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Interaction af a strung laser pulse arith the S~~2 Pqy2, 3y2 system
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The interaction of the sodium three-level system with a frequency-fixed or frequency-swept strong
laser pulse is studied numerically. The validity of the secular-adiabatic approximation is analyzed.
The failure of this approximation, caused by the LS decoupling, for the pulses with the peak Rabi
frequency greater than the fine-structure splitting is shown.

PACS number(s): 42.50.Hz, 32.80.—t, 32.90.+a

I. INTRODUCTION

Recently, it was shown both experimentally and theo-
retically that the population of the sodium ground state
Siy2 can be selectively transferred to one of the ex-
cited states Piy2 and P3y2 by a broadband picosecond
frequency-chirped laser pulse [1]. The direction of the fre-
quency sweeping determines which state is excited, i.e. ,
the state whose resonance &equency is Grst met by a
changing pulse carrier frequency. Such selective excita-
tion takes place even when the peak Rabi frequency ex-
ceeds the fine-structure splitting. It was suggested that
a careful pulse-shape control is not necessary in such an
experiment.

The effect described above is explained by the adia-
batic rapid passage (ARP) phenomenon [2—4]. This ef-
fect consists in the complete population transfer &om the
ground level of a two-state system to the upper level by
sweeping the pulse adiabatically through the resonance
&equency. The processes analogous to ARP also take
place in the multilevel systems [3—7]. Much attention
was paid to the multilevel adiabatic population inversion
or redistribution schemes, which involved several time-
delayed pulses. However, mainly ladder and A systems
were studied. The paper of Melinger et al. [1] is, to
our knowledge, the only experimental work that treats
the simple single pulse adiabatic inversion process in the
atomic V system.

The striking feature of the experiment performed by
Melinger et aL [1] was that no evidence of the fine-
structure breaking by the laser field was found. One
can expect that the character of the excitation process
should be changed when the Rabi frequency exceeds the
fine-structure splitting. The Siy2-Piy2 3y2 system irra-
diated by such a strong light Geld transforms, roughly
speaking, into an So-Pi one. In order to investigate
such a transformation we have performed the numerical
simulation of the interaction of the Siy2;P&y2 3y2 sodium
system with the monochromatic, linearly polarized light
having constant amplitude [8]. We have shown that in
the stationary regime, the LS decoupling by the laser
Geld results in the vanishing of the quantum interfer-
ence efFect [9]. Moreover, the character of the spectra
of the scattered light is changed. ID contrast to the re-
sults of [1], our calculations showed that the efFect of the

fine-structure breaking should be observed for the Rabi
&equencies comparable with the Gne-structure splitting.
The time-dependent regime of the experiment is, in our
opinion, the reason for this discrepancy. Nevertheless, it
seems that the LS decoupling should be also observed in
experiments involving the pulsed excitation.

In some cases the adiabatic approximation provides
analytical solutions of the equations describing the evo-
lution of the atomic or molecular systems interacting
with the light having envelope and/or carrier frequency
slowly changing in time [2]. The adiabatic following ef-
fects described by these solutions are characterized by the
smooth evolution of involved populations. In the present
paper we intend to show the way in which the charac-
ter of the interaction of the Si~2-P&~23/2 system with
the relatively weak pulse with fixed or chirping &equency
is changed when the pulse peak intensity increases and
causes temporary LS decoupling.

We use the technique introduced in [10] and adopted
by us for the Siy2-Piy2 sy2 system in [ll). This method,
presented in the example of the So-Pi system in Sec. II,
is based on the secular-adiabatic approximation and en-
ables the investigation of the role of the relaxation in the
adiabatic interaction of the atomic system with the light.
In Sec. III we present numerical results concerning the
interaction of the S&y2-Piy23y2 system with &equency-
fixed pulse and in Sec. IV we show how the selectivity of
the excitation can be lost in experiments similar to that
performed by Melinger et al. [1].

