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Light-induced states of H and H, shadow states, and the dressed potential
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Light-induced "bound" states of atoms originate from the movement of poles of the multichannel
scattering matrix on the Riemann energy surface. The appearance of additional "bound" states
of the negative hydrogen ion, recently predicted in the high-frequency theory, is related to the
motion of resonance poles that correspond to autoionizing states in the absence of the field. Various
pole trajectories leading to light-induced states are described for photodetachment from a one-
dimensional square potential well. Certain light-induced states in atomic hydrogen are discussed in
relation to the spectrum of the dressed Coulomb potential.

PACS number(s): 32.80.Rm, 03.80.+r

I. INTRODUCTION

The Floquet theory of multiphoton ionization of an
atom by an intense laser field can be formulated in a
&arne of reference, often called the Kramers-Henneberger
&arne, which oscillates about the nucleus at the &equency
of the field. The transformation to this frame simplifies
the description of the atom appreciably when the fre-
quency of the field is much higher than the characteris-
tic &equencies of the unperturbed atom. Indeed, in the
high-frequency limit the active electron(s) simply move
in a time-independent "dressed" potential, which is just
the static, cycle-averaged part of the interaction poten-
tial in the oscillating &arne. In this "static" or "high-
frequency" approximation the dressed bound states
of the atom do not ionize, and their quasienergies are
the real energies of the bound states supported by the
dressed potential. The range of the dressed potential in-
creases with the amplitude of the quiver motion of the
electron. Therefore, as the intensity or the wavelength
of the laser field increases, the number of bound states
supported by the dressed potential may also increase,
i.e. , new bound states may appear, a phenomenon found
by Bhatt, Piraux, and Burnett in their work on elec-
tron scattering from a polarization potential in the pres-
ence of strong monochromatic light [1—3]. The appear-
ance of new bound states was later observed by several
other investigators, e.g. , by Bardsley and Comella [4] and
Yao and Chu [5] in their study of photodetachment from
a one-dimensional Gaussian potential. More recently,
Muller and Gavrila [6] carried out fully correlated cal-
culations on the structure of the negative hydrogen ion
in the high-frequency limit, and also found such light-
induced bound states.

In full Floquet calculations the nonstatic components
of the Kramers-Henneberger potential are included, and
their inclusion allows the atom to decay. Hence, the
quasienergies of "bound" states, when calculated be-
yond the high-&equency approxin:~tion, are complex,

and their imaginary parts are negative since the states
decay. Bardsley and Comella, and also Yao and Chu, not
only calculated the energy levels of the dressed Gaussian
potential, but they also carried out full Floquet calcu-
lations of comple~ quasienergies for this system. They
verified that the static approximation is indeed reliable
at high &equency, both in giving accurate ac-Stark shifts
of the dressed states and in correctly predicting the ap-
pearance of light-induced states. In the cases they stud-
ied, the appearance of a light-induced bound state of the
dressed potential always coincided with the appearance
of a light-induced state in the full Floquet calculation.
Yet, light-induced states other than those obtained in
high-&equency calculations are also possible; cases are
known where a full Floquet calculation yields a light-
induced state with no obvious counterpart in the spec-
trum of the dressed potential. For example, full Floquet
calculations carried out for atomic hydrogen, for wave-
lengths in the vacuum ultraviolet (vuv) [7] as well as in
the infrared or the visible [8,9], have revealed new discrete
states, and yet the dressed Coulomb potential does not
support additional bound states at high intensity. The
appearance of light-induced states similar to those found
in hydrogen has also been established for sodium and
potassium [10]. Thus, while a new bound state supported
by the dressed potential is a high-&equency limiting case
of a light-induced time-decaying Floquet state, not all
light-induced states correspond to new bound states sup-
ported by the dressed potential.

