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A generalized strong-field approximation is formulated to describe atoms interacting with intense
laser fields. We apply it to determine angular distributions of electrons in above-threshold ionization
(ATTI). The theory treats the effects of an electron rescattering from its parent ion core in a systematic
perturbation series. Probability amplitudes for ionization are interpreted in terms of quasiclassical
electron trajectories. We demonstrate that contributions from the direct tunneling processes in the
absence of rescattering are not sufficient to describe the observed ATI spectra. We show that the
high-energy portion of the spectrum, including recently discovered rings (i.e., complex features in
the angular distributions of outgoing electrons) are due to rescattering processes. We compare our
quasiclassical results with exact numerical solutions.

PACS number(s): 32.80.Rm, 42.65.Ky

I. INTRODUCTION

In recent years, there has been considerable progress
in understanding strong-field laser-atom interactions due
to the development of the two-step, strong-field ioniza-
tion model [1]. The model, which combines quantum and
classical aspects of the laser-atom interactions, proved to
be very useful in explaining [2,3] high harmonic gener-
ation (HG) [4,5], and especially the location of the cut-
off [6] in the HG spectra. According to this model, the
electron first tunnels {7,8] from the ground state of the
atom through the barrier formed by the Coulomb poten-
tial and the laser field, creating an electron wave packet
of continuum states each time the field passes through
its maximum amplitude. The subsequent motion of the
excited electron can be treated classically, and primarily
consists of the free charge oscillating along the direction
of polarization of and in phase with the laser field. The
electron might come back into the vicinity of the nu-
cleus and recombine back into the ground state, emitting
a photon. If it returns with a kinetic energy FEyi,, the
photon energy will be Eyi, + I, where I, is ionization
potential. This has been shown [2,3] to be the source
of recently observed [4,5] very high-order harmonic emis-
sion. Additionally, when the electron rescatters it might
also change its direction and drift energy in the field, pro-
ducing a photoelectron energy distributions which can
include high-energy electrons, possibly with structured
angular distributions. The focus of this paper is to de-
scribe calculations of photoelectron spectra in this regime
and to discuss the dynamics of the emission process.

Recently, L'Huillier et al. [9] and Lewenstein et al. [10]
formulated a fully quantum theory valid in the tunneling
limit (U, > I, > w), where U, = E?/4w? is the pondero-
motive potential, i.e., the mean kinetic energy acquired
by the electron in the laser field of amplitude E and fre-
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quency w. The theory, which is a version of Keldysh-
Faisal-Reiss (KFR) approximation [7], not only recovers
the semiclassical picture of the two-step model, but in-
cludes the effects of quantum tunneling, quantum diffu-
sion, and interference. Particularly fruitful was the qua-
siclassical analysis of this theory in terms of the saddle
point method, when one looked at the propagation of the
electronic wave packet in the time interval between the
transitions into the continuum and back to the ground
state. It turns out that within this analysis one can iden-
tify trajectories of the electron in phase space that con-
tribute most strongly to particular transition amplitudes,
just as it is done within the path integral formulation of
quantum mechanics [11]. We call those trajectories qua-
siclassical, since although they follow classical Newtonian
dynamics, the dynamics must take place in the complex
domain to account for tunneling [8].

Recently, two laboratories [12—14] reported features in
above threshold ionization (ATI) of noble gases excited
by linearly polarized fields. The angular distributions of
electrons in the ATI spectrum are typically aligned along
the polarization axis. They found that this is not true
for few high-energy peaks, which exhibit highly struc-
tured and much broader angular distributions, including
rings. These side lobes on the angular distributions ap-
pear as rings because of the cylindrical symmetry of the
system Hamiltonian about the polarization axis. It was
observed that the rings are present only for electronic en-
ergies in the range near (8 — 10)U,. It has been proposed
[15] that rings are attributable to electron rescattering
by the parent ion core. Rings have been observed in nu-
merical simulations of Schafer and Kulander [16], and
a “naked-eye” analysis of the time-dependent dynamics
of the electronic wave packet indicates that they are in-
deed at least to some extent caused by rescattering [15].
Although in experiments and in numerical simulations
the appearance and strength of the rings depend on the
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noble gas used, the proposed interpretation in terms of
a rescattering process and scaling with U, seems to be
universally valid. Note that both experiments and theory
have dealt with the case U, < I,,, which is, strictly speak-
ing, not in the tunneling regime. Numerical simulations
suggest, however, that for U, > I, the appearance of
these off-axis structures could be even more pronounced.

The numerical solutions of the time-dependent
Schrodinger equation (TDSE) describing an atom inter-
acting with the intense laser field, in principle, provide
a full quantum description of the ATI spectra. Unfortu-
nately, these calculations require a large amount of com-
puting time and are impractical for spectra containing
very high-energy electrons, so that results have been ob-
tained only for a restricted regime of parameters. There-
fore, it seems reasonable to seek a simpler theory which
would (a) allow the generation of results for a wider range
of parameters; (b) allow for intuitive physical interpreta-
tion.

