in the limit 7 — 0 we
may recover the square pulse (resulting in the monochro-
matic field for T — oo), while T = 27 corresponds to a
smooth, sine-squared pulse which may well approximate
the microwaves in the experiments by Bayfield and Sokol
[10]. Such a pulse may be used also for classical simula-
tions of short intense laser pulse excitation [27].

The Hamiltonian (2.1) depends on four quantities
(w, F,T,7) and the initial electron energy FE, yielding
the fifth parameter (we shall always average the results
of numerical simulations over the initial field phase ¢).
However, the electron motion depends only on four inde-
pendent parameters since the hydrogen atom in an exter-
nal field obeys the scaling property [28]. Explicitly, the
motion is invariant under the scale transformation

H — )\H,

z,y,z = A e, ATy, A7z,

pi = \/2p;,

t,T,7 = A73/2 A73/27, \73/2,

w — A2,

F — A\%F, (2.3)
for arbitrary real A\. Suppose that we are interested in ex-
citation of the electron with initial energy E, = —1/2n?
by a field of amplitude F and frequency 2. Choose
A = n? and the scaling above; the resulting initial scaled
energy will be E = —1/2, the scaled field frequency
w = n3, and the field amplitude F = Fn*. The scaled
frequency is nothing but the ratio of the unscaled fre-
quency to the Kepler frequency wg = (—2En)3/2. Scaled
quantities are sometimes denoted by a subscript 0 in the
literature [3]. We shall not use the additional subscript
assuming from now on that all parameters are expressed
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in scaled variables.

All previous classical studies of the problem
[13,14,16,17,19] consider a simplified, two-dimensional
(2D) model obtained from Eq. (2.1) via restriction of the
motion to the z = 0 plane. The corresponding Hamilto-
nian is

_PtRy 1
== p
—Ff(t) [z cos(wt + ¢) + ysin(wt + ¢)],

H,
(2.4)

with p = 4/22 4+ y2. The 2D model is quite attractive.
Consider a purely monochromatic excitation [f(t) = 1
for t arbitrary]. Then transformation to the frame rotat-
ing with the microwave frequency w [29,16,17] makes the
Hamiltonian time independent. The system is effectively
two-dimensional (with phase space dimension N = 4)
and the standard tools of classical dynamics (such as
Poincaré surfaces of section [30]) working for NV = 4 may
be utilized. Of course, for the smooth f(t) considered
here, this is no longer valid.

One may remove the singularity of the Coulomb po-
tential in (2.4) by passing to the semiparabolic coor-
dinates, in analogy to studies of the hydrogen atom
in a strong homogeneous magnetic field [28]. Define
u = 4/p+ z and v = y/p — . Making an additional, non-
linear time transformation to the “local” time defined by
dt/dr = u? +v? = 2p allows us to write the Hamiltonian
of the 2D model in the form

2 2
7{2=2=%+%—E(u2+v2)

2 2

—Ff[t(r)](u® + v?) { S cosfwt(r) + ¢]

+uv sin[wt(T) + <,o]}, (2.5)

where F is the energy of the system. The Hamiltonian
‘H describes a system of two harmonic oscillators (with
common frequency /—2F for E < 0) coupled in a nonlin-
ear way via explicitly time-dependent perturbation. As
a result, the energy of the system is not conserved (af-
ter all we want to study excitation of the system), so to
write the equations of motion one must pass to the ex-
tended phase space [30] creating a momentum p; = —F
conjugate to t.

The presented approach, used previously also in one-
dimensional studies of ionization in LPM [31], while look-
ing a bit complicated, has two distinct advantages. First,
the Coulomb singularity is removed, enabling accurate
numerical integration. Second, a selection of the ini-
tial conditions corresponding to a chosen initial hydro-
gen state becomes very simple. The Hamiltonian of two
coupled harmonic oscillators can be easily put into the
form of action-angle variables and the angles may be se-
lected uniformly and randomly to produce a statistically
significant sample of initial conditions.

For a full 3D case, Eq. (2.1), the semiparabolic coor-
dinates (defined in terms of 7 not p; see [28]), are not a

good choice since the CPM problem is not axially sym-
metric (like the LPM ionization [7] or a static magnetic
field [28]). To remove the Coulomb singularity one must
exploit the full SO(4) symmetry of the hydrogen atom
[32-34]. The four-dimensional coordinates may be de-
fined as

81 = scosacos 3,
89 = scosasinf,
s3 = ssinacosvy,

s4 = ssinasiny (2.6)
and are related to standard spherical coordinates as
s =712, 20 = ©, and B + v = ¢ (equivalently one could
take the difference of B and « [33]) via the Kustaanheimo-
Stiefel (KS) transformation [35]. Thus r = isf. The
coordinates s; (2.6) and their corresponding momenta
p; = ds;/dt obey standard Poisson bracket {s;,p;} = 6;;.
By the nonlinear time transformation dt/dr = 4r the
Hamiltonian (2.1) may be transformed into an equiva-
lent system of four coupled harmonic oscillators with a
common frequency 2v/—2E:

4 2
H4=4=Z%—4E1‘
=1

—8rF f[t(7)]{(s153 — s254) cos[wt(T) + ¢]
+(s283 + s184) sinfwt(7) + <p]}, (2.7)

where momenta (we use the same notation for brevity)
are now equal to velocities with respect to a local time
7. The KS transformation to four dimensions involves
an additional constant of motion in the enlarged phase
space, namely,

L =1lyp —l34 = (s1p2 — s2p1) — (53ps — sap3) =0, (2.8)

which is the difference of angular momenta of the motion
projected onto (1,2) and (3,4) planes.

As far as we know, ours is the first application of the
full KS transformation in the classical study of the hydro-
gen atom. Note also that the restricted 2D case discussed
above is obtained by identifying the motion in the (1,2)
plane with that in the (3,4) plane via u = 2s; = 2s3 and
v = 285 = 2s4 and transforming in the linear way the
local time 7.

Finally, in order to follow the trajectory of electron in
the CPM field, we pass, as before, to the extended phase
space. The resulting dimension of the phase space is 10
(with coordinates s;,t). The increase of the problem di-
mensionality is rewarded by the removal of the Coulomb
singularity. The gain is both in the numerical accuracy
and in the integration speed since the motion is now
smooth and devoid of the strong singularities.

III. IONIZATION THRESHOLD DEPENDENCE
ON FREQUENCY

In the typical numerical simulations [2] of experiments
in the LPM ionization [1,9,10] a microcanonical distribu-
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tion of initial conditions was assumed. This choice origi-
nated from the nature of the experiment itself, in which
the principal quantum number of initial states was well
defined, however, due to the mechanism of initial state
preparation, a mixture of different I, m states entered the
interaction region. For different reasons, such a micro-
canonical distribution is appropriate for classical simu-
lation of ground-state ionization [27]; here the quantum
uncertainties are relatively large.

Of course much more information on the nature of the
ionization process is obtained when we have control over
the initial state. We assume, therefore, an experimen-
tal situation in which initial states are preselected, i.e.,
have definite quantum numbers I,m. In the semiclas-
sical limit (which should be valid for states with large
quantum numbers) this leads to initial conditions cho-
sen uniformly on an appropriate subspace of the energy
shell, namely, that corresponding to the definite values
of actions representing the total angular momentum and
its z-axis projection [36]. Then the equations of motion
resulting from the Hamiltonian Eq. (2.7) are integrated,
assuming a given pulse shape and its duration. At the
end of the pulse we determine final energies of electrons;
the positive values correspond to the ionization. The ion-
ization probability is then estimated as the ratio of ion-
ized electrons to the total number of initial conditions.
For situations in which the classical motion is indeed two
dimensional, we use the simplified 2D Hamiltonian, (2.5)
to avoid integrating the same equations twice. We have
verified that appropriate trajectories obtained using (2.5)
and (2.7) are the same in real space.

Let us begin with the ionization of initial circular states
since this problem has been already addressed both clas-
sically [17,20] and quantum mechanically [18] in the low-
frequency limit. To simulate the circular state we gener-
ate the initial conditions on the circular orbit ({ =m =1
at initial energy £ = —1/2) located in the plane coin-
ciding with the microwave polarization plane. In such
a configuration we may use the restricted 2D Hamilto-
nian. As discussed previously [17,19] in the |w| < 0.4
regime (recall that the sign of w determines the sign of
the CPM), the definition of the ionization threshold is
straightforward since for lower values of the microwave
maximal amplitude F' no ionization occurs, while at and
above the threshold value all trajectories ionize. This is
an indication of the predominantly regular motion and
the ionization process resulting from the sudden breakup
of a given torus (or rather the periodic orbit into which
an initial circular orbit evolves) [18,20]. The situation is
different at larger frequencies |w| > 0.4. Here the frac-
tion of ionizing trajectories changes smoothly between
zero and one over a significant range of the field values,
resembling the behavior observed for diffusive ionization
in LPM. We define, therefore, the threshold (for a given
pulse shape and its duration) as the CPM amplitude F'
at which 10% ionization occurs.

Figure 1 presents the ionization thresholds obtained for
a smooth, sine-squared pulse of duration 7" equal to 50
microwave periods (open symbols) and 500 microwave
periods (filled symbols). At first glance the resulting
curves are symmetric with respect to w = 1, which cor-

FIG. 1. Scaled 10% ionization threshold field amplitude
F (scaled microwave amplitude for which 10% of the atoms
ionize during the interaction time) versus scaled frequency w
of the microwave “adiabatic” pulse applied. Initial conditions
are chosen on a circular orbit, coinciding with the polarization
plane (the 2D Hamiltonian model is exploited here). Open
dots represent data for the pulse time T' = 50 cycles of exter-
nal field and 7 = 25 [sine-squared pulse; see Eq. (2.2)]. Filled
dots refer to T' = 500 external field periods (the same switch
on-off time 7). Lines are drawn to guide the eye. For further
discussion, see the text.

responds to resonance between the electron and the field
(in the frame rotating with the frequency of the field the
electron is at rest). The symmetry is broken by the step-
like behavior around w = 0 (for a detailed discussion of
this interesting behavior we refer the reader to previous
works [17,20,18,19]). Similarly a sharp minimum in the
ionization threshold at w = —1, corresponding to the
“antirotating” situation, has no counterpart at positive
frequencies.

It seems that the ionization process has a quite differ-
ent character in various frequency regimes. In the small
frequency regime |w| < 0.4, the threshold is independent
of the pulse duration [19]. That confirms the interpre-
tation of the ionization threshold as being determined
by a final breakup of a regular structure embedded in
the chaotic phase space (which corresponds, as we shall
show below, to points originating from elliptic initial or-
bits). For higher frequencies the threshold field becomes
dependent on pulse duration, which suggests a diffusive
character of excitation, as suggested before [4,16]. For
sufficiently long pulses the threshold should again be in-
dependent of the pulse duration and determined by the
breakup of last invariant curves. Indeed for pulses longer
than T = 500 cycles (not shown), the dependence on the
pulse duration becomes weaker as tested for a few chosen
frequency values.

The sharp increase of the threshold value for high fre-
quencies |w — 1| > 2 is also worth noting. It occurs when
the relative frequency of the field and that of the electron
initial motion are greatly mismatched.

The global features of the ionization threshold fre-
quency dependence are to some extent dependent on the
orientation of the circular state with respect to the po-
larization plane. Suppose that the initial circular state
is prepared not in the plane of light polarization, but
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at some angle with respect to it. Since our coordinate
frame is fixed with respect to field orientation, this will
correspond to ! = 1 and m < 1 values of the angular
momentum and its projection onto the axis perpendic-
ular to the polarization plane. In Fig. 2 results of the
simulation obtained for m = 1/4/2 (corresponding to the
angle § = 7 /4 between the polarization plane and the
plane defined by the circular orbit) are presented. The
sharp increase of the ionization threshold for high (in
absolute values) frequencies still dominates the picture,
which, however, becomes more symmetric with respect to
w = 0. This is easily understood, keeping in mind that
no differences exist between the two types of circular po-
larization (i.e., the sign of w becomes irrelevant) for the
orbit perpendicular to the polarization plane (6 = 7/2).
That explains also the less significant asymmetry around
w = 0, as discussed in detail elsewhere [20]. Note that
the antirotating resonance is still quite significant.

A. High-frequency behavior

The stabilizing effect observed for high frequencies is
quite spectacular. Is it a characteristic feature of circu-
lar initial states only? Consider an elliptic initial “state”
(I = m = 0.66) again located in the polarization plane
(Fig. 3). Although the threshold still increases as a func-
tion of the field, the effect is significantly smaller and
decreases with increasing state eccentricity € = v/1 — [2.
Similarly, the high-threshold feature may be destroyed
by considering not a slowly varying in amplitude “adia-
batic” pulse but a “square” pulse as shown in the same
figure. Since such a pulse is extremely nonadiabatic, dur-
ing the turn on of the pulse the initial distribution of
points is strongly modified. The obtained threshold be-
havior strongly resembles that observed for elliptic states.

The influence of the pulse shape and initial electronic
state on the ionization probability is illustrated further in
Fig. 4. The frequency chosen (w = 2.2) is at the border
of the “high-frequency regime” and the “diffusive regime”
(see below). Note big differences between different curves

1.0
F

0.8

0.6

0.4

0.2

0.0

-3 -2 -1 0 1 2 3 4

FIG. 2. Same as in Fig. 1, but initial conditions are chosen
on a circular orbit positioned at angle ® = m/4 to the po-
larization plane (results of fully 3D calculations). Open dots
depict data for the pulse time T' = 50 cycles of external field
and 7 = 25 (sine-squared pulse). Filled dots refer to T' = 500
external field periods (the same switch on-off time 7).
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FIG. 3. Same as in Fig. 1, but different initial conditions
and pulse shapes are applied. Squares refer to initial circu-
lar states (I = 1) in the presence of a sharply rising pulse
(7 = 0.1) of length T' = 50; triangles denote a 10% thresh-
old field for a smooth pulse (7 = 25) of the same length, but
initial conditions are placed on elliptical orbits (I = 0.66).
The reference broken line stands for the case of the adiabatic
(sine-squared 7 = 25) pulse of length T' = 50 with circular
initial states (compare Fig. 1).

for low F (i.e., close to the ionization threshold). The dif-
ference becomes less pronounced for higher fields when
the ionization probability is quite large. In particular
note that curves corresponding to different turn-on times
7 practically coincide. This is easily understood bearing
in mind that for a fixed 7, the field amplitude changes
faster during the rise of the pulse for larger maximal am-
plitudes. Thus a “slowly rising” pulse changes into the
nonadiabatic one for strong enough F'.

Interestingly, notice that the ionization probability
does not reach unity but rather saturates at a slightly
lower, independent of the initial state and pulse shape,
value. This suggests the existence of stable trapping re-
gions for high field amplitudes and is reminiscent of the
so-called “stabilization” effect [37] observed also in clas-

| Ny
p | oaln W ‘

0.8 ] ﬂ}:,:a-ﬂ‘

: fa {
06 K
04 |

i 'y |

i / i !
02 4 4

.

; A J 1 |

0.0 ‘aanenoe

0.0 0.1 0.2 0.3 0.4
F

FIG. 4. The influence of the pulse shape and the initial
conditions on the probability ionization p, for a fixed scaled
microwave frequency w = 2.2 (the 2D Hamiltonian model is
applied). In each case, the length of the pulse of the maximal
scaled amplitude F is T' = 500; dots represent data for circular
initial statc. and adiabatic pulse (7 = 25), triangles the same
pulse and elliptical (I = 0.66) initial conditions, and squares
the sharply rising (7 = 1) pulse and circular initial states. For
further description, see the text.
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sical simulations of ionization in linearly polarized radi-
ation [27].

The increase of the ionization threshold with frequency
for sufficiently large |w| values is quite understandable if
we consider the system as a set of two coupled oscillators,
the nonlinear oscillator (the atom) and the electromag-
netic field mode. The huge frequency difference allows
then for the adiabatic averaging over the “fast motion,”
which leads to an effective atomic potential for the “slow
motion.” The averaging procedure is best carried out
in the Kramers-Henneberger frame [38,37] in which the
nucleus oscillates with the field frequency. Under the
condition a = F/w? < 1 one can expand the potential in
the power series and average over the fast motion using
the Kapitza method [39]. A similar approach has been
used for linearly polarized microwave excitation of high
angular momentum states [41]. The resulting effective
potential is radially symmetric

7a? 1
4wt ro

Veff:_l_cﬁ 5a2 1

= - - 4
S-S+ +0(a%). (3.1)

Thus the motion in the effective potential is strictly in-
tegrable (angular momentum is conserved). As long as
the coupling with fast variables is weak, no excitation
occurs. Figure 5 illustrates the fate of different trajecto-
ries in rather strong fields, but for a relatively small a.

Excitation, or possible ionization as in Fig. 5(c), occurs

when the coupling between slow oscillations (Kepler-like
motion) and fast motion (epicycles) occurs, i.e., when
small loops degenerate into cuspid curves. Note that the
excitation process may take place far from the nucleus,
contrary to some predictions [16]. This behavior is the
opposite of the one observed for low angular momentum
states in classical LPM ionization (the so-called chaos
border [4]). In the latter case the collisions with the nu-
cleus lead to an efficient excitation mechanism of diffusive
character.

By the same mechanism classical calculations of ion-
ization for purely Coulombic systems may overestimate
the ionization probability and lead to an underestima-
tion of stabilization for linearly polarized excitation [27].
On the contrary, for CPM, the threshold amplitude val-
ues obtained in classical calculations for large |w| should
significantly overestimate the quantum predictions in the
case of circular states except, maybe, for very large prin-
cipal quantum numbers n. The semiclassical wave func-
tion corresponding to a circular state is localized in the
vicinity of the circular orbit in the “toruslike” form of
finite thickness. As a result, the semiclassical simulation
of the ionization process [36] should include, in princi-
ple, the average over orbits with different eccentricities
(confined to the interval dependent on n) and over ini-
tial orbit orientations with respect to the polarization
plane [according to the distribution related to the cor-
responding harmonic P*(cos#)]. Such an average would
(as follows from results shown in Figs. 2 and 3) lower
the threshold value for circular states. On the basis of
classical simulations we may expect also a significant de-
pendence of the threshold on the shape of the microwave
pulse (and in particular its rise time) in quantum studies.

B. Diffusive ionization regime

As mentioned above the dependence of the ionization
threshold on the pulse duration for w > 0.4 suggests
that the ionization takes place in the diffusive manner
in this regime. One expects, therefore, that below a cer-

-1.5 -1.0 -0.5 0.0 05 1.0 1.5

FIG. 5. Classical orbit of the electron in the (z,y) plane
(2D simulations) for high field frequency w = 4 and strong
short sine-squared pulse (T = 50, 7 = 25) of the maximal
amplitude F = 4.5 (a = 0.28125). Each panel presents the
electron trajectory during the pulse time for one initial condi-
tion chosen on a circular orbit. (a) and (b) present examples
of nonionizing orbits and (c) shows the ionization process at
the end of the pulse, i.e., when the field amplitude is much
smaller than the maximal amplitude. The cross depicts the
position of the nucleus. Note that in each case, even when
ionization occurs, the trajectory passes far away from the nu-
cleus.
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tain frequency- and initial-state-dependent threshold the
motion in the phase space is regular. Above the thresh-
old, when the maximal microwave field amplitude ex-
ceeds a certain value, a diffusive gain of electron energy
(or rather the corresponding action; see below and [4]) oc-
curs. The amount of energy gained for a single electron
should be strongly dependent on the initial conditions.
To characterize the resulting distribution, we define, in
the obvious analogy to quantum mechanics, the “quan-
tum number” n (which is also one of the classical actions
[4]) via E = —1/2n? for a given energy E. Recall that
initially we take E = —1/2 corresponding to n = 1; thus
the initial n distribution is § peaked at » = ng = 1. The
atom is then excited by a smooth sine-squared pulse of
duration T' = 500 cycles. We monitor the energy (and
n values) of electrons during the pulse excitation. Ac-
tually, to store less data, only first and second moments
of the resulting distribution are collected. The moments
are defined in an obvious way:

my(t) = (n(t) — no),

ma(t) = ((n(t) — (n(t)))*)/n} - (3:2)
Above the threshold, a finite fraction of electrons gets
ionized and the corresponding n values are not defined.
Such events are excluded from the calculation of mo-
ments. To avoid large local fluctuations (when an elec-
tron passes through very large n values before leaving the
atom) we include on the average only trajectories with
n(t) < 10.

Let us begin our discussion with initial circular states.
A typical “below threshold” behavior is depicted in Fig.
6. Figures 6(a) and 6(b) represent the first and the sec-
ond moment, respectively. Note that although the elec-
tron gains some energy in the microwave field (the pon-
deromotive contribution is eliminated), it gives back the
energy to the field and returns to the same initial orbit.
Note how nicely the dispersion (second moment) comes
back to zero after the pulse has passed. Let us stress
that such a behavior is typical for smooth pulses only,
when the atom can adapt to changes of the microwave
field amplitude (see also below).

A typical “diffusive excitation” example is presented in
Fig. 7 for the same maximal field amplitude but a slightly
smaller frequency. Note that in this case, electrons on
average gain some energy after the pulse has passed [first
moment in Fig. 7(a)], but the resulting distribution is
not concentrated at some n value [compare the second
moment in Fig. 7(b)].

The diffusion process is strongly frequency dependent,
as exemplified in Fig. 8 for longer pulses. To facilitate
the comparison we adjusted the maximal field amplitudes
to have similar ionization probabilities (to partially elimi-
nate the influence of the frequency-dependent threshold).
The figure shows a quite typical behavior for w > 1,
namely, the slowing down of the diffusion with increas-
ing frequency. The estimates of the diffusion coefficient
dependence on the frequency and field amplitude have
been obtained for monochromatic fields only [4]. We do
not attempt to determine the “effective” coefficients for
smooth pulses since this would require much more exten-

sive numerical studies.

In fact, the excitation process is strongly dependent
on the pulse shape. Assume a rectangular pulse shape,
for which we choose the unrealistic switch on-off time
7 = 0.1, keeping other parameter values the same as for
the below threshold behavior presented in Fig. 6. The
results (Fig. 9) show a strong diffusive excitation. The
huge difference between Figs. 6 and 9 (in both cases elec-
trons were initially localized on a circular orbit) can be
explained only by the fact that for a sharply rising pulse,
electron motion becomes strongly distorted and loses its
memory about the initial orbit (the electron is “kicked”
into a different phase-space region). This idea can be
verified by analyzing the excitation process of initially
elliptic states (Fig. 10). The results indicate that in-
deed such states (orbits) become significantly excited in
the diffusive manner for the same frequency, but for a
smaller value of the maximal field amplitude to compen-
sate for the faster excitation process. Thus the circular
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FIG. 6. Statistical moments (a) m; and (b) m2 [see Eq.
(3.2)] of the ensemble of initial circular state conditions as a
function of the interaction time ¢ (the 2D model is assumed).
The broken line shows the shape of the (sine-squared) pulse of
maximal amplitude F = 0.1 and duration T = 500 external
field cycles (7 = 250). This is “below threshold” behavior.
A field frequency w = 2.2 and 1000 initial conditions were
taken. The energy of the electron (pondermotive energy is
excluded) is transformed into an equivalent principal quantum
number n(t). Each orbit during the interaction time fulfills
the condition n(t) < 10. For a more detailed description, see
the text.
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and low eccentricity states are more resistant to excita-
tion than the elliptic states. Here our numerical study
confirms the predictions obtained on the basis of the res-
onance overlap criterion by Howard [16]. Note, however,
that elongated, high eccentricity states (I = m = 0.01)
are less excited than typical elliptic states (I = m = 0.5);
thus the excitation mechanism cannot be unambiguously
linked solely to collisions with the nucleus (as often sug-
gested in the literature).

Finally, Fig. 11 presents typical results obtained in
the fully three dimensional model in the diffusive regime.
As intuitively expected, the diffusion is slower with an
increasing angle between the orbit and the polariza-
tion plane. This supports the claim [16] that ionization
thresholds for arbitrary states may be well approximated
in a 2D model. The effect of the external field is strongest
if the initial orbit coincides with the polarization plane.

C. “Negative” frequencies regime

Recall that, in our notation, “negative” frequencies
correspond to the case of negative m values when the
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FIG. 7. Same as in Fig. 6, but for a slightly smaller field
frequency (w = 1.9); the maximal field amplitude is the same.
Note that (a) after the pulse has passed, electrons on average
gain some energy; the distribution is smear out over a vast
region of n values [(b) note the considerable final second mo-
ment]. In this case 696 initial conditions out of 1000 lead to
excitation n(t) > 10.

electron rotates in the opposite direction to the CPM
field. For small w the motion is mainly regular and the
ionization threshold is independent of the pulse duration
[17]. For larger (in the absolute sense) frequencies, first
the region dominated by the pronounced antirotating res-
onance at w = —1 is reached and then the threshold field
values increase sharply (compare Fig. 1). The latter ef-
fect appears since the relative frequency between the field
and the electron motion becomes large. Thus the region
of typical diffusive excitation, with a slow dependence
of the ionization probability on the maximal field ampli-
tude, practically disappears, at least for circular states
lying in the CPM polarization plane. Instead one ob-
serves a quite sharp threshold behavior of the ionization
probability (see Fig. 12) similar to that observed for high
positive frequencies (compare Fig. 4).

The appearance of a strong resonance at w = —1 (or
rather a field shifted value of w =~ —0.9) in the form of
a deep dip in the threshold frequency behavior is due to
a 1:1 resonance between the electron and the field which
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FIG. 8. (a) First and (b) second statistical moments for
the field frequency w = 1.9 and the maximal field amplitude
F = 0.07 (triangles) and w = 2.2 and F = 0.13 (dots). There
is an assumed sine-squared pulse (the broken line shows its
shape in time) and circular initial conditions (the 2D model
is used). The field amplitudes have been taken to achieve
approximately the same ionization probability during the in-
teraction with the pulse (p ~ 0.04). For w = 1.9, 220 out of
1000 initial conditions were recorded, leading to the excita-
tion n(t) > 10; for w = 2.2 there were only 159 such initial
conditions. For further discussion, see the text.
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facilitates excitation. The resonant behavior is amplified
since it is surrounded by two relatively stable regions of
small absolute frequencies and a large w shoulder. A
comparison of Figs. 2 and 3 shows that this feature is
quite insensitive to perturbations and therefore should be
possible to observe experimentally under the condition of
selective initial-state preparation (which is not an easy
task).

The comparison between Figs. 1 and 2 reveals another
interesting feature of the negative frequency regime. For
an angle ® = /4 between the plane of a circular ini-
tial orbit and a polarization plane (Fig. 2) one can ob-
serve well pronounced resonance for w ~ —2.9 (this cor-
responds to m = —1/4/2 and field frequency w =~ 2.9).
This deep resonance, which may be attributed to a 3:1
resonance between the field frequency and the electron,
is absent for the case when the orbit plane coincides with
the polarization plane (compare Fig. 1).

D. “Stabilization windows”

There has been much discussion recently about pos-
sible mechanisms of “stabilization,” i.e., a decrease of
the ionization probability with the increasing field am-
plitude. Omne of the mechanisms, commonly called the
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FIG. 9. Same as in Fig. 6 (again w = 2.2), but for a sharply
rising pulse (7 = 0.1) of maximal amplitude F = 0.05; the
initial conditions are located on the circular orbit. Only 19
out of 1000 initial orbits have been rejected in the statistical
moments’ evaluation. I
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adiabatic stabilization [37], is characterized by a stable
decrease of the ionization rate with the field amplitude
(for sufficiently large frequencies) after a state-dependent
threshold field value has been reached. The effect is quite
pronounced when studied in the field-dressed (Floquet)
basis as a property of a single state uniquely (adiabat-
ically) evolving from the field-free atomic state. It re-
mains an open question to what extent the realistic pulse
excitation will allow for a sufficient population of a single
Floquet state to observe the effect and whether the atom
will not ionize earlier during the pulse rise [40].

The second mechanism, called the dynamic stabiliza-
tion, may occur for short laser pulses. If during the pulse
rise the atom is excited to a high-lying state, the elec-
tronic wave packet may leave the vicinity of the nucleus
(where further energy absorption is possible) and return
only after the pulse had died away [45,46]. Such a be-
havior is typically characterized in the ionization depen-
dence on the pulse amplitude by stabilization windows
[finite intervals of negative dp(F')/dF), i.e., dips causing
a nonmonotonic increase of p(F'). Similar behavior may
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FIG. 10. Time evolution of the statistical moments for el-
liptic initial states located in the polarization plane: I = 0.01,
triangles; | = 0.5, squares. The broken curve depicts
the shape of the sine-squared pulse of maximal amplitude
F = 0.05 and frequency w = 2.2. A smaller value of F' (com-
pare Figs. 6 and 9) was taken to compensate for the more
efficient excitation in the case of elliptic initial conditions .
In the simulations for each value of [, 2000 initial values have
been taken. For ! = m = 0.5, 538 trajectories ended up above
n = 10, whereas for a much smaller value I = m = 0.01, there
were only 114 such cases. For further discussion, see the text.
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occur classically [27].

The latter mechanism is quite frequent in our classical
simulations of circularly polarized excitation. The typ-
ical classical trajectory exemplifying this case has been
shown in Fig. 5. While the data have been obtained
for a longer pulse and the electron managed to return
sufficiently close to the nucleus to undergo deexcitation
[Fig. 5(b)] or subsequent ionization [Fig. 5(c)], for a suf-
ficiently short pulse it would have remained in the bound
excited state in both cases.

It is worth stressing that a quite similar behavior, i.e.,
nonmonotonic behavior of the ionization probability as
a function of the pulse amplitude, may be observed in
a completely different frequency and intensity regime—
for microwave ionization in both linearly and circularly
polarized radiation. In LPM this behavior, sometimes re-
ferred to as “subthreshold” peaks, has been noted both
for w < 1 [42] and for w > 1 [43] and discussed in detail
[7]. It may be correlated with the sensitive dependence
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FIG. 11. Statistical moments for the 3D model. A
sine-squared pulse of maximal amplitude F = 0.05 was as-
sumed. Initial conditions lie on an elliptic orbit I = 0.5. Dots
represent data for the case when an initial orbit lies in the po-
larization plane (m =1 = 0.5) and triangles and squares refer
to data obtained for initial orbits at angle with the polariza-
tion plane such that the projection of angular momentum m
is equal, respectively, to 0.4 and 0.2. The numbers of rejected
orbits during the simulations are 288, 176, and 80 for m=0.5,
0.4, and 0.2, respectively. There were 1000 initial conditions
in each case. The broken line represents the pulse shape in
time. (a) shows the first moment and (b) the second one
during the interaction time.
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FIG. 12. Ionization probability p versus maximal field am-
plitude F of the sine-squared pulse (7 = T'/2) for T = 50
external field cycles (short pulses). Triangles show the de-
pendence for negative frequencies, filled triangles are for
w = —0.8, and open symbols for w = —0.9. Filled squares
denote data for w = 1.5. Here 500 circular initial conditions
have been taken for each case.

of Floquet state widths on field amplitude due to abun-
dant avoided crossings in the partially chaotic regime or
classically to the presence of field-dependent resonances
and other quasiregular structures in the phase space.

A typical situation is presented in Fig. 13. Note a
strongly nonmonotonic behavior of the ionization prob-
ability for w = 1.2, strongly dependent on the pulse du-
ration. This suggests that the structures responsible for
such a behavior are not a stable islands (in which case
one would rather expect a trapping of a certain portion of
initial conditions inside such a structure independently of
the pulse duration) but rather quasiregular bottlenecks
for transport preventing the excitation (and ionization).
A different situation occurs for w = 1, where presum-
ably a stable secondary resonance island existing for the
F € [0.04,0.06] interval is responsible for a pronounced
plateau, which is quite insensitive to the pulse duration.
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FIG. 13. Ionization probability p dependence on maxi-
mal field amplitude F. Here “flat-top” long pulses are ap-
plied (open symbols, T=500 in Kepler units; filled symbols,
T = 1500 in Kepler units). In each case, the turn on-off time
7 = 50 in Kepler units. Triangles represent data for w = 1.0
and squares show data for a slightly greater frequency, namely,
w = 1.2. Note that for w = 1.0 there are no significant dif-
ferences between results for pulses of different lengths. For
further discussion, see the text.
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Let us note here that such an atypical p(F') behavior sug-
gests strongly nonexponential decay. In fact, one may
observe in such a case an algebraic decay curve by look-
ing at the dependence of the ionization probability [or
rather the survival probability s(T") = 1 — p(T')] on pulse
duration T as discussed for a simplified linear polariza-
tion case [44] and also for CPM [47].

It should be stressed that the mechanism leading to
stabilization windows for relatively weak (just above the
threshold value) field amplitudes and practically arbi-
trary frequency (except for the low-frequency “regular”
regime) is distinctly different from the typical short and
strong pulse stabilization window. In the chaotic ioniza-
tion, the effect appears for sufficiently long interaction
times such that the presence of quasiregular structures
in field distorted phase space may determine the elec-
trons’ fate. For short strong pulses such a picture loses
its meaning as the field amplitude changes too fast in
time.

IV. CONCLUSION

The aim of this, primarily numerical, study has been
to study in detail the classical features of ionization of
atoms by circularly polarized radiation. In this sense
this work both extends the previous classical investiga-
tions [13,14,16,17,19] into different frequency regimes and
supplements mostly analytical studies [13,14,16,19].

Our simulations indicate that there are practically
three frequency regimes: a low-frequency regime with
predominantly regular behavior [17-19], a diffusive
chaotic regime of intermediate frequencies, and a high-
frequency regime where the atoms are more resistant to
ionization and where a regular motion also persists for
fields below the ionization threshold. In agreement with
resonance overlap based predictions [16] we have found
that circular states are most resistant to CPM perturba-
tion. Typically the states most vulnerable to ionization
are the states of intermediate quantum numbers oriented
mostly in the polarization plane. The threshold behavior
of such states should thus determine the threshold for
ionization in experiments in which no initial-state selec-
tion will be attempted.

This conclusion is in some contradiction to claims that,

at least for sufficiently high frequencies, the ionization
takes place as a result of hard collisions with the nucleus.
In fact, at least for most of the low eccentricity states
intensively studied by us, although some ionization oc-
curs in this fashion, collisions with the nucleus are not a
primary mechanism of ionization. That makes a Kepler
map approach [4,14] for such states quite questionable.
In particular note that in marked difference with the lin-
ear polarization case [4], the ionization thresholds for all
the typical situations studied here increase with increas-
ing w instead of decreasing as in a simple one-dimensional
H atom classical model. On the other hand, low eccen-
tricity states in LPM classical simulations [48] behave in
a way similar to the CPM case discussed here.

The increase of the ionization threshold with frequency
is particularly spectacular classically for circular states
lying in the light polarization plane. As discussed above,
we expect that the effect will be seriously diminished in
quantum world, but nevertheless it could be quite pro-
nounced. Its experimental verification requires, however,
a state-selective initial preparation of atoms before their
interaction with the microwaves. That may be quite dif-
ficult experimentally. We think, however, that both the
interesting low-frequency effects [17,18] as well as the
phenomena shown here (the antirotating resonance and
the symmetry of high-frequency behavior with respect
to w—1) deserve to be experimentally verified, especially
since measurements of the microwave ionization of atoms
prepared in a well defined preselected state would deepen
significantly our understanding of the chaotic ionization
process also in the LPM case and would provide a new
challenge for the theory.
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