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Ionization of Rydberg hydrogen by a half-cycle pulse
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We have calculated, by numerically integrating the time-dependent Schrodinger equation, the
probability for ionization of a hydrogen atom from a high Rydberg state by a half-cycle pulse whose
duration is comparable to, or shorter than, the period of the Rydberg orbit. We have chosen a pulse
whose parameters are the same as the pulse used in the experiment of R. R. Jones, D. You, and
P. H. Bucksbaum [Phys. Rev. Lett. 70, 1236 (1993)]. We compare our results with the classical
results and with the experimental data of Jones et al. , and we also present results for energy and
angular distributions. Finally, we derive an approximate conservation law which applies in the limit
of very short pulse times.

PACS number(s): 32.80.Rm

I. INTRODUCTION

Recently Jones, You, and Bucksbaum [1] experimen-
tally investigated the ionization of a sodium atom in
a high Rydberg state by a half-cycle linearly polarized
pulse of light. Following this experiment two theoret-
ical studies of the ionization of Rydberg hydrogen by
a half-cycle pulse were reported in [2—4]. (The sodium
atom, in a high Rydberg state, behaves quite similarly
to hydrogen. Indeed, the validity of the hydrogenic ap-
proximation was conGrmed by the classical calculations
for sodium, reported on in Ref. [3].) In this paper we
present the results of quantum calculations for hydro-
gen which support and augment the previous results. In
particular, we have performed calculations for the same
parameters as the experiment, i.e., we have used the same
pulse (shape and duration) and the same principal quan-
tum number for the initial state of the atom. We also
present an approximate conservation law which applies
in the limit of very short pulse times.

As in previous calculations [5] we represented the wave
function of the electron on a complex Sturmian basis.
The time-dependent Schrodinger equation reduces to a
set of coupled Grst order differential equations in time.
However, in contrast to Ref. [5] where we used the split-
operator method to integrate these differential equations,
we used an implicit Runge-Kutta algorithm [6] which is
especially suited to parallel computation and which is
both stable and accurate. This enabled us to handle
a very large number of coupled differential equations; a
typical basis consisted of 128 radial (Sturmian) functions
per angular momentum quantum number I,, with jt span-
ning the range 0 & l & 45.

The electric field, F(t), can be treated within the dipole
approximation. We choose the z axis to be both the elec-

tric Geld polarization axis and the quantization axis and
write F(t) = E(t)i'. The field relevant to the experiment
can be fitted by the pulse shape [7]

E(t) =0, t&0
E(t) = 29.56Eo[17.75(t/r) e

—0.412(t/7) e ' ~ ], t ) 0 (2)

where Fo is the peak value of the electric Geld, which was
varied, and where v was held Gxed at 7 = 1 psec. We con-
sidered several values of ~ in our calculations, including
r = 1 psec. The pulse given by Eq. (2) consists of a large
half-cycle (hc) lobe of' short duration, whose peak value
is Fo and whose full width at half maximum is roughly
th, ——0.44~. This main lobe is followed by a long but
shallow tail that has opposite (negative) polarity see
Ref. [1]. The impulse communicated to the electron by
the electric field over the time interval [0, t] is (note that
we use atomic units unless stated otherwise)

Assuming that no static-field component is present, the
integrals over the negative tail and the positive main lobe
should cancel each other to give Q(oo) = 0, in accordance
with the fact that within the dipole approximation pho-
tons carry no momentum. However, for the pulse shape
of Eq. (2) the total time integral of the electric field does
not vanish since the Gt to the negative tail is inaccurate at
very large times. This inaccuracy has no bearing on the
ionization probability since at very large times the tail is
too weak to ionize the atom. Moreover, in the laboratory
experiment, the pulse is not a plane wave, but rather a
focused pulse, and the electron will leave the focal region
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long before it can experience the entire negative tail.
In the next section we discuss the impulse approxima-

tion. In Sec. III we present our numerical results and in
Sec. IV we derive an approximate conservation law.

II. IMPULSE APPROXIMATION

The momentum transferred to the electron by the main
(hc) lobe is

where 0 and t0 are the end points of the main lobe. Let
p = 1/n and T„= 2vrns be the characteristic momen-
tum and orbital period, respectively, of the electron in the
initial Rydberg orbit whose principal quantum number is
n. Following Reinhold and co-workers [2,3] we introduce
the scaled momentum transferred by the main lobe,

»o = »)./p,
and the scaled duration of the main lobe,

T = th, /T„.

P; p —— dk ~e' (7)

where ~@~(~) and ~@& ) represent the initial and final
states of the electron, and where Q is the appropriate
momentum transfer, i.e. , we insert Q = »h, to yield
the probability for ionization by the main lobe.