II. THE SECUI AR-ADIABATIC
APPROXIMATION FOR THE So-Pg SYSTEM

The time evolution of the atomic system coupled to
the light Geld and interacting collisionally with buffer gas
atoms is governed by the Liouville equation for the re-
duced density matrix [12]

. dpi—= [II,p]+ iC p,

where H is the Hamiltonian of the system composed of
the atom and the laser Geld and 4 is the operator describ-
ing the relaxation. In our model the matrix elements of
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this operator are defined phenomenologically, i.e. , they
are obtained &om the experimental spontaneous decay
rates and collisional cross sections.

It is convenient to solve Eq. (1) using Liouville-space
formalism [13,12]. The levels of the system considered
are spatially degenerate and the appropriate basis of the
Liouville space is composed of 16 eleinents [12]. If we
assume that the incoming light has a defined polariza-
tion, the dimensionality of the problem can be reduced.
For linearly polarized light the reduced basis (e;f of all
states involved in the problem consists of 5 elements. All
e; states are the spherical tensors built &om the polar-
ization vector contracted with the elements of the rota-
tionally irreducible basis in the Liouville space (see [12]
for details). The reduced density matrix is expanded in
this basis according to

5

P= P~.

In the rotating-wave approximation Eq. (1) can be writ-
ten in the form of a set of the first-order differential equa-
tions for the expansion coefficients (2)

5 5

„~' =) A,,&, =) (A,',". +r,, )&, ,
i=1 j=1

(3)

where i = 1, . . . , 5; A is the skew-Hermitian matrix,
which describes the Liouvillian of the atom interacting
with the electromagnetic field; and the matrix I' contains
relaxation rates. The matrix A is defined in [12]:

O ~3q O 'U

0 —p 0 —v/i/3
o o -r,",' —2v/~6

—v v/~3 2v/~6 —I' + iA
—v v/~3 2v/i/6 0

—v/~3
—2v/~6

0
-r (~)

12

(4)

r,', =~/2+&, '...„, r, ', =&+~,'„.„,(~) (~) (2) (2)

where 2v(t) is the time-dependent Rabi frequency and
A(t) = (r/p(t') —u2i denotes the detuning of the incoming
light frequency ~p(t) from the resonant frequency cu2i.
The spontaneous relaxation rate is denoted by p and the
coherence and alignment damping rates are defined by
the relations [12]

component describes the alignment in the Pq state and
the remaining two are the coherences between states cou-
pled by the light. The initial condition for the solution of
Eq. (3) is assumed to be pi ——1 and other components
are equal to 0.

The solutions to (3) completely describe the evolution
of the considered system. Unfortunately, for arbitrary
v(t) and up(t) this set can be solved only numerically.
However, the secular-adiabatic procedure allows analyti-
cal solutions in some cases. If we transform the equations
of motion to the dressed frame [10] via the transforma-
tion

~ (t) =U'(t)~(t), A (t) =U'(t)A(t)U(t), (6)

where U diagonalizes the matrix A H [see (3)], then the
set (3) takes the following form in the dressed frame:

( ) AL () Ut() ( ) D() (7)

The adiabatic approximation can be performed in the
dressed kame in an easy way. In general, this approxi-
mation consists in the omission of the second term in the
right-hand side of (7), which can be done when

dU(t)
dt

(( iAD(t) —A~(t)
i (i »)

U'(&)
d

« IA;;(&)I
dUt

2X

for all values of i and j.
The matrix A is, in general, nondiagonal since the

terms describing relaxation are present in the matrix A
[see (4)]. However, some of the nondiagonal terms can be
neglected when the absolute values of the nonzero diag-
onal terms (the generalized Rabi frequencies) are large.
Such an approximation is called a secular one [14].

The transformation U is constructed from the eigen-
vectors of the matrix A . The energy differences mul-
tiplied by the imaginary unit i are the eigenvalues of
this matrix. The eigenvalue 0 is degenerate. In order
to obtain the transformation U giving proper evolution
of the density matrix, one must construct eigenvectors
with the zero eigenvalue which are in agreement with the
constants of motion defined as [11,15,16]

where the index coll stands for the collisional contri-
butions. The collisional line shifts are neglected [12]
throughout the paper.

The first two components of the density matrix (2) are
related to the populations of the ground and excited lev-
els: ni ——pi and n2 ——~3p2, respectively. The third

I

C„=Trp(t)" = Trp(0)", n = 1, 2, ... , N, (9)

where N is the number of the system levels. In our case
N=2.