According to KFR theory, sometimes termed the
strong-field approrimation (SFA), ATI spectra result
from the direct tunneling processes only. Strong-field
approximation neglects the effects of electron returns to
the nucleus and rescattering. In the tunneling regime,
electrons are promoted to the continuum with relatively
small drift energies so that the oscillating field has a high
probability, approximately 1/2, of driving the electron
back across the plane of its parent ion, possibly chang-
ing its energy and direction. Therefore, these collisions
play an important role in the final state distributions.
Thus, in this paper, we present a generalized strong-
field approximation (GSFA), which treats the effects of
electron rescattering in a systematic perturbation expan-
sion. Generalized strong-field approximation is formu-
lated along the lines of Ref. [17] which describes, to our
knowledge, the first systematic attempt to refine SFA in
that respect. Also, to get a better physical understanding
we perform quasiclassical analysis of the electron ioniza-
tion amplitudes. We show that the zeroth-order solutions
in our perturbation series describe direct tunneling pro-
cesses and are dominated by two families of relevant com-
plex trajectories. Such trajectories in the limit I, — 0
describe an electron leaving the nucleus at some time
t with approximately zero velocity. The first-order solu-
tions that account for electron rescattering are dominated
by several families of relevant trajectories. These trajec-
tories correspond in the limit I, — 0 to electrons leaving
the nucleus at some time ¢’ with near zero velocity, re-
turning to the nucleus at later time ¢ and “rescattering.”
Rescattering consists mostly in the instantaneous change
of electronic canonical momenta without the change of its
kinetic energy at time t. Nevertheless, since these pro-
cesses occur in the presence of the laser field, they lead
to redistribution of the final kinetic momenta of electrons
as the field is turned off, or as electrons leave the laser
focus.

We apply our theory to a model atom with short range
potential. We show that, generally, direct tunneling pro-
cesses do not describe ATI spectra correctly in the regime
of parameters employed in the experiments mentioned
above. Direct tunneling spectra fall off too quickly at
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high energy. When rescattering is included the energy
distributions fall off more slowly and well pronounced
rings appear in the angular distributions for electrons
with higher energies.

The plan of the paper is as follows. In Sec. II, we
present the GSFA in detail, formulated as a systematic
perturbative expansion in terms of part of the interac-
tion Hamiltonian. We derive here explicit formulas for
the probability amplitudes of the electron in the contin-
uum after the turnoff of the laser pulse. In Sec. III, we
define the quasiclassical analysis of the amplitudes corre-
sponding to direct tunneling and rescattering. In Sec. IV,
we introduce a model atom with short range potential. In
Sec. V, we describe calculated ATI spectra for this model
atom, and discuss results in various regimes of the laser
parameters. In particular, we compare our results with
the exact solutions of TDSE. Section V contains also our
conclusions regarding this phenomenon.

II. GENERALIZED STRONG-FIELD
APPROXIMATION

In this section, we discuss a generalized strong-field ap-
proximation, which is an approximate method for solv-
ing the time-dependent Schrédinger equation for an atom
driven by the intense laser field. We consider the atom
in a single-electron approximation under the influence of
the laser field E sin (t) of linear polarization in the z di-
rection (we use atomic units, but express all energies in
terms of the photon energy). In the length gauge, the
Schrédinger equation takes the form

| ¥(x,t)) = |:——21—V2 + V(x) — Ecos (t)z| |¥(x,t)). (1)

Initially, the system is in the ground state, denoted as
|0), which, in general, has some spherical symmetry.

We consider the case when I, > 1 and when U, is
comparable or larger than I, so that I,/2U, < 1. We
start our discussion by treating the case when ionization
is weak, so U, should be large, but still below the satura-
tion level, Usat, when all atoms ionize during the interac-
tion time. In this regime of parameters, the strong-field
approximation [7,8] becomes valid [18]. The intensities
are large enough (10'2-10'® W/cm?) so that intermedi-
ate resonances, including dynamically induced ones (see,
for instance, [19]), play no role. The electron leaves the
atoms typically when the field reaches its peak value.
The effects of the force due to the potential, —VV(x),
are then negligible. The electron undergoes transitions
to continuum states, which we label by the kinetic mo-
mentum of the outgoing electron |v). As it is accelerated
in the field, it quickly acquires a high velocity, so that
the role of V(x) is even less pronounced.

The above considerations suggest that the following
assumptions should be valid in the regime of parameters
that we consider.

(a) The contribution to the evolution of the system
of all bound states except the ground state |0) can be
neglected.
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(b) The depletion of the ground state can be neglected
(Up < Usat)-

(c) In the continuum, the electron can be treated as a
free particle moving in the electric field with no effect of
V(x).

The detailed discussion of the validity of these assump-
tions, and, in particular, the most crucial assumption (c),
can be found in Refs. [7,10]. There are several theoreti-
cal approaches that incorporate assumption (c) in solving
Eq. (1). Ammosov et al. study the “classical” dynamics
of the electron in the complex domain in order to describe
tunneling ionization. Keldysh used a version of the S-
matrix theory with final states described by Volkov wave
functions ([7], see, also, [20]). An alternative approach
based on the time-reversed scattering-matrix theory has
been proposed by Reiss [21]. We prefer to follow Ref.
[17], since this approach is more closely related to stan-
dard methods of quantum optics and atomic physics, in
the sense that it either neglects or treats as a perturba-
tion part of the interaction Hamiltonian.