The purpose of this paper is to provide further clar-
ification of the origin of light-induced states. (We use
the term "light-induced state" to mean any new dis-
crete state induced by a laser field, which may or may
not correspond to a new bound state supported by the
dressed potential. When we need to distinguish the new
discrete states found in full Floquet calculations from
those found in the high frequency theory we refer to the
latter as "light-induced bound states supported by the
dressed potential" or an equivalent circumlocution. ) For
the sake of clarity, we start with a brief description of
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the analytic structure of the multichannel scattering ma-
trix and of some general properties of the wave functions
associated with light-induced states. These considera-
tions are illustrated in Sec. IIIA by analyzing the ap-
pearance of a light-induced state in the one-dimensional
(1D) Gaussian potential model of Cl studied by Yao
and Chu. The relationship of light-induced states of neg-
ative ions to autoionizing states of the field-free system
is discussed in Sec. IIIB, in a nonrigorous fashion; our
earlier remarks about this problem [ll] are amplified in
view of the recent prediction of light-induced states in H
[6]. Results for photodetachment from a one-dimensional
square potential well are presented in Sec. IIIC for var-
ious wavelengths. Although the dressed Coulomb po-
tential does not support new bound states at high in-
tensity, light-induced states of atomic hydrogen do ap-
pear in intense high frequency fields [7], as noted above;
in Sec. IIID we show how the bound-state spectrum of
the dressed Coulomb potential is related to these light-
induced states. It should be noted that the existence of
light-induced states has yet to be confirmed in experi-
ment. All those light-induced states found so far in cal-
culations for hydrogen and alkali-metal atoms have large
ionization widths, which would make their detection dif-
ficult.

II. THEORY

A. Wave functions of light-induced states

Let us assume that the system consists simply of one
active electron, initially bound by a short-range force,
exposed to a monochromatic laser field. We make the
dipole approximation and the Floquet ansatz (we assume
that the intensity is constant) and we work in the p ~ A
gauge. The wave function of any discrete dressed state
of the system is a solution of the Schrodinger (Floquet)
equation satisfying Siegert boundary conditions. Outside
the range of the potential it reduces to a linear superpo-
sition of infinitely many spherical waves exp[ik~(E)r]/r
in three dimensions or plane waves exp[ikM (E)~x~] in one
diinension, where E is the (complex) quasienergy and
kM(E) is a channel wave number; if m is the photon an-
gular frequency, we have

k~(E) = [(2p/h )(E+MRu)]'~,

where p is the mass of the electron. Hereafter, when
there is no possibility of confusion, we abbreviate kM(E)
as k~. We denote by Mo the smallest integer M such
that Re(E) + Mhcu & 0. For each channel wave num-
ber, there are two difFerent branches of the square root
function, and the choice of branch determines whether
or not the eigensolution describes a "dominant" state,
i.e., a decaying bound state which is physically signifi-
cant, or a nonphysical state. If the state is dominant, its
quasienergy must have an imaginary part that is nega-
tive and, at asymptotically large distances, its wave func-
tion must behave as an outgoing wave in the open chan-
nels (i.e. , channels M & Mo) and vanish in the closed

channels (M & Mo). Therefore, the wave numbers must
be such that 7—r/4 & arg(kM) & 0 for M & Mo and
vr/2 & arg(kM) & 3vr/4 for M & Mo', these are the
"physical" branches. States whose wave functions do
not satisfy these conditions may be either antibound
states or "shadows" of dominant states or antibound
states. Shadow states, which are discussed further in
the next subsection, are analytic continuations, onto dif-
ferent sheets of the Riemann energy surface, of discrete
states either true bound states, physically significant
resonances, or antibound states of the bare system.
A nondominant (i.e. , shadow or antibound) state corre-
sponds to the choice of an "unphysical" branch for at
least one wave number. Dominant and shadow states are
associated with dominant and shadow poles, respectively,
of the multichannel scattering matrix [12]. Dominant
poles lie close to the physical energy axis, while shadow
poles lie relatively far &om this axis. Dominant states
can be defined in a mathematically rigorous way in the
&amework of the complex scaling method provided the
potential is suitable. Shadow states are not uncovered
by the usual complex scaling method, although in some
cases they are amenable to numerical calculation (e.g. ,

by using expansions on complex basis sets [11,13] or by
using a modified version of the complex scaling method
[14] or, for a finite range potential, by using the method
described in the Appendix). The light-induced states are
particular instances of dominant states.