The transformation U(t) to the dressed frame for the
So-Pg system is

1U=
20 —2zv

2zv
2zv

—2zv

0+A 0 —2 0
(n —~)/~3 (n+~)/~3 4n/~6

2(n —~)/~6 2(n+ ~)~6 -2n/~3

—2'L'U

2iv/~3
4iv/v 6
0+A
0 —L

2zv

2iv/~S-
—4iv/ ~6
0 —L
0+6

(1o)
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+dU i dL dv

dt 02 dt dt

0 0 0 1 —1
0 0 0 —1 1
0 0 0 0 0
1 —1 0 0 0

—1 1 0 0 0

(12)

where the n(t) = +4v2(t) + A2(t) is the generalized
Rabi frequency for the So-P1 transition. To obtain eigen-
vectors of the zero eigenvalue, which are the first three
columns of the matrix (10), we use the constants of mo-
tion

1
pq(t) + [p2(t) + ~2ps(t)] = const,

3

pq(t) + 2p4(t) ps(t) + —[p2(t) + v 2ps(t)] = const,
3

(»)
V2p2(t) —ps(t) = const.

The first two are determined from (9). The third one
states that the linearly polarized light cannot change the
population of P1, m = +1 sublevels in the So-P1 system.

For the So-P1 transition the second term on the right-
hand side of Eq. (7) takes the form

If we neglect this term (the adiabatic approximation),
which is possible when

IvdA/dt —Edv/dtl

(1) (2)
12 22

0 0 0"' (i4)

the nondiagonal terms coupling these two parts of the
dressed density operator can be omitted (the secular
approximation [14]). In the framework of the secular-
adiabatic approximation, dressed populations and coher-
ences evolve independently. Hence, for the assumed ini-
tial condition, the dressed coherences are not generated.
It means that the evolution of the considered system is
completely described by the evolution of the dressed pop-
ulations. In our case they obey the following equations:

the population (pz, pg, psD) and the coherence (PP, PDs)

parts of the dressed density operator are coupled only
when the relaxation is present. If the following condition
is fulfilled:

d D (2)
r(~) 2 ~(n ~) +22coll (n2 ~2) D

2@2 12 ~ 3 I

( )
— 4r"v'+ ~~(n+ Z ) + ~22-" (n+ ~)'12 3

d D

dt 3 2n
&'2'..u[(n —&)pi + (n+ &)p2 1

—
I ~

PP + P2 + ~&ps

+ &(n —+) + &.2..u(n+ +) ps,
1 (2) D

3 2

(2)

+ ~22coll
l

D

)
+

3 IP3~

When the collisional relaxation is absent and when ini-
tially the only nonzero component of the density matrix
is pq(0) = 1, which in the dressed basis is equivalent to

1 A(t) D 1
n2 (t) = —+ p2 (t) ——

2 n(t) 2

which for p = 0 becomes

s(0) =0,
1 b.(0)E(t)

I~(o) In( )
(20)

the solution of the set (15) is

where

2v(t)'+ A'(t)
n(t)'

Finally, after transformation back to the bare basis we
obtain for the population of the upper level

This last solution for the pulse swept through the reso-
nance exhibits behavior typical for the ARP [2].

The analysis of the condition (13) reveals the difference
between adiabatic excitation by the kequency-Axed and
chirping pulses. When the detuning is fixed (b, =const),
the relation (13) becomes IA(dv/dt)I /n (( 1. The sys-
tems follows adiabatically the changes of the pulse en-
velope only when Ib,

l
)) v(t) [2]. In such a case when

the peak intensity of the pulse is increased, its duration
also has to be increased in order to fu1611 the adiabaticity
condition.