If we neglect the contribution from all other bound
states except the ground state |0) [22], the wave function
may be written in the form

B(1)) = et (a<t>|o> + [, t>|v>) L@

where a(t) ~ 1 is the ground state amplitude, and
b(v,t) are the amplitudes of the corresponding contin-
uum states. We have factored out, here, free oscillations
of the ground state amplitude with the bare frequency
I,. The states |v) are the eigenstates of the free Hamil-
tonian corresponding to outgoing electrons with velocity
v,

19 vig| vy = L. 3
57 v m =

Note that since we use an expansion in terms of the
eigenstates of the free Hamiltonian, we can, in principle,
account for the Coulombic correction to the asymptotic
phase shift of the states |v) when V(x) is a long range
potential.

To express the time evolution of the electronic state in
the space spanned by |0) and the |v)’s, we need to know
the matrix elements,

(O]x|v) = d(v) (4)

and

(VIxIV') = G(v, V). (5)
A continuum-continuum (CC) matrix element can be ex-
pressed generally (for both short range and long range
potentials) in terms of its most singular part plus the
rest,

G(v,v) =iV (v — V') +g(v,Vv'). (6)

The first term in Eq. (6) describes the motion of a free
electron in the laser field and the second term includes
electron rescattering processes. On the energy shell
[v2/2 = (v')%/2], the second term is related to the elas-

tic scattering amplitude for the potential V(x). If dur-
ing rescattering the electron absorbs at least one photon,
|[v2/2 — (v')2/2| > 1. Far from the energy shell, g(v,v’)
should depend on momentum transfer only v — v’.

The projected Hamiltonian can be divided into two

parts:
H = Ho + Hi, (7)

where
Ho = ~50)0| + [ @ S iv)(v]
~Esin(®) [ v (d.(v)[0)(v] + Hel (8)
~iBsin(t) [ d*v [@vivV..a - v
while
i = ~Bsin(t) [ & [@Vive.v)el 0

Note that Hp includes dominant effects of the motion of
the electron in the laser field, whereas H; accounts for
the rescattering.

The generalized strong-field approximation may now
be formulated to be a systematic perturbation expansion
with respect to H;. The full Schrédinger equation for the
amplitude b(v,t) reads

(% 8) s

_Esin(?) ab(" Y 4 iEsin(t) d*(v)

z

+iE sin(t) /d3v'gz(v,v')b(v',t). (10)

b(v,t) =

In writing Eq. (10) we have neglected the depletion of
the ground state, by implicitly setting a(¢) = 1 on the
right-hand side. The evolution of the atomic state thus
depends only on the form of d(v) and g(v,v’).

The zeroth-order SFA corresponds to the exact solu-
tion of the Schrodinger equation for Hy only, and it takes
the form

bo(v,t) = /Ot dt'Esin(t')d, (v + A(t) — A(t'))

xe~i i At [(VHA®) —AE")? /241) (11)

where A(t) = (E cos(t),0,0) is the vector potential of
the laser field divided by the velocity of light c.

Inserting this zeroth-order solution on the right-hand
side of Eq. (10), we obtain a first-order correction to the
SFA with respect to the rescattering term,

/ dt' / dt” / d*v'E sin(t)

xg:(v+A(t) — A(t),v' — A(t))
wxe~t o dil(v+A()—AE)?/2+1,] Esin(t")

bl(V t

xdz(v _ A(t"))e—if:’l’ di[(v' —A(E))?/2+1,) . (12)
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Assuming that the field was turned on at ¢t = 0 and off at

= tp adiabatically, we may set A(0) = 0. Then for t =
tr — 00, A becomes equal to fOtF E(t')dt', and is of the
order of 2\/U_p /7D, where 7p is the duration of the laser
pulse. It is quite safe, therefore, to set A(t — oo0) = 0,
also. Thus, in the limit ¢ — co, we obtain

tp
bo(v) = i / dt' Esin(¢')d, (v — A(¢)))
0
xe~i ol at [(v=A(")?/2+1,] (13)

The interpretation of this result is straightforward. This
is the total probability amplitude that the electron, ex-
cited into the continuum at time t’, had the appropriate
velocity v — A(t'). The excitation amplitudes are pro-
portional to the first two factors in the integrand of Eq.
(13). They then propagate until time tg, acquiring a
phase factor exp ( — ¢S(v,tr,t’)), where S(v,tp,t') is
the quasiclassical action,

S(v,t,t') = /t dt" ((";‘z(t"lﬁ +Ip> . (19)

t

The effects of the atomic potential are assumed to be
negligible during the propagation time between t' and
t, so that S(v,t,t') actually describes the motion of an
electron freely moving in the laser field with a constant
canonical momentum v. Note, however, that S(v,t,t)
does incorporate the dominant effect of the binding po-
tential through its dependence on I,.
Similarly, for tz — oo, the first-order term becomes

tp t'
bi(v) = —/0 dt'A dt”/dav’Esin(t')

xga(V = A(t), V' — A(t))e 5
x Esin(t")d, (v' — A(t"))e S (15)

The above expression also has a simple physical mean-
ing. The electron makes the transitions to the continuum
at ¢ with the amplitude Esin(t")d,(v' — A(t")). The
velocity of the electron is then v/ — A(¢"). It propagates
until ¢ when it rescatters, then propagates until ¢z. The
propagation in both cases consists of the accumulation
of phase factors of the form ¢ times the corresponding
quasiclassical actions.