We can evaluate P; & rather easily by first rewriting
Eq. (7) as

P; p —— dE P; p(E),
0

where, with G(E) the Coulomb Green's function,

Using a (complex) Sturmian representation of G(E) in
parabolic coordinates, we were able to evaluate P; ~(E)
without much computational eKort.

The kick delivered to the electron by the main lobe is

(In the classical limit, the probability for ionization by
the main lobe depends only on»o and To [2,3].)

If the main lobe of the pulse delivers a sudden (To «
1) and powerful (»o )) 1) kick to the electron, the
impulse approximation applies. This approximation
amounts to neglecting the influence of the nucleus on
the electron while the electron interacts with the elec-
tric field. Hence, during the time the electric Geld acts,
the Hamiltonian can be approxiinated as H; ~(t)
Q (t)/2+F(t)z and the evolution operator becomes, sim-

ply, exp[ —i f' dt' H; ~(t')]. Since f dt' H~ ~(t') is just
a spatial constant plus Q(t)z, the ionization probability,
within the impulse approximation, is [3]

E...) = —[(»o)' —1]»' (10)

with a width proportional to p»h, . (If »o & 1
the kick is too weak for the electron to be impulsively
knocked out of the atom. ) The angular momentum dis-
tribution of the emergent electron, immediately after the
main lobe has passed, is centered at about r Lph„where
r = n is the characteristic radius of the atom in its
initial Rydberg state. The electron can emerge with a
linear momentum of magnitude k that is much larger
than Aph, only if it is ejected Rom a high momentum
(i.e., ~p~ )) p ) component of the initial bound state mo-
mentum distribution

~ (p~Q~(~) ~

. However, although the
angular momentum l = kr increases with increasing k,
the electron can have a high momentum component in
the initial bound state only if it is initially at a distance
r &om the nucleus that is very small (r « r ). As a

partially offset by the opposite kick delivered by the neg-
ative tail [i.e. , Q is reduced by about 17% for the pulse
form of Eq. (2)], and so within the impulse approxima-
tion the full pulse is not as effective as the main lobe
in ionizing the atom. Note that in making the dipole
approximation, we treat the pulse as an infinite plane
wave. Hence, if the impulse approximation were appli-
cable during the entire passage of the pulse, and if the
kick delivered by the main lobe were completely o8'set by
the reverse kick of the negative tail, no ionization would
occur; f'rom Eq. (7) we have P; ~ = 0 when Q = 0. How-
ever, in the case of a plane-wave pulse, electron scatter-
ing from the nucleus cannot be neglected during the long
negative tail; indeed, the net momentum imparted to the
electron must ultimately be supplied by electron scatter-
ing Rom the nucleus, even though the electron may not
have time to scatter &om the nucleus during the main
lobe. Nevertheless, if the negative tail is very long and
shallow it will hardly influence the ionization probability.

In reality, of course, the pulse is not an infinite plane
wave, but rather a focused pulse. Therefore, the electron
will leave the focal region, along the electric Beld axis,
long before it can experience the entire negative tail. As
the electron leaves the focal region it will be accelerated
by the ponderomotive force, and thereby acquire momen-
tum in addition to that imparted by the main lobe of the
pulse. Consequently, if the main lobe delivers a sudden
powerful impulse to the electron, the ionization probabil-
ity can be accurately calculated &om applying the sudden
approximation to the main lobe, even though the energy
and angular distributions will not be given corrrectly.

Suppose that the inain lobe is indeed sudden (To « 1)
and powerful (»o )) 1). If, just before being hit by
the pulse, the electron has a momentum p and is at a
distance r from the nucleus, its energy after being hit by
the main lobe, i.e. , after receiving an impulse Lph„ is
(p+ Ep)„) /2 —1/r (the electron does not have time to
move during the main lobe). Averaging over all direc-
tions of p, and noting that p2/2 —1/r = —p /2, the en-
ergy distribution of the emergent electron, immediately
after the main lobe has passed, is centered at roughly
(»)„) /2 —(p„/2), i.e., at
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result, l decreases rapidly in the high-energy tail of the
energy distribution.

Of course, as already noted, both the negative tail of
the pulse (even if it is weak) and ponderomotive scat-
tering may significantly influence the energy and angular
distributions, while not affecting the ionization probabil-
ity.