The determination of the adiabatic regime for the
chirping pulse is more complicated. Even for the sim-
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plest model of the frequency sweeping, i.e., the linear
model

b(t) = a, +at, (21)

III. THE EXCITATION OF THE Sg/g-Pg/2, 3(g
SYSTEM BY THE FREQUENCY-FIXED PULSE

The discussion of the secular-adiabatic approximation
for the Sig2 Pi~2 s~2 system wa-s presented in [ll]. Here
we only want to recall that for this system the reduced ba-
sis (e;) consists of 10 elements [8,11,17] and that the ana-
lytical form of the transformation to the dressed frame is
not known. Nevertheless, the procedure presented in [11]
can supply this transformation numerically and therefore
within the secular-adiabatic approximation evolution can

with Ap denoting the initial detuning and a the &equency
sweeping rate, the relation (13) is so involved that the
calculation of the parameters describing the variation of
the pulse intensity and carrier &equency is practically
impossible without some additional assumptions. In our
considerations (compare [11]) we assume that the pulse
achieves its maximum when the carrier &equency passes
the resonance. In such a case we can calculate parame-
ters giving the adiabatic regime by applying the condi-
tion (13) when the pulse is switched on and when the
pulse intensity attains its maximum value. In the sim-
plest model, two parameters describe the pulse envelope
and one the &equency sweeping. Therefore, there are sev-
eral methods of setting these parameters. Since in this
paper we want to study the LS decoupling caused by the
high intensity laser field, we are interested in the pulses
having a large peak intensity. The relations obtained by
us (see [ll]) imply two possible ways of increasing this
intensity and preserving the adiabaticity of the excita-
tion, i.e., the increase of the pulse peak intensity has to
be followed only by an increase of the pulse duration or
by a decrease of the pulse duration and an increase of
the sweeping rate. Since the first method requires more
and more energetic pulses, it seems impractical for ex-
perimental purposes and we restrict our consideration to
the second method.

We have not found any analytical solutions of the set
(15) when collisional relaxation rates do not vanish. It
seems that in such a case, these equations can be solved
only numerically. We want, however, to study the LS
decoupling in the Sz/2-Pi/2 3/2 system, which under the
inHuence of the strong field should exhibit some features
of the Sp-Py system. In particular, it is expected that
the adiabatic approximation cannot describe correctly
the evolution of the Si/2-Pi/23/2 system excited by the
strong &equency-fixed pulse tuned to the center of grav-
ity of the P multiplet. In such a case, if the pulse peak
intensity is high enough, the Si/2-Pi/2 3/2 system trans-
forms temporarily into the resonant Sp-P~ system. As is
well known [2], the resonant two-level system does not
adiabatically follow the variation of the pulse envelope.
Therefore, as we show in the next section, the evolution
of the Si/2-P~/2 3/2 system is no longer smooth.

be determined. In this section we will compare the solu-
tions found in such a way with exact solutions obtained
by the direct integration of the equations of motion.

As in [11], we assume that the system considered is
excited by a linearly switched on and exponentially de-
caying pulse defined by

v(t) = 16vo —exp
~

—4—
~,+) (22)

v t'dt
OO - 2

T = v(t)dt
0

v(t)dt,

v(t)'dt.
0

(23)

The envelope (22) achieves a maximum equal to approx-
imately 1.47vo for t = T/4 [see Fig. 1(a)]. We consider a
pulse starting at t = 0 since it seems to be more physical
than pulses which start at —oo [19].

For vp small in comparison with the fine-structure
splitting and when the collisions are absent, the Si/2-
Pi/2 3/2 system can be considered as two subsystems
Si~2 Piy2 and -Siy2 Ps~2 no-t coupled by light (see [11]).
These subsystems are joined only by the common ground
level. Let us assume that the light is tuned to the center
of gravity of the upper state multiplet. This means that
the detuning from the Di transition is equal to 2u32/3
(see [8,11]),where ws2 represents the fine-structure split-
ting. In such a case, employing conditions obtained in
[11],which are similar to (13) and (14), we can find pa-
rameters vp and T describing pulses which generate adia-
batic evolution for both independent Si/2-Pi/2 and Si/2-
P3/2 systems. In general, when the mean pulse intensity
increases, the longer pulse must be used to preserve the
adiabaticity of the evolution.

In order to find when the secular-adiabatic approxima-
tion can be inaccurate, we perform the numerical simula-
tion of the evolution of the whole Na Si/2-Pq/2 3/2 system
interacting with the pulse, which ensured adiabatic evo-
lution for the Sq/2-Pq/2, and Si/2-P3/2 systems, respec-
tively. As the unit of time, we chose the lifetime of Pi/2,
which is equal to 16.3 ns. All other parameters are de-
fined in relation to the spontaneous decay rate for the Na
Di transition. The parameter vp denotes the mean cou-
pling for this transition. We assume that all collisional
relaxation rates vanish.