The quasienergy and the wave function of a dominant
state vary with the amplitude of the laser electric field,
as well as with the &equency and the polarization, and at
some intensity a multiphoton threshold may be crossed
(i.e. , Mo changes by unity). However, it is advantageous
to study these functions in a domain of definition larger
than that where the state is dominant. Hence, we an-
alytically continue the quasienergy and the wave func-
tion and consider that they vary continuously across the
thresholds, without any jump in arg(kM, ). (It is also
interesting, though not necessary for our purposes, to
study their variation for complex values of the parame-
ters of the field [15].) Dominant and shadow states are
treated on the same footing in this way. Any dominant
state becomes a shadow state upon passage by a multi-
photon threshold. In particular, any light-induced state
becomes a shadow state when the intensity decreases be-
low its appearance intensity. (In all cases analyzed so far,
for hydrogen, alkalies, and model systems alike, the light-
induced states appear at an intensity where the real part
of their quasienergy is an integral multiple of the photon
energy, i.e., right at a multiphoton threshold; evidently,
the binding energy of a light-induced bound state sup-
ported by the dressed potential is zero at its appearance
intensity. )

The question of the zero-field limit of light-induced
states has not received a great deal of attention so far.
On general grounds, one would expect that all dominant,
and shadow states reduce to discrete states of the bare
system in the zero-intensity limit, i.e. , to bound or an-
tibound states or field-free resonances. For example, it
has been shown [13] that at least one of the light-induced
states found by Bardsley, Szoke, and Comella [16] for
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the one-dimensional Gaussian potential could indeed be
traced back to a true excited bound state in this limit.
However, we are not aware of any rigorous mathematical
study of the zero-field limit of light-induced states.

B. Poles of the scattering matrix

The appearance of light-induced states can be dis-
cussed in terms of trajectories of poles of the multichan-
nel scattering matrix. The scattering matrix has poles
in the energy variable at those (quasi)energies where the
system has discrete states. Furthermore, it has infinitely
many branch points on the real axis, one at each mul-
tiphoton ionization threshold where one of the kM van-
ishes, in addition to branch point(s) at thresholds of the
bare system. We draw cuts from each branch point down-
wards in the lower-half energy plane, parallel to the imag-
inary axis, so that each sheet of the Riemann manifold
corresponds to a different choice of branches of the square
root functions in Eq. (1). This choice of cuts, while not
new, departs &om the usual convention of drawing the
cuts overlapping on the real axis. In our case, the poles
that are dominant at a given energy (those associated
with dominant states) can be reached from the real axis
of the physical sheet by a path starting at this energy
and going downwards without crossing any cut. In other
words, with our choice of cuts any dominant pole lies on
the physical sheet. In general, the dominant poles are
closer to the real physical axis than the other poles, and
therefore have a greater influence on how the scattering
amplitudes vary with energy; only near thresholds can
shadow poles and antibound-state poles be of any phys-
ical significance.

In the absence of the radiation field, the multipho-
ton ionization channels are uncoupled and, therefore, the
scattering matrix is single valued when it is continued
along a closed path that encirles a multiphoton ionization
branch point without encircling a branch point (thresh-
old) of the bare system. Hence, when the radiation field
is very weak, any pole that represents a bound state or
resonance of a bare atomic system must have a shadow
partner, at almost the same location, on each of those
unphysical sheets that can be reached without encircling
a threshold of the bare atomic system [12]. As the inten-
sity increases, and the multiphoton ionization channels
become more strongly coupled, these shadow poles may
follow very different trajectories on the Riemann mani-
fold, and some of them may move close to the physical
energy axis and become physically significant. Often, the
trajectories of these poles are such that when a dominant
pole shifts across a cut and takes on a shadow character,
it is replaced, at about the same intensity and at about
the same energy, by a shadow pole which becomes domi-
nant. Conversely, there are cases where a dominant pole
shifts across a cut without being replaced by a dominant
pole [17]. On the other hand, a light-induced state ap-
pears when a shadow pole becomes dominant toithout re-
placing an existing dominant pole. A light-induced state
also appears when an antibound-state pole becomes dom-
inant.