III. RESULTS

In Fig. 1 we show the probability for the atom to be
ionized if it is initially in the gd (m = 0) state. We show
the ionization probability for diferent durations of the
pulse, holding the scaled momentum fixed, at Lpo = 1.9.
The solid curve, is the "exact" probability for ioniza-
tion by the full pulse, calculated by solving the time-
dependent Schrodinger equation. The horizontal long-
dashed and short-dashed lines in Fig. 1 are the ionization
probabilities, calculated within the impulse approxima-
tion, for the atom to be ionized by the main lobe and by
the full pulse, respectively. We see that the exact ion-
ization probability begins to level ofF as To approaches
zero, rising above the impulse approximation result for
the full pulse (since electron scattering from the nucleus
mitigates the eBect of the reverse kick by the negative
tail), but remaining below the impulse approximation
result for the main lobe (since the reverse kick by the
negative tail is not eliminated entirely). In the present
case, where Lpo is larger than unity but not much larger,
the impulse approximation begins to break down as To
increases beyond about 0.2. If Apo were much larger than
unity we would expect the impulse approximation to ap-
ply up to significantly largei To. Incidentally, note that,
since we hold Lph, fixed, Eo decreases as To increases,
and for large To ionization occurs through tunneling.

In Fig. 2 we show the ionization probability density in

the energy-angular momentum plane at the end of the
main lobe. These results were calculated by solving the
time-dependent Schrodinger equation for a pulse whose
peak field and duration are fixed, for the cases where the
initial bound state is the 7d, Sd, or 9d states, for which
To = 0.35, 0.24, and 0.17, respectively, and Lpp = 1.51,
1.73, 1.94, respectively. We have indicated, by a vertical
arrow, the point E& p, i.e., the center of the energy dis-
tribution as predicted in the impulse approximation—
recall Eq. (10). A horizontal arrow indicates the approx-
imate cutofF in angular momentum quantum number l
(i.e. , the maximum l, beyond which the population falls
off rapidly). Since a discrete basis was used, the allowed
energies of the electron are discrete, so the plot of the
probability density is not continuous. We see a signif-
icant population of high-Lt states, as did Lacattuta and
Lerner [4]. We also see that the most probable l decreases
rapidly in the high-energy tail of the energy distribution,
as discussed in Sec. II. Finally, recall that for To « 1 and
App )) (impulse approximation) the angular momentum
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FIG. 1. Probability for ionization from the 9d state vs
the scaled (dimensionless) pulse duration Ts when the scaled
momentum imparted to the electron is held fixed. The
long-dashed and short-dashed horizontal lines are the prob-
abilities calculated within the sudden approximation for ion-
ization by the main lobe and the full pulse, respectively.

FIG. 2. Ionization probability distribution over the angular
momentum quantum number and the energy of the emergent
electron. Darker areas are regions of higher probability. The
peak field of the pulse is fixed and the width of the main
lobe is 0.018 psec. The initial bound state is (a) 7d, (b) 8d,
and (c) 9d. The vertical arrows mark the points at which
the energy distribution should peak according to the impulse
approximation —see.Eq. (10) of text. The horizontal arrows
mark the approximate cutofF in angular momentum.
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FIG. 3. Probability for ionization from the 15d state vs
the peak field I"o. Solid line: data from the experiment of
Ref. [1], with Fo shifted by factor of 2.5, as recommended in
Ref. [1]. Solid squares: present results, calculated by solv-
ing the time-dependent Schrodinger equation. Open squares:
classical results from Ref. [1]. Solid circles: results calculated
within the impulse approximation.

FIG. 5. Energy distribution of the electron, ejected from
the 20d state, according to the impulse approximation. The
curves correspond, from left to right, to the peak field
strengths 17, 18, 19, 20, and 21 kV/cm. The arrows mark the
points at which the energy distribution is centered according
to Eq. (10) of the text.

distribution should be centered at roughly r Lph„which
grows with increasing n as n; however, the growth in the
cutoff seen in going from Fig. 2(a) to 2(b) to 2(c), while
more rapid than linear, is not as rapid as n2.