The results are presented in Fig. 1, where we have plot-
ted the evolution of the populations of the Si/2 and Pi/2
states and the joint populations of the Ps~2, m = +1/2
states. Since we assume that the collisional relaxation is
absent and that the light is linearly polarized, the P3/2,
m = +3/2 states are not populated and the Zeeman sub-
levels with the same ~m~ are equally populated. In other
words, the population of the P3/2 state is equal to the
total population of the Psy2, m = +1/2 states. The ex-
act solutions are represented by dots. The continuous
lines correspond to the adiabatic-secular results. For the
shortest pulse analyzed [Fig. 1(a)], the evolution of the

with mean coupling vp, which is proportional to the mean
envelope amplitude and mean pulse duration T defined
by [18]
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FIG. 1. The populations of the Na Sq/2, Pq/2, and P3/z
states versus time for di8'erent frequency-fixed pulses giving
adiabatic evolution. The mean coupling vo of the pulse (22)
is equal to (a) 0.2(usq, (b) O. Ru3$) (c) 4/s2 and (d) 2ws2. The
light is tuned to the center of gravity of the P multiplet. The
continuous line denotes the secular-adiabatic results and the
dotted line gives exact numerical results. The dashed line in

(a) corresponds to the pulse envelope (22) with vo = 1/2.
Here and in the folio@ring 6gures time is measured in lifetimes
of the Dq transition and other parameters are given in relation
to the spontaneous decay rate for this line.

populations of both excited states can be explained by
the nonresonant excitation. Since vo is relatively small in
comparison to the detunings &om both transitions, these
populations follow the changes of the pulse envelope. The
population of the P3/2 level is always greater than that
of the P~/2 state because the light is tuned closer to the
D2 transition than to the D~ transition. This simple pic-
ture changes for a pulse that is both longer and stronger
by a factor of 2 [Fig. 1(b)]. The population of the Ps/2
state temporarily saturates and the population inversion
between both excited states and the ground state can be
observed. In addition, the inversion between the Pz/2 and
P3/2 states appears. This last effect is more pronounced
in Fig. 1(c).

As expected, the secular-adiabatic approximation su-
perbly describes the evolution of the populations even for
relatively strong pulses [compare Figs. 1(a)—1(c)]. How-
ever, for the strongest pulse analyzed [Fig. 1(d)], one can
observe the failure of this approximation. The approx-
imate results cannot describe strong oscillations which
appear when the pulse passes its maximum. Unexpect-
edly, the evolution caused by the spontaneous relaxation
after the passage of the pulse is described correctly. It
seems that in spite of the incorrect description of the os-
cillations, the secular-adiabatic approximation gives the
correct evolution when the oscillations are averaged out.

The discrepancy between the secular-adiabatic and ex-
act results is better illustrated in Fig. 2, where we have
plotted the evolution of the populations under investiga-
tion for long (T = 5) and very strong (vp = 10us2) pulses.
In the beginning the evolution is very well described by
the secular-adiabatic approximation, but when the pulse
achieves its maximum and the relaxation begins to influ-
ence the evolution, the exact solutions strongly oscillate,

FIG. 2. The populations of the Na Sz/2, Pz/2, and P3/2
states as functions of time. The mean coupling vo is equal to
10u32 The light is tuned to the center of gravity of the P
multiplet. The continuous line denotes the secular-adiabatic
results and the dotted line gives exact numerical results.

whereas the approximate ones are smooth. For such a
long pulse the spontaneous relaxation becomes impor-
tant. Hence the adiabatic solutions no longer follow the
pulse envelope for times comparable to the lifetime.

Usually the atomic relaxation is neglected in the analy-
sis of the adiabatic interaction of the light pulses with the
atomic systems since the processes described take place
in times much shorter than the relaxation times. Our re-
sults, however, presented in Figs. 1 and 2 show that the
increase of the Axed-frequency pulse intensity must be
followed by an increase of the pulse duration and an in-
corporation of the relaxation processes into the adiabatic
model has to be performed.

Finally, we have investigated the time evolution of the
eigenvalues of the matrix iA for the Na S&/2-Pz/2 3/2
system (see [11]). These eigenvalues are equal to the
differences of the corresponding eigenenergies. Four of
them are equal to 0 and six others form pairs having
opposite signs. Therefore three quantities ~E2 —(Eq +
cup) ~, ~Es —(Ey+up) ~, and ~Es —E2

~

describe the evolution
of these energy differences (Eq denotes the energy of the
ground level, whereas E2 and E3 are the energies of the
excited states h = 1). As seen in Fig. 3, these quantities
follow the variation of the pulse envelope.

These eigenvalues can be interpreted as the kequencies
of the temporarily emitted light having polarization par-
allel to the driving one. Therefore, there are the following
contributions to the time-dependent spectrum [20]: the
central line with &equency uo and three pairs of lines
with varying frequencies (see Fig. 3) placed symmet-
rically around uo. When the incoming field is strong
enough, but the Gne structure is not destroyed, these
sidelines can be identified as components of the Mollow
spectrum on Dq and D2 transitions and as lines con-
nected with the Raman processes between Pj/2 and P3/2
via the ground state [22].

It seems that the time-dependent spectrum can be a
tool giving insight into the LS decoupling process. We
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FIG. 3. The evolution of the positive eigenvalues of the ma-
trix iA [see (3)] for the Na Siy2 Pig2 sy2-system interact-
ing with the frequency-fixed pulse (22) tuned to the center of
gravity of the upper state multiplet. The mean pulse intensity
vQ —4/3g The continuous line corresponds to ~E2 —(Ei +no) ~,

the dashed line to ~Es —(Ei + uo)~, and the dotted line to
~E3 E2

~

eigenvalues, respectively. The magnitudes of the
eigenvalues are divided by the Bne-structure splitting m32.

expect that this process should be reflected at least in the
energy spectrum [20] of the light scattered by the system.

IV. THE CHIRPING-PULSE EXCITATION OF
THE Sg/ g-Pg/ g,g/2 SYSTEM

In this section we present results of the numerical simu-
lation of the experiment performed by Melinger et aL [1].
The frequency sweeping in this experiment is nearly lin-
ear. It is also suggested that the observed effects weakly
depend on the shape of the pulse envelope [1]. In our
simulation, we follow these statements and use the enve-
lope (22) and the linear sweep described by the rate a
[see (21)]. In order to simplify the analysis we assume
that the pulse achieves a maximum when the frequency
passes the resonance with one of the Di or D2 transi-
tions. In such a case we can use conditions derived in
[11] to construct frequency-swept pulses giving ARP on
one of these transitions. More precisely, we find parame-
ters T, vo, and a giving adiabatic evolution for the Sz/2-
Pzy2 and Sq/2-P3y2 systems. These conditions, based on
the assumption that the pulse must be adiabatic when it
starts and when it passes the maximum, imply that the
increase of the pulse peak intensity can be followed by a
shortening of the pulse and an increase of the velocity of
the pulse's frequency sweeping (see Sec. II).

First we perform calculations for the pulse lasting ap-
proximately as long as the one used in the experiment
[1] (T=0.001 lifetimes of the Di transition, i.e. , about
16.3 ps) and having a maximum equal approximately to
1.18~32, when the light is in resonance with the Siy2-Pzy2
transition. The driving frequency is swept with the rate
a = 1.88 x 10 us2 per Di lifetime (19.6 cm /ps). We
obtain results similar to those registered in the experi-
ment, i.e., when the sweeping begins on the red side of
the Dq transition, the population is transferred from the

001

0.6-

0.2-
0
cd

CL
O
CL

0.6

001

0.2-
P1 /2

0.00025 0.0005 0.00005 0.0001

FIG. 4. The populations of the Na Sq/2, Pq/2, and P3g2
states versus time for different frequency-swept pulses giving
adiabatic evolution. The mean coupling vo of the pulse (22)
and frequency sweeping rate a are equal to, respectively, (a)
and (b) 0.8cus2 and 1.88x10 ws2 per Di lifetime, (c) and (d)
8co3g and 1.88 x 10 ~3+. In (a) and (c) sweeping starts from
the red side of the Pi~& level and in (b) and (d) from the
blue side of P3g2. In all cases the pulse achieves a maximum
when the driving frequency passes the resonance with the Dz
transition. The continuous line denotes the secular-adiabatic
results and the dotted line gives exact numerical results.

ground level to the excited state Pi~2 [Fig. 4(a)]; in the
opposite case for initial detuning on the blue side of the
P3g2 level, the population is transferred to the P3y2 state
[Fig. 4(b)]. The third state, Psy2 in the first case and

Pqy2 in the second, is populated only temporarily. The
exact results obtained by numerical integration of the
equations of motion and approximate solutions obtained
in the framework of the secular-adiabatic approximation
coincide.

In spite of the fact that the Rabi frequency is, in this
case, greater than the fine-structure splitting, there is
no evidence of the LS decoupling. In our opinion, since
the excitation is time dependent, the pulse with a bigger
peak intensity must be used to observe this effect. In
order to use a stronger pulse and obtain smooth evolu-
tion, we make the pulse shorter and the sweeping faster.
In Figs. 4(c) and 4(d) we present the results of calcula-
tions performed for the pulse with T = 0.0001 (1.63 ps),
vo ——8w32, and a = 1.88 x 10 u32 One can observe big
discrepancy between exact and secular-adiabatic results,
especially in Fig. 4(c), where the sweeping is assumed
to start from the red side of the P~y2 level. Moreover,
the selectivity of the excitation predicted by the secular-
adiabatic approximation does not take place. Both ex-
cited states are populated. However, the level that starts
its interaction with the pulse earlier is more populated.
The ground level is completely emptied.

This lack of selectivity can be explained qualitatively
in the following way. The strong field transforms the
Szg2-Pzy2 3/2 system into an So-P~ one in which the ARP
process described in Sec. II takes place. Then the popu-
lation is redistributed between Pi~2 and Psy2, m = +I/O
states by the LS coupling.

We obtain similar results when we assume that the
pulse reaches its maximum when the frequency passes
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the D2 transition or the center of gravity of the P multi-
plet. Therefore the precise adjustment of the ft. equency
sweeping is not important.

We conclude that when the mean pulse intensity vo is
much greater than the fine-structure splitting, the system
is so strongly coupled to the electromagnetic field that
the secular-adiabatic approximation, which gives correct
results for the uncoupled transitions Sqy2-Pqy2 and Szy2-
P3/2 ) cannot describe the behavior of the composed Sj y

2-

Pqy2 3y2 system. Nevertheless, this approximation gives
a very good description of the excitation process when
the mean intensity is comparable to the fine-structure
splitting [see Fig. 4(a) and compare [1]].

If we go beyond the adiabatic approximation, the ef-
fects described above can be still present, but the pop-
ulation evolution becomes highly oscillatory. Moreover,
the population of the ground level after passage of the
pulse can be quite large.

In Fig. 5 we give the evolution of the energy difFerences
of the system considered for the case presented in Fig.
4(a). As a consequence of the frequency sweeping the
interchange of the these energy di8'erences takes place.
The difFerence lEs —E2l evolves into lEs —(Ei + ufo)l,
IE2 (Ei+ ~0) I

into IEs —E.
l

and IE.- (Ei+ ~o) I
in«

lE2 —(Ei + ~o)l. In other words, the dressed state ll)
finishes its evolution as state l2), l2) as l3), and l3) as ll)
(compare [1]).

We also investigate the dependence of the considered
efFect on the shape of the pulse envelope. Apart &om the
envelope (22), we also perform calculations for the pulse
composed of two exponents (2Ex)

( tl
v(t) = 6vp exp

l

—3—
l

—exp
l

—6—
l

(24)T) & T)

and for linearly (I G) and quadratically (QG) switched
Gaussian pulses

16 t 8
v(t) = —vo —expT ~ qT)

(25)

64vrv2 Et' 8vr (tb
v t vp —

l
exp

27 qT) 9 (T) (26)

V. FINAL REMARKS

We have investigated numerically the Na system in-
teracting with the short laser pulse. The cases of the
fa. equency-fixed and frequency-swept pulses have been
studied. The relevance of the secular-adiabatic approx-

These envelopes fulfill relations (23). The envelopes (22)
and (24)—(26) having the same vo and T have the same
energy and area in the sense that they can be consid-
ered equivalent. The plots of the functions (24)—(26) are
presented in [21].

As before, we assume that each of these pulses passes
maximum when its driving frequency coincides with the
Dq transition. The results obtained for the same param-
eters as in the case plotted in Fig. 4(c) are presented in
Fig. 6. Since each of the envelopes considered achieves
a maximum at a difFerent time (2Ex at 0.231T, I G at
0.443T, and QG at 0.598T), the plots of the popula-
tion evolution for diferent pulses are shifted, but they
are qualitatively similar. The final populations after the
passage of the pulse for diQ'erent envelopes dier slightly.
In that sense the excitation process can be treated as in-
dependent of the shape of the pulse envelope (compare
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FIG. 5. The evolution of the positive eigenvalues of the
matrix iA for the Na Sz) 2-P& y2 3) & system interacting with
the frequency-swept pulse (22) having a maximum when the
frequency passes the Dz transition frequency. The mean pulse
intensity vp ——~32. The frequency sweeping starts from the
red side of P&yq state with the rate a = 1.88 x 10 ~32 per
D~ lifetime. The continuous line corresponds to the eigen-
value being initially equal to lEs —E2l, the dashed line to
lEs —(Ex+too)l, and the dotted line to lE2 —(Ei+&us)l. The
eigenvalues are divided by the fine-structure splitting m32 as
in Fig. 3.

FIG. 6. The exact evolution of the populations of the Na
P&y2 and P3y& states for different frequency-swept pulses giv-
ing adiabatic evolution. The mean coupling vp = 8')32 and
frequency sweeping rate a = 1.88 x 10 ~3/ The sweeping
starts from the red side of the P&y2 level. The pulses achieve
a maximum when the driving frequency passes the resonance
with the Dq transition. The continuous line corresponds to
the 2Ex envelope, the dashed line to LG, and the dotted line
to QG.
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imation has been tested. Since the analytical condition
for the adiabaticity of the interaction for the S»/2 P»/g 3/2
system cannot be found, we have constructed the appro-
priate pulses, demanding that they should give the adi-
abatic evolution of the systems S»/2-P»/2 and S»/2-P3/2
taken separately. It was shown that such an approach
is correct for the pulses having a mean intensity smaller
or comparable to the Gne-structure splitting. It seems
that the interaction of the stronger pulses with the S»/2-
P»/2 3/2 system cannot be described in the framework of
the secular-adiabatic approximation. However, this ap-
proximation provides an accurate account of the evolu-
tion in the initial region when the field intensity is smaller
than the energy gap between excited levels.

The pulse's &equency sweeping is a very useful tech-
nique which enables the creation of the population in-
version in atomic and molecular systems. Usually the
sequence of pulses is used to produce inversions in the
multilevel systems. Melinger et al. have shown [1] ex-
perimentally and theoretically that one strong and short
chirping pulse can transfer the population of the ground
level in the S»/2-P»/23/2 system to one of the excited
levels. However, the experiment and the numerical simu-
lation were performed in a regime in which the breaking
of the Gne-structure coupling does not influence the re-
sults of the sweeping. We have shown that for fields one

order of magnitude stronger and pulses one order shorter
than those used in the experiment, the selectivity of the
excitation, which is the most striking experimental result,
can be removed.

Our calculations have demonstrated that the process
of population transfer to the upper level, selective or
unselective, weakly depends on the pulse shape and
&equency-sweeping adjustment. Such robustness of this
process [1] allows easy experimental applications.

We have shown in [8] that the Sqy2 P~~2 -3/2 system
under the influence of the strong stationary Geld exhibits
some features of the So-P» system. When the excitation
has pulsed character, the Gne structure is broken only
temporarily. Nevertheless, the evolution is influenced by
the eKects associated with the So-P» system and the per-
turbation of the smooth adiabatic evolution presented in
Sec. III or the population redistribution by the LS in-
teraction described in Sec. IV should be observed.
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