The zeroth- and the first-order solutions can be ex-
panded in terms of ordinary or generalized Bessel func-
tions. For instance, let

Esin(t))d,(v/ — At)) =Y du(v)eM*. (16)
M

Then, up to the irrelevant phase factor,

bo(v) = Z bn,o(v), (17)

N>v2/2+I,+Up

with

bno(v) =2mi Y §(v?/24 I, + U, — N)
M=—oco

xJar(24/Upv cos(8), —up/2)dpr—n(v), (18)

where Jpr(, ) denotes a generalized Bessel function. This
is an analog of Reiss’ formula (43) in Ref. [7]. It is differ-
ent, however, since we have used the length gauge, i.e.,
accounted for the full velocity dependence of the transi-
tion matrix element d(v).

Similarly, the first-order correction can be written in

the form
bl (V) = Z

N>v?/2+I,+Up

blyN(V), (19)

with

bin(v) = (27)2 / d3v’ Z M J(2+/Uplcos(8) — cos(8')])6(v?/2 — (v')2/2 — K)g(v — V')

M,K=—o00

><5(‘U2/2 + Ip + Up — N+ K)JM(2\/(7;’UCOS(0), Qup/Z)dM,N+K(V), (20)

where Jps() denotes an ordinary Bessel function. The
above expression refers to the situation in which g(v,v’)
is a function of v — v’ only. It also has a very nice
physical interpretation. Namely, it is a convolution of
the two transition amplitudes: the direct tunneling am-
plitude to the state of intermediate velocity (v')2/2 =
N—K —1I,—-U,, followed by a rescattering process involv-
ing the absorption of K (or emission of —|K|) photons
to the state with velocity, v, where v?/2 = N — I, — U,.
The rescattering process takes place in the presence of

the laser field. The corresponding amplitude is not only
proportional to the CC matrix element, but also contains
factors that describe photon absorption and emission pro-
cesses. The well known Kroll-Watson formula [23-25] for
electron scattering in laser fields, which has been inves-
tigated in experiments by Weingartshofer [26], is anal-
ogous to this expression for the rescattering amplitude.
Although expressions (18) and (20) have many appealing
properties, we shall not refer to them in the following. In-
stead we shall use expressions (13) and (15), evaluating



s1 RINGS IN ABOVE-THRESHOLD IONIZATION: A ... 1499

them using a saddle point and numerical approach. More
generally, i.e., when g(v,v’) depends explicitly on both
arguments, the ¢’ dependence of g(v — A(t'), v/ — A(¢'))
cannot be eliminated. In such a case the formula (20)
has a similar, but much more complex form.

III. QUASICLASSICAL ANALYSIS OF THE
DIRECT TUNNELING AND RESCATTERING
PROCESSES

To analyze Egs. (13) and (15) in a quasiclassical sense,
we perform the integrals in those expressions using a sad-
dle point method. This method [9,10] is expected to be
accurate when both U, and I,,, as well as the involved
velocities v and v’ are large. Since quasiclassical actions
are proportional to I,, Uy, v? etc., the factors exp(—iS.;)
are rapidly oscillating, and one should thus seek station-
ary points of the quasiclassical actions. Such a procedure
is legitimate provided d, and g, are slowly varying and,
in particular, nonsingular at the saddle points of the ac-
tions. Unfortunately, the latter assumption is not true,
in general (see discussion in [10]), and the correct saddle
point evaluation must take this fact into account. Nev-
ertheless, the leading contribution at the saddle point
is determined by requiring stationarity of the quasiclas-
sical action [27], which captures the essential underlying
physics. Therefore, in the following, we analyze Egs. (13)
and (15) in terms of the stationary points of the quasi-
classical action only.

The zeroth-order term describing direct tunneling then
becomes

. 2 \'?
bo(v,t = 00) = zz (F”:‘lz) E sin(tgp)
SP

xd (v — A(tgp))eSaltrtar) . (21)

where the sum is over the saddle points tgp, tF is a final
time accounting for an irrelevant phase and det.4; is a
determinant of the second derivative matrix, which in
this case is equal to —i(v — A(tgp)) - E(tgp)-

The saddle points are derived from the condition

(v = Altsp)). A2(t£“’))2 +I,=0. (22)

Note that if I, = 0, the saddle points correspond sim-
ply to electron trajectories that leave the nucleus with
zero kinetic momentum. In general, for I, # 0, the tra-
Jjectories are complex and there are families of pairwise
complex conjugated solutions to Eq. (22). Denoting

1
t = arc cos v cos 6 + 74/ 2i20+21] ,
(\/‘TJP[ o 7

(23)

the families are t+27k, —t+27k, t* + 27k, and —t* 427k,
where k is an integer. As we see each family consists of se-
quence of solutions shifted by 2. Only two of these fam-
ilies contribute to Eq. (21), since the action Sci(tr,t5p)

must attain a negative imaginary part to describe appro-
priately the exponential decay of the ionization ampli-
tudes.

It is interesting that even for I, = 0, and # = 0, Eq.
(23) has no real solutions for v > ,/4U,, indicating that
in this limit there is a cutoff of the ATI spectrum allowing
no electron of kinetic energy larger than 2U,.

Denoting by tip, and t3p the two “fundamental” solu-
tions of Eq. (23) that fulfill 0 < Im(t§p) < 27, the sum
in Eq. (21) reduces to the form of Eq. (18),

bo(v) = 7,22: Z ( 2m )1/2 Esin(t&p)d. (v — A(tkp))
o det. A,

xe~iSatrtSe)§(y2 /2 — N — I, — U,). (24)

Note that since there are two contributions to each ATI
peak, the probability amplitude from direct tunneling
generally displays interference effects. We stress that this
is a generic feature of the dynamics which also occurs
when we consider the rescattering events.