We have calculated, by solving the time-dependent
Schrodinger equation, the probability for ionization &om
the 15d (m = 0) state by a full pulse whose main lobe
has a width of 0.44 psec, the same as in the experiment
of Jones et al. [1]. In Fig. 3 we compare the ionization
probability with the experimental data, and with the re-
sults of the classical calculations of Jones et al. [1], for
various peak Geld strengths. Our quantum results agree
well with the classical results, and the agreement with ex-
perimental data is also fairly good up to the highest field
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strength we could handle. (Our calculations are limited
primarily by the basis size required for convergence; as
the peak field strength Eo increases, the required basis
size increases even more rapidly. ) We also show in Fig. 3
the results calculated using the impulse approximation
for the probability of ionization by the main lobe, but the
agreement with the impulse approximation is poor, which
is perhaps expected since To is not small, i.e. , To ——0.9.
However, Jones et al. [1] also measured the probability
for ionization from the 20d and 35d (m = 0) states, for
which To = 0.4 and 0.07, respectively. The impulse ap-
proximation should be more accurate for these higher n
states, and that is confirmed by Fig. 4, where we com-
pare our impulse approximation results (for ionization by
the main lobe) with the experimental data and with the
classical calculation results of Jones et al. for ionization
from the 20d state. We have not carried out full calcu-
lations for the 20d state since they would be expensive
(a very large basis would be required) and we would not
expect to obtain results much difFerent &om those found
using the impulse approximation, in contrast to the case
of the 15d state. In Fig. 5 we show results (obtained from
the impulse approximation) for the energy distribution
P; z(E) of the electron at the end of the main lobe, for
diferent peak field strengths, when the atom is initially
in the 20d state. The arrows mark the energies Ez, k at
which the energy distribution should peak according to
Eq. (10).

0.0
0

I ~t, I, I I ~ I, I

4 8 12 16 20 24 28
F&& (kV/cm) IV. CONSERVATION LAW

FIG. 4. Probability for ionization from the 20d state, for
the same pulse as in Fig. 3. Solid line: data from experiment
of Ref. [1]. Open squares: results calculated from classical
calculations of Ref. [1]. Solid circles: results calculated within
the impulse approximation.

The pure hydrogen atom, or, more generally a hydro-
genlike ion with atomic number Z, has a special constant
of motion, the Runge-Lenz vector. Redmond [8] pointed
out that in the presence of a static electric field, F, the hy-
drogenlike ion retains a special symmetry, and he showed
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that F C(F, p) is constant of motion, where C(F, p) is
a generalization of the Runge-Lenz vector

1
C(F, p) = r + (L x p —p x L) — (r x F) x r,

2Z 2Z

Now the first two terms on the right-hand side of Eq. (13)
constitute the Hamiltonian of a hydrogenlike atom in a
static electric field F, for which Redmond derived a
constant of motion. However, we can absorb the third
term into the canonical momentum since

1
H, fr = — dti H(ti)T p

~ T
dti dt2 [H(t, ), H(t2)].2T P Q

(12)

The impulse approximation, used in the preceding sec-
tions, can be recovered by neglecting the Coulomb po-
tential Z/r and p—utting p = Q(t) in H(t). (With these
replacements the commutator vanishes, so all terms but
the first vanish in the Magnus expansion. ) Evaluating
the commutator, and performing the time integration in
Eq. (12) yields

where r, L(= r x p), and p are the coordinate relative
to the nucleus, the orbital angular momentum, and the
canonical momentum, respectively, of the electron.

When a system is subject to a sudden perturbation,
the time-evolution operator can often be accurately rep-
resented by the first one or two terms of the Magnus
expansion [9]. The present system of interest is a hydro-
genlike ion, whose Hamiltonian is H—:(p /2) —Z/r,
subject to an interaction F(t) r with a pulse of short
duration T. Retaining the first two terms in the Magnus
expansion amounts to replacing the true time-dependent
Hamiltonian H(t) = H + F(t) . r over the time interval
0 ( t (T by the effective time-independent Hamiltonian

H, fr = e ' '(H +F „r)e' ' —a /2,

where a is the spatial constant

a = —(1/c)A, ir. (i7)

Writing P = p + a, and L = r x P, it follows that
F C(F „,P) has approximately the same values at
the beginning and at the end of the pulse. However, we
must stress that this conservation law is accurate only
if the Hamiltonian of Eq. (13) (which is separable in
parabolic coordinates) accurately describes the influence
of the pulse on the dynamical motion of the electron; we
require, in particular, that the last term on the right-
hand side of Eq. (13) be a small correction to the second
term.

In the case of a "one"-electron alkali atom, whose core
potential is nonhydrogenic, the energy levels within a
Rydberg manifold are not degenerate. However, pro-
vided that adjacent Rydberg manifolds do not overlap,
which is true when the magnetic quantum number m is
sufBciently large, this nondegeneracy will not be appar-
ent over a time interval short compared to 1/AE, where
AE characterizes the magnitude of the nondegeneracy.
Therefore, at least for the m ) 1 states, we expect the
conservation law to hold as long as the pulse duration is
short compared to 1/AE.

K,s = H +F . r+ (1/c)A, ir p, (13) ACKNOWLEDGMENTS

where F is the average electric field, given as

1F..= — dt F(t),T Q

(i4)

T
A fr = — dti dt2 [F(t2) —F(ti)].2T Q P

and where A g is an effective vector potential given by
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