It sb~"ld be noted that the quasienergy E of any dom-
inant or shadow state has a multiplicity of values, differ-
ing &om one another by an integral multiple of ~, but
associated with wave functions that differ from one an-
other only by an overall phase factor. Thus, any discrete
state of the system gives rise to infinitely many poles
of the scattering matrix. These poles appear in differ-
ent elements of the scattering matrix and correspond to
laser-assisted resonances associated with the same state
of the dressed target, i.e. , they arise &om stimulated ab-
sorption and emission of photons &om and to the same
state. A dominant pole and all of its multiples are lo-
cated on the same (physical) sheet of the Riemann sur-
face. However, a shadow pole and its multiples lie on dif-
ferent sheets, as we now explain. Suppose that a shadow
pole is located at energy E, and that it corresponds to
choosing the unphysical branch for the Mth wave num-
ber, i.e. , kM(E). (Since the pole is a shadow pole, at
least one of the wave numbers must take on the unphys-
ical branch). To reach this shadow pole (from the phys-
ical sheet) the Mth branch cut must be crossed. Now
consider a multiple of this shadow pole, located, say, at
energy E + ILu. This multiple corresponds to choosing
the unphysical branch for k~ 1,(Z+ Lhcu), and to reach
this multiple the (M —L)th branch cut inust be crossed,
so it lies on a different sheet. Hence, a shadow pole and
its multiples each lie on a diff'erent (unphysical) sheet.
Let Ep denote the energy of the field-free state to which
a dressed state reduces in the zero-field limit; in this limit
the different quasienergies corresponding to this dressed
state reduce to Ep + n~, with n = 0, +1, +2, . . .. The
numerical results described in the following are normal-
ized so that n = 0, except where stated otherwise.

The role of shadow poles in multiphoton processes was
first addressed by Ostrovskii [2], and we refer the inter-
ested. reader to a fairly detailed discussion of the the-
ory given several years ago by Shakeshaft and co-workers
[ii,i5].

III. RESULTS AND DISCUSSION

A. One-dimensional model of Cl

Yao and Chu [5] studied the quasienergies of a one-
dimensional model of the negative chlorine ion irradi-
ated by an intense monochromatic electric field E(t) =
Fp cos Mt, at the wavelength (193 nm) of the ArF excimer
laser. Their potential,

W(~) = -W.e-i*~* l',

has the same form, but different strength and range,
than that of Bardsley and co-workers [4,16]. Yao and
Chu took lVp ——0.27035 a.u. and xp ——2 a.u. In the ab-
sence of the field this potential supports only one bound
state, with a binding energy of 3.6 eV. The first light-
induced state appears at a field strength E pp of about
0.061 a.u. We have extended the calculations of Yao and
Chu to Beld strengths below E pp using the same method
as that used in Ref. [13] to study a similar case. Namely,
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our calculations were performed. on a double discrete ba-
sis set composed of short-range L functions (these were
harmonic oscillator eigenfunctions) and continuum func-
tions exp(ikM ~x~) O(x) satisfying the appropriate bound-
ary conditions; the cutoff function e(x) is zero at x = 0,
is small for x within the range of the potential, and is
unity for x outside the range of the potential [18].

In Fig. 1 we show the trajectory in the complex en-

ergy plane, as the field strength Fo varies, of the pole of
the scattering matrix corresponding to the quasienergy
E of this light-induced state. When Fo ) F pp we have
vr & arg(E) & 3n/2; the real part of E is negative, as be-
6ts a bound state, but the imaginary part is nonzero, and
negative, since this bound state decays through the ab-
sorption of one photon (~ = 6.4 eV). The Floquet wave
function describing the new bound state has a closed-
channel component, representing the bound electron, and
an open-channel component representing the &ee elec-
tron that has absorbed a photon. The closed-channel
component satisfies the usual boundary condition of a
bound state, namely, it decreases exponentially at large
distances as exp(iko~x~) where ko ——[(2p/5 )E] ~ with
~/2 & arg(ko) & 3~/4. The open-channel component
satisfies the usual exploding outgoing-nave boundary
condition of a physically significant resonance, that is,
it behaves as exp(ikqx) where kq ——[(2p/h )(E+~)]
with —vr/2 & arg(E + Ru) & 0 and —x/4 & arg(kq) & 0.
The electron moves outwards from the potential as the
bound state decays, so Re(kq) ) 0. Let us follow the
trajectory of the pole as Fo decreases below F pp to
Qp —0 (it is represented by a dotted line where Ep & F
and by a solid line where I"o ) P &&); arg(E) increases
monotonically along this trajectory. When Fo falls be-
low F pp E crosses the negative imaginary axis and its
real part becomes positive: Mo decreases from 1 to 0.
However, the state cannot decay by absorbing net zero
photons. Indeed, as arg(E) increases past 3m/2, arg(kp)

Re(E) (0.001 a, u. )
—4 —2

2~/~
Wg, (x) = — W(x+ ao cos(ut) dt

27t 0

(3)

where o.o is the quiver amplitude, defined as
ego/(p~ ) with e the electron charge. Let E,t be the
energy of the electron in this static (high-frequency) ap-
proximation; E,& is the counterpart of the quasienergy E
of Fig. 1. We write E,t ——h k /2p, with k pure imag-
inary when E,t ( 0. When the electron is outside the
range of Wg, (x), its wave function is a superposition of
&ee waves,

q( )
—fkxf + t fkx/ (4)

The state is an antibound state at those (negative) values
of E,q where a = 0 and a true bound state at those
values where 6 = 0. It is straightforward to integrate the
Schrodinger equation numerically, as long as the range
of Wg, (x) is not much larger than 1/~k~. As is shown in
Fig. 2, E,t is zero for Fo 0.08 a.u. F pp below which
field strength the state is an antibound state. Both E,t
and Re(E) have the same zero intensity limit and remain
close (in absolute magnitude) at any intensity.

increases past 37r/4, and since Re(ko) remains negative
exp(iko~x]) is still an ingoing (exponentially damped)
wave, and so does not have the outgoing wave behav-
ior expected of an open-channel component. The state
has become a shadow state, with unphysical properties.
When the quasienergy crosses the positive energy axis, so
arg(E) ) 2m, the zero-photon open-channel component
becomes an exploding ingoing wave [19].As Fo decreases
still further, we see that the pole circles about the origin
and Anally, at F~ ——0, it is on the negative real axis of the
unphysical sheet [arg(E) = 3vr], at ~E~ = 0.004246 a.u.
At this point, the shadow state is an antibound state of
the bare system [20].

A similar analysis was carried out for the new bound
state of the dressed Gaussian potential that corresponds
to the light-induced state that we just discussed. The
dressed potential is

C)
D
C)

2
Ld

E

—0.1

FIG. 1. The trajectory of the pole which, at field strengths
above the appearance field strength F», corresponds to the
first excited bound state in the Gaussian potential studied by
Yao and Chu [5]. The wavelength is 193 nm. The trajectory is
represented by a dotted line where the pole is not dominant.
The ticks on the trajectory are at intervals of 10 a.u. in
I'0, and the zero-field position of the pole is marked with a
solid circle. The thick vertical line represents the cut origi-
nating from the branch point at E' = 0. The inset is a mag-
ni6cation of the region around this branch point.

B. Autoionizing states

A schematic diagram of the trajectory of the pole stud-
ied in Sec. IIIA is shown in Fig. 3(a). We have indi-
cated one of the multiphoton ionization channel thresh-
olds, namely, the one corresponding to the absorption
of 0 photons. The pole is dominant along the solid line
part of the trajectory and corresponds to a shadow state
with unphysical character along the dotted line part. The
pole begins as an antibound-state pole, situated on the
negative real energy axis of an unphysical sheet of the
Riemann surface, but at a suKciently high intensity it
crosses the branch cut emanating &om the zero-photon
threshold, and moves onto the physical sheet where it
corresponds to a light-induced state.

In Fig. 3(b) we present a schematic diagram of a pos-
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sible trajectory of a pole which starts out correspond-
ing to an autoionizing state. Initially the pole is on
the physical sheet not far from the physical energy axis
[
—vr/2 & arg(E) & 0, Mo ——0] so it is physically signifi-

cant. At zero field strength the autoionizing-state wave
function behaves at large distances as exp(ikor)/r with
—vr/4 & arg(ko) & 0, that is, the wave function sat-
isfies an exploding outgoing-wave boundary condition.
At Brst, as the field strength increases, the autoioniz-
ing state becomes broader and shifts; the pole begins to
move further away from the physical energy axis. Once
the pole crosses the negative imaginary axis we have
—vr & arg(E) & —vr/2, whence —7r/2 & arg(ko) & —n/4
although Mo ) 0; the pole takes on a shadow character.
However, as the Beld strength increases further the pole
crosses the same branch cut a second time, without cross-
ing any other cuts. After this second crossing, Mo ——1,
—3a & arg(E) & —5vr/2 and —3'/2 & arg(ko) & —57r/4—or, equivalently, since the branch point at ko = 0
is a square-root type (first order) branch point, vr/2 &
arg(ko) & 3vr/4. The pole is now, once again, dominant,

FIG. 2. The real part of the quasienergy of the same state
as in Fig. 1 vs the electric Geld amplitude I"0. The curve is
dotted where the state is not dominant. The circles indicate
the energy E,t of the lowest light-induced bound state sup-
ported by the dressed potential (3) for a few values of Eo, the
circles are open where the state is antibound.

and, since Re(E) & 0, it corresponds to a light-induced
bound state.

In a very weak field the dressed autoionizing state
gives rise to inBnitely many poles. In particular there
are shadow poles located at (almost) the same energy,
in the half plane Re(E) ) 0, as the field-&ee autoioniz-
ing pole; but these shadow poles are only on sheets that
can be reached from the physical sheet by crossing the
branch cut at the M = 0 threshold an even number of
times, since this threshold is a threshold of the bare sys-
tem. Hence, among the shadow poles which in a weak
field are located at (almost) the same energy as the field-
&ee autoionizing pole, none can emerge on the physical
sheet in the half plane Re(E) & 0, as I"o varies, unless
they encircle the M = 0 branch point an odd number of
times. It is also impossible for one of these poles to move
around the M = 0 branch point without crossing the cut
at all (i.e. , by moving onto the upper half plane on the
physical sheet) since any pole lying on the physical sheet
must have a negative (or zero) imaginary part.

On the other hand, suppose that the bare system has
an autoionizing state with an energy whose real part is
larger than ~, so that in a weak Beld there is a shadow
pole which is located to the right of the branch point
at ~. If, as the Beld varies, this shadow pole becomes
dominant, it will, in general, be accompanied by the ap-
pearance of a dominant pole with Re(E) & 0, since the
multiples of a dominant pole all lie on the same (phys-
ical) sheet. This is illustrated in Fig. 3(c). In this di-
agram a shadow pole associated with the autoionizing
pole shifts past the M = —i. branch point (at her) and
becomes dominant. If E is the energy of this pole, an-
other (multiple) pole is located at E —hen, but before the
poles become dominant they are on difFerent sheets. The
two poles become dominant, and move onto the phys-
ical sheet, simultaneously; the multiple appears on the
physical sheet after passing the M = 0 threshold. When
the poles are dominant, they correspond to a state that
can be described as an autoionizing state dressed by the
Beld, or, if the wave function is more similar to that of
a dressed bound state, as a light-induced state. There-
fore, an autoionizing state may change adiabatically into
a light-induced state as the intensity increases, without
ever disappearing as a physically realizable state of the
system, provided its energy does not shift below the ion-
ization threshold.

0 0

C. The 1D square potential well

(c)

(b) The calculations presented in Sec. IIIA for the one-
dimensional Gaussian potential well (2) were performed
on a basis set, which somewhat limited their scope. We
now turn to the case of photodetachment of an electron
from the one-dimensional square potential

FIG. 3. Schematic diagram of a possible path of a pole
which represents a state that begins at the solid circle (a) as
an antibound state, or (b),(c) as an autoionizing state. As in
Fig. 1, the trajectory is represented by a dotted line where
the pole is not dominant.

~() (
—Wo, lzl & a

(5)

which can be tackled by using the more powerful method
described in the Appendix. In the absence of the
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Beld, the number of bound states supported by this
well depends solely on the dimensionless parameter p =
a(2pWo/h ) ~ . We choose a = 2.129619 a.u. and
Wo ——0.110247 a.u. (3 eV). For these parameters, p =
1.000001, there is only one bound state (with a binding
energy of 0.05 a.u. ) and the energy of the highest ly-
ing antibound state is -0.110246 a.u. [21]. The trajecto-
ries of the bound-state pole, of some of its shadow poles,
and of the antibound-state pole are presented in Figs. 4
and 5, for wavelengths between 266 nm (w = 0.173 a.u. )
and 2128 nm (w = 0.0214 a.u. ). (Because of their scale,
the diagrams may suggest, incorrectly, that the slopes
of soIne of the trajectories are not continuous. In fact,
the positions of these poles vary smoothly with the inten-
sity. ) The real parts of the quasienergy of these states are
compared to the energy levels that the electron can oc-
cupy in the high-h. equency approximation in Fig. 6. The
Brst light-induced bound state supported by the dressed
square potential appears at o.0 4 a.u. ; the second one,
not shown in Fig. 6, appears at o.o —20 a.u.

The results of Figs. 4(a) and 5(a), for 266 nm wave-
length, are typical of the high-frequency case. The tra-
jectory of the antibound state pole is similar to that dis-

played in Fig. 1 for the Gaussian potential. The trajec-
tory of the bound-state pole is also similar to that of the
ground-state pole of atomic hydrogen in a high-&equency
field [7]: The binding energy of the state decreases as the
intensity increases, while the rate of multiphoton ion-
ization, —21m(E)/h, first increases and then decreases
in the stabilization regime. (The rate increases again
at very high intensity [22].) The antibound-state pole
emerges on the physical sheet at an intensity very close
to the appearance intensity of the first new bound state
supported by the dressed potential [see Fig. 6(b)]. At
higher intensity, the real part of the quasienergy of the
light-induced. state, as found in the full Floquet calcula-
tion, remains close to the energy of that new bound state.
The ionization width of the light-induced state is large
at the appearance intensity (about 0.004 a.u. ). However,
it decreases rapidly at higher intensity.

Results for 532 nm are presented in Figs. 4(b), 5(b),
and 6. Overall, they are similar to those for 266 nm. The
high-frequency approximation is not as good, though,
but it improves at high intensity. The photoionization
width of the light-induced state at its appearance inten-
sity (1.59 x 10 W/cm ) is rather small, about 6.6 x 10
a.u. , at this particular wavelength.

Photodetachment from the ground state in a weak field
requires the absorption of at least two photons, at 1064
nm (i.e. Mo ——2). In contrast with the previous cases,
the energy shift of the ground-state pole is now negative.
The dominant pole starting as the ground-state pole in
zero Beld passes the two-photon threshold at 9.3 x 10 2
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I I I I ~
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FIG. 4. Trajectory of poles that coincide with the
bound-state pole of the square well potential (5) in the
zero-fjeld limit, for diferent wavelengths. The trajectory is
represented by a dotted line where the pole is not dominant.
The horizontal and vertical scales give Re(E) and Im(E), re-
spectively, in a.u. The ticks on the trajectory are at intervals
of 1 a.u. in no, and the zero-Beld position of the pole is marked
with a solid circle. The thick vertical lines represent the cuts
originating from the multiphoton branch points.

0.00—

(c) 1064 nrn

—0.01

FIG. 5. The same as in Fig. 4, but for poles that coincide
with the first antibound-state pole of the square well potential
(5) in the zero-field limit.



LIGHT-INDUCED STATES OF H AND H, SHADOW STATES, . . .

0..00 I I I I I
I

I I I
I

I I

—0.02

—0.06—

—0.08
0.00 I I

(b)

W/cm2; this pole is labeled 1 in Fig. 4(c). At 1.1 x 10is
W/cm2, pole 2 also crosses the cut emanating f'rom the
two-photon threshold, upon which it becomes dominant
and "replaces" pole 1 as the dominant ground-state pole.
The trajectory of pole 1 brings it on the right of the
two-photon threshold between 2.1 x 10~3 and 2.8 x 10
W/cm2; it corresponds to a light-induced state in this
interval of intensity, albeit one that does not appear to
be related to any light-induced bound state supported
by the dressed potential. Like pole 2, pole 3 starts in
weak Beld as a shadow of pole 1. Yet, unlike pole 2,
its shift soon changes sign and above 1.7 x 10 W/cm
its trajectory is similar to that of the dominant ground
state pole at 266 nm and 532 nm, although it lies on an
unphysical sheet. Pole 3 becomes dominant at 5.55 x
10 W/cm, and continues to follow a trajectory close
to the trajectory the 18 dominant pole follows at higher
f'requency. In particular, the real part of the quasienergy
of this state remains close to the energy of the ground
state of the dressed potential see Fig. 6(a)—and gets
closer at high intensity.

The appearance at 1064 nm of a light-induced state
associated with a shifted antibound state pole is illus-
trated in Figs. 5(c) and 6(b). The state appears at an

intensity, about 2.45 x 10 s W/cm, 13 times higher than
that calculated in the high-&equency approximation, and
its photoionization width (0.058 a.u. ) is very large at this
intensity. However, this light-induced state is not a coun-
terpart of the lowest light-induced bound state predicted
by the high &equency theory. Instead, another light-
induced state can be obtained at 1064 nm from that at
532 nm, by varying the intensity and the wavelength con-
tinuously starting at a large intensity. This other state is
studied in Fig. 7. The pole it is associated with reduces,
in the zero field limit, to a resonance pole shifted by
Ru (recall that the possibility that a light-induced state
may originate in that way was suggested in Sec. IIB).
Here we see that the state appears and disappears sev-
eral times as the intensity increases. It first appears at
a weak intensity, about 1.2 x 10ii W/cm2, but with an
extremely large width. The width decreases rapidly at
higher intensity; at an intensity of 2.66 x 10is W/cm2,
where o.p ——15 a.u. , it is down to 8.7 x 10 a.u. and the
real part is in good agreement with the binding energy
of the lowest light-induced. bound state supported by the
dressed potential.

Finally, Fig. 4(d) illustrates a low frequency case:
Mp = 3 at the wavelength of the figure, 2128 nm. This
case is similar, qualitatively, to the 1064 nm case. Here,
a shadow pole of the bound-state pole starts by follow-
ing closely the real axis, as the intensity increases from
0 to 5.845 x 10 W/cm, at which point the pole inter-
acts with another pole —not shown in Fig. 4(d) and it
starts moving rapidly downward. The pole then describes
a loop in the lower half plane, passes across three cuts,
and emerges on the physical sheet at 6.64 x 10io W/cm2.
Although the photon energy is quite a bit smaller than
the ground-state binding energy of the Beld-free system,
the energy of the ground state of the dressed potential
still gives, at suKciently high intensity, a good approxi-
mation to the real part of the quasienergy of the light-
induced state [see Fig. 6(a)j. The appearance of this
light-induced state reminds us of one that we previously
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PIG. 6. (a) The real part of the quasienergy of the same
states as in, Figs. 4(a), 4(b), and 4(d), and of state 3 of
Pig. 4(c) vs the quiver amplitude o.p. The curve is dot-
ted where the state is not dominant. The energy of the
ground state of the dressed square potential is represented
by a dash-dotted line. From top to bottom at o.o ——5 a.u. ,
the curves correspond to the following wavelengths: 2128 nm,
1064 nm, 532 nm, 266 nm, and 0 nm (infinite frequency). (b)
The same as in part (a), but for the same states as in Pig. 5.
Here the dash-dotted line represents the energy of the lowest
light-induced bound state supported by the dressed square
potential. The curves starting from Re(E) = 0 at o.p 3 5,
and 14.5 a.u. correspond to 532 nm, 266 nm, and 1064 nm
wavelength, respectively.
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FIG. 7. The same as in Figs. 4 and 6, but for a pole which
coincides in the zero-field limit with a resonance pole shifted
to the left by Ro. The wavelength is 1064 nm.
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described for multiphotoionization of atomic hydrogen
in a low-frequency (infrared or optical) laser field [