Several authors [28] have suggested that the quantum
interference in direct tunneling could cause rings in angu-
lar distributions. As we see below, although interference
effects are indeed present in the direct tunneling ampli-
tudes, they cannot be associated with the rings observed
in the experiments and in the exact numerical solutions.

A similar stationary phase analysis can be done for the
first-order solution (15). In this case, the result is

)5\ 1/2
) == () Esinttse)

SP
xgz(v — A(tsp), v'sp — A(thp))e S Vitrotsr)
x Esin(t4p)d, (vip — A(tdp))e *S(V'srtsr tse)
(25)

where the saddle points are stationary points of the sum
of actions S(v,tp,t') + S(v',t',t"), with respect to ¢/,
t”, and v’'. The second derivative matrix depends on #,
t”, and v’ and, in particular, takes care of the quantum
diffusion of the electronic wave packet within the time
interval [¢”,t'].

The saddle points are solutions of the following set of
equations,

r_ r_ 2
(VSP A‘(ZtSP T)) + Ip — 07 (26)
1 tsp o
2 / ADdi=vip,  (27)
T Jthp—r
(v = Alhp))’ (o= Ale)? _ 28)

where we have introduced the return time 7 = t§p — t{p.

The first of the above equations expresses the fact that
in the limit I,, — 0, the main contribution comes from the
electrons that leave the nucleus at time tgp with zero ki-
netic momentum but with canonical momentum v’. The
second equation defines the value of v/ which allows the
electron to return to the nucleus at tgp. Finally, the third
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equation describes the rescattering process at tgp, and
simply states that kinetic energy is conserved in rescat-
tering. Note that neither the canonical nor the kinetic
momenta have to be conserved at tgp. The kinetic mo-
mentum may undergo a change of sign, which we call
backward scattering.

Generally, there are several pairwise complex conju-
gated families of solutions, to Egs. (26-28). To obtain
the desired solutions, one can use a method analogous to
that developed in Ref. [10]. In the limit I, — 0, each
of these families contains several values of 7 correspond-
ing to trajectories with single, double, etc., returns of the
electron to the nucleus at t5p. Due to quantum diffusion,
trajectories with a single return are the most relevant
ones. The transverse spread of the trajectories reduces
the number of strong rescattering events very rapidly.
Returns after the first are most likely to have very large
impact parameters. Even when we restrict ourselves to
families of trajectories with single returns, there are still
four kinds of families corresponding to different values
of tip. Each of the families contains an infinite number
of solutions that shift t{p — tgp + 27k, where k is an
integer. Only some of these families contribute to Eq.
(25), however, since they must fulfill the condition that
the imaginary parts of both S(v,tr,t’) and S(v',t',t")
be negative.

The analog of Eq. (24) becomes

' [ @m) 1/2
bi(v) = _EZ (detAz)
N SP
x E sin(tgp)g: (v, V'sp)e

><ESiIl(t'slp)dz (V,SP — A(t'slp))e“’:s("'s?vtlsf"t’S’P)
x§(v?/2 — N — I, — Up), (29)

—iS(v,tr,tsp)

where 3’ restricts the sum to those saddle points for
which 0 < Im(t5p) < 27. Again the above expression
will display quantum interference.

For 8 = 0, I, = 0, the saddle point equations become
particularly simple. For instance, Eq. (28) implies that
we deal either with forward scattering

v = vgp, (30)
or backward scattering,
v = —vgp + 2A(tgp). (31)
On the other hand, we have from Eq. (23)

tsp — T = arc cos(vgp/+/4Up), (32)

i.e., tgp —7 is real provided v§p is real and vip/+/4U, < 1.

One may ask how big v can be and still have real so-
lutions of the saddle point equations, so that the prob-
ability amplitudes are nondecaying. For forward scat-
tering the condition obviously is v§p/4/4U, < 1, i.e.,
v2/2 < 2U,. Therefore, in this limit, forward scatter-
ing is expected to affect only the low-energy part of the
ATI spectrum. The case of backward scattering is a little
trickier. Setting 2A(t5p) to its extremal value —,/4U,,
we find that v > —3,/4U,, giving v?/2 < 18U,. This

estimate turns out to be somewhat exaggerated, but it
clearly indicates that backward scattering is more likely
to contribute to the higher-energy part of the ATI spec-
trum. As we shall see below, that is indeed the case.

IV. MODEL ATOM

To calculate ATT spectra, we first have to specify the
bare atomic matrix elements d(v) and g(v, v’). In order
to do this, we introduce a model atom with a separa-
ble short range potential. The results and conclusions
obtained from this model should be applicable to sys-
tems with more realistic potentials since numerical calcu-
lations in Ref. [13] indicate that the appearance of rings
and analogous structures in ATI spectra is a universal
phenomenon which only weakly depends on the proper-
ties of the atom.

The stationary Schrodinger equation for the atom in
the absence of the field, written in the momentum repre-
sentation, is assumed to be

P iy Y ¢p' ¥(p) _
2 ¥(p) VrE+12 ) J(p)? +T? =E¥(p), (33)

where v and I are parameters related to I, and the shape
of the ground state wave function. Equation (33) sup-

ports one bound state corresponding to E = —1I,,
N
To(p) = , 34
") = G ) T ¢4
where
4 2
-1, (35)

T+.2I,

and the normalization constant is

v VIR + AT )

472

Similarly, the normalized scattering states correspond-
ing to E = p2/2 are given by

B(Po)
¥ =d(p —
po(P) = 4(P —Po) + (P2 — p2/2 + i€) (p? + [2)1/2’
(37)
where
5 dminy !
B = (1- —
®) =~ 1oy (1 s ir) (38)

and e is an infinitesimally small positive number.
Note that these states are appropriately normalized,
ie.,

/ &Bp %, (D), (P) = 6(p1 — P2), (39)

and correspond (depending on the sign of €) to outgoing
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or incoming boundary conditions.

After some elementary manipulations, we obtain
iN'po[3p3/2 + I +T?]
#3/2+ L) (33 + T2)3/2°

d(po) = - (40)

and

—iB(p2)p1([3p}/2 + I, — p}/2)
(p? +12)3/2

_iB*(p1)p2[3p3/2 + I, — p}/2] }

g(pP1,p2) = {

(#3 + )97
1
P3/2 —pi/2 +i€)?
Note that as expected g(p1,p2) is singular on the energy
shell, i.e., when p? = p2. This is an important feature

since in the numerical calculations, we will have to regu-
larize this singularity in a reasonable way.

X ( (41)

V. RESULTS AND DISCUSSION

Our approach should be valid for I,/2U, < 1, ie.,
in the regime where the interaction with the laser field
is much more important to the evolution of the excited
electron than its interaction with the ion core. However,
in order to address the published xenon experiments [13]
we will have to apply this model at the boundary, or even
beyond the boundary of its validity. The saddle point
method can still be employed to provide some insight
into the ionization dynamics in this regime as long as the
singularities in the atomic matrix elements are handled
properly. Once more, we remind the reader that zeroth-
order ionization amplitude is given by

tp . ,
bo(v) = 1,/ dt'Esin(t')d, (v — A(t'))e S trt'v),
0

(42)

which is easily evaluated numerically. It is much more
difficult to evaluate the fivefold integral,

tr t'
by(v) = — /; dt’ A dt" / &V’ E sin(t')

X gs (V, v/)e—-is(v,tp,t’)

xEsin(t")d, (v — A(t"))e S0t (43)

We note that if we actually carried out the integration
over v/, the singularity of g(v,v’) would be effectively
smoothed over as discussed in the preceding section.
However, to keep the calculations manageable, we cannot
explicitly perform this integration. We propose a simpli-
fied way out of this problem which reduces the fivefold
integral into a twofold one. Namely, we perform the sad-
dle point integration with respect to v/, but leave the
integrals over t’, and t" as they stand. The saddle point
is calculated with respect to quasiclassical actions only,
so that

‘ A(t)dt. (44)

v’SP(t”T) = P »
—_T

The result of saddle point integration for the fivefold in-
tegral (43) is obtained by setting

v =vgp(t,T), (45)

and substituting

for the integration over v'. The latter factor accounts
for quantum diffusion effects. The remaining twofold in-
tegration over ¢’ and 7 in Eq. (43) can be performed
numerically relatively easily.

Unfortunately, since we calculate the saddle points us-
ing the stationarity condition for the quasiclassical ac-
tion, the resulting integrals still contain a singularity of
the form

1
[(v = A(#)?/2 — (vp(#',7) — A(£))?/2 +ie2’

(47)

For purposes of efficient numerical simulation we smooth
this singularity, allowing € to be of the order of 1. As
stated above, such smoothing takes place when more ex-
act methods of evaluation of the integral over v’ are used.
For instance, if we include corrections to the saddle point
coming from the v’ dependence of d,(v/ — A(t' — 7)),
vgp (', T) becomes complex and the singularity (47) is no
longer encountered for real t' and 7 (compare a discus-
sion of the so called Gaussian model in Ref. [10]). This is
effectively equivalent to choosing a finite value for €. We
should stress, however, that although our results depend
on the value of €, the dependence is relatively weak, af-
fecting mainly the magnitude but not the shape of those
parts of the spectrum that come from rescattering events.

We first consider the angular distributions obtained
from direct numerical integration of the TDSE corre-
sponding to the case studied in Ref. [13]: xenon at a
wavelength of 1064 nm and intensities in the range 10~
30 TW/cm?. These calculations, which show pronounced
rings on the ATI peaks with energies near 8U,, are known
to be in good agreement with the experimental results. It
is most illustrative to consider the emission into a narrow
cone as a function of the scattering angle, #, measured
from the laser polarization direction. In this way, we
can describe the behavior of the energy distributions, ob-
serving how they change, in particular, how the observed
structure evolves as the direction of emission is changed.
We show representative results for two intensities 2 and
3 x 103 W/cm? in Fig. 1 for § = 0°, 20°, and 40°. In
all figures, the distributions are plotted in terms of the
electron energy scaled by the ponderomotive energy. In
both cases shown, the emission, as expected, is generally
strongest along the polarization axis. Also, both on-axis
distributions show a very pronounced dip between 8U,
and 9U,, followed by a plateau and a cutoff above 11U,.
As 6 increases, the dip, plateau and cutoff move to lower
energies, so that for some off-axis angle the maximum will
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FIG. 1. Calculated fixed-angle photoelectron spectra for
xenon at A = 1.064 um and intensities of 2 (upper plot) and 3
(lower plot) x10*® W/cm? from the numerical integration of
the single-active-electron time-dependent Schrédinger equa-
tion. € is the scattering angle (in deg) measured from the
direction of polarization of the laser.

appear at the same energy as the on-axis dip. This pro-
duces the observed ring structure. Recent experiments
by Paulus et al. [29] which measured the photoelectron
spectrum in a narrow region around the polarization axis
showed the pronounced dip and plateau found in these
calculations. The distributions are generally narrower at
low energies and become broader at the high-energy end.
As discussed above, the two-step model predicts that the
high-energy ATI peaks can only come from a rescattering
process, so that one might expect their angular distribu-
tions to be broader [2]. It is these general characteristics
of the spectrum we wish to interpret in terms of our semi-
classical calculations.

Since our semiclassical analysis is based on specific tra-
jectories we can easily investigate the dynamics of rescat-
tering, distinguishing between scattering which does not
alter the kinetic momentum of the electron appreciably,
forward scattering, and those contributions to the spec-
trum which come from backward scattering events in
which the sign of the kinetic momentum reverses. We
can trivially separate the direct tunneling spectra one
would observe in the absence of rescattering by consider-
ing only the contribution from the lowest order term in
our expansion given by Eq. (42). Solutions to Eq. (43)

provide the redistribution of electron canonical momenta
due to the rescattering events.

In these calculations, we have considered combinations
of parameters to give a picture of the dependence of the
ATI angular structures on the laser wavelength and in-
tensity. We present results for four cases, shown in Figs.
2-5, that all exhibit off-axis emission, rings or broaden-
ing, for some small energy range within the higher-energy
ATI peaks. In the first three cases presented, we use the
parameters within the expected range of validity of the
GSFA, i.e., for I,,/2U, < 1. In Fig. 5, we plot the results
for parameters corresponding approximately to experi-
ment of Ref. [13], i.e., I, = 10, and U, = 3, where we
continue to express these quantities in units of the pho-
ton energy. We will refer to this as the 10-3 case, and
similarly for the others.

Figures 2-5 each consist of four plots. The upper left-
hand plot shows the total emission into a given angle,
for & = 0°, 20°, and 40°, including the direct tunnel-
ing component and that from the first-order rescattering
term: |bran(v)|% = |bo(V) + b1(v)|2. These can be com-
pared directly to the numerical results shown in Fig. 1.
In the other three plots, we break down the separate con-
tributions for the three angles considered. In addition to
the total (full) yield, we show the spectra (i) for direct
tunneling only, |bTunn(V)|? = |bo(v)|?; (ii) taking into
account rescattering into the forward hemisphere only,
|br(v)|? = |bf (v)|2, where we use the same expression for
b (v) as in the full first-order term except that we include
only those values of v§p(t',7) for which v - vgp > 0; and
(iii) for the backward rescattering component, |bg(v)|?,
which is restricted to velocities such that v - vip < 0.

In Figs. 2-4, we show the results for the tunneling cases
we have considered. In Fig. 2, the 3-3 case results are pre-
sented. This case represents short wavelength and mod-
erately strong intensity. An example might be a dou-
bled dye laser ionization of xenon at about 10'* W /cm?.
The high intensity complement to this case is the 3-10
case shown in Fig. 3, which corresponds to the previ-
ous example with an intensity 3.3 times higher. The last
tunneling case we have studied is 10-10, long wavelength
but high enough intensity to reach the tunneling regime.
This case would be representative of exciting xenon at
approximately 1 |mum at an intensity of just over 1014
W/cm? or helium with doubled Nd:YAG at about 10'®
W /cm?. The ionization rates for all these cases would be
very high, requiring subpicosecond pulses to probe the
regime.

In the results shown in these three Figs. (2-4), we can
see some general trends in the angle-dependent yields
(the upper left-hand plot in each figure). We note first,
that the results below (2-3)U, are found not to be very
reliable. The first-order theory is probably inadequate
for these low-energy electrons. In all cases, there is a
pronounced angular dependent cutoff in the yield: ap-
proximately at 11U, on axis, decreasing to (7-8)U, at 6
= 40°. Initially the yields fall with increasing energy, not
always monotonically, approximately following the tun-
neling rates (see the open circles in the other three plots
in each figure), then show an abrupt change of slope, or a
dip in the spectrum. This break in slope is angle depen-



51 RINGS IN ABOVE-THRESHOLD IONIZATION: A... 1503

dent, decreasing with increasing angle because of the very
narrow angular dependence of the direct tunneling com-
ponent. Obviously, all the electrons with energies higher
than the tunneling component must have been created
through rescattering. On axis, the change of slope oc-
curs near 8U, for the 3-3 case and shifts to around 6U,
for the 3-10 and 10-10 cases. In the latter two cases, we
also find a peak in the spectrum at the cutoff. This seems
to be a classical rainbow effect which is washed out if we
increase the value of the parameter ¢ in Eq. (47). The
peak becomes sharper if € is reduced. The dips appar-
ently are due to interference between tunneling electrons
which have not rescattered and rescattered electrons at
the same energy. The dips appear in the total speectrum
at the point where the yields from these two components
are of comparable magnitude. When the tunneling rate
drops more quickly with energy, as in the 10-10 case, for
example, the break in slope, or dip will appear at a lower
energy. We see evidence of rings, but those in the calcu-
lations for 3-10 and 10-10 may be artifacts of the sharp
peak at the cutoff. In any case, we consistently find that
the rescattering electrons have much broader angular dis-
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tributions than the direct tunneling component, becom-
ing approximately flat in the two cases just mentioned.
Finally, one very important point which comes from this
analysis is that the high-energy photoelectrons in these
three cases where our ansatz is valid are produced exclu-
sively by backscattering.

Our results, shown in Fig. 5, for the case which approx-
imates the published xenon data and the calculations
represented in Fig. 1 are not in the tunneling regime,
I,/2U, > 1. In spite of this the angular yields dis-
play a similarity to the “exact” results. The yields still
extend to approximately 11U, on axis, have a notice-
able dip near 9U,, and will exhibit a ring at this energy
roughly 20° off axis. Also, the zeroth-order distribu-
tion, which we can no longer legitimately call the tun-
neling component, is found to be very narrow and drops
off very quickly with energy. As in the previous cases,
the high-energy electrons are produced by backscatter-
ing only. However, there are some significant differences
between these results and those from the three cases just
described. First, the first-order, or rescattering, term
turns out to be much larger than the zeroth-order term.
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FIG. 2. Quasiclassical fixed-angle photoelectron spectra for the case I, = 3 and U, = 3. Plotted are logio (relative rates).
Upper left plot shows the total (full) spectra including the zeroth- and first-order terms. The other three plots show the
separate contributions to the full spectra. Tunn is the direct tunneling component (the zeroth-order term), F and B designate
the first-order terms corresponding to rescattering into the forward and backward directions, respectively.
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FIG. 5. Same as Fig. 2, but for I, = 10 and U, = 3. This approximates the case shown in the lower plot of Fig. 1.

This indicates that our perturbation expansion in terms
of the atomic potential actually breaks down, or at best
converges more slowly. Many electron trajectories will
stay close to the ion core, probably experiencing many
interactions with the core. It is not feasible to calculate
higher-order terms in the perturbation expansion with
the technique we have used here, as the number of con-
tributing trajectories quickly gets out of hand. However,
there are reasons to believe that this proliferation of rel-
evant trajectories concerns only the slow electrons. Once
an electron gains more than (2-3)U,, in energy in the first
rescatterring act, it is not likely that it will not return
to the ion core. The perturbation series should, thus,
converge more quickly for the higher-energy electrons.
Clearly, the size of the rescattering term indicates that
in the low intensity regime, an electron is much more
likely to have significant interactions with the ion core
after being excited into the continuum. Second, the on-
axis dip in Fig. 5 is not due to interference between the
zeroth-order and first-order terms, as in the cases above,
but appears in the rescattering term alone. We find the
existence of this dip does not depend on the only ad-
justable parameter in our theory, €, but the strength of
the first-order spectrum does, scaling approximately as

€~ 2. The origin of the scattering ring, in this case, is not
clear from these calculations.

In all four cases studied, we found a sharp decrease in
the yields at particular scaled energies which depended
on the scattering angle. A simple analysis of our sta-
tionary phase conditions shows where the cutoff should
appear. Given the conditions in Egs. (26)—(28), and con-
sidering the case I, = 0, we can calculate the largest
real velocity that satisfies these equations. If we evalu-
ate the corresponding energy as a function of the time
between emission and rescattering, 7, we obtain the an-
gle dependent cutoff energies for the spectra. These pre-
dicted maxima are shown in Fig. 6. Here, 8 = 0 is forward
and 0 = 7 is backward scattering. The maximum is 10U,
for a scattering angle of m and for one particular value
of 7. It decreases with changes in either the propagation
time or scattering angle. The agreement between these
predictions and the beginning of the high-energy decline
in each spectrum shown in Fig. 1 indicates the classical
analysis of the electron dynamics within the continuum,
ignoring the perturbations of the ion core potential, is
valid for predicting the limits of the energy distributions.

In conclusion, we have investigated photoelectron dy-
namics using a quasiclassical formalism based on a per-
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FIG. 6. Contour plot of the maximum rescattering energy
as a function of the propagation time between emission and
scattering, 7, and scattering angle 6 (in rad) (in units of 1/w).

turbation expansion in the atomic potential. The initi-
ation step is calculated numerically, providing the spec-
trum of electron energy and angular distributions pro-
duced by the transition into the continuum. The elec-
tron motion within the continuum between scattering
events is given by the classical equations of motion for
a free electron in the laser field. The first-order term in
our perturbative expansion gives the effect on the elec-
tron trajectories of a single collision with the parent ion
core. The scattering integral is evaluated using a station-
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ary phase approximation. The predicted electron spec-
tra in the tunneling regime show a high energy broad
component which is due to backward scattering of the
electrons. In the parameter regime relevant to recent
experiments on xenon at 1 um, the spectrum from the
rescattering term is in qualitative agreement with the
measurements and with numerical solutions to the time-
dependent Schrodinger equation. The spectra show rings
for electron energies near (8-9)U,. These first-order re-
sults resemble those obtained by Becker et al. [30] us-
ing a very similar model. Our analysis shows that all
high-energy electrons in this spectrum are produced by
backward scattering of the returning electrons. At this
point we can only say that in the low intensity regime,
we obtain results which qualitatively agree with the re-
cent experiments in xenon. We hope that measurements
will become available in the tunneling regime, where our
prediction of flatter angular distributions beginning well
below the 8U, is expected to be more reliable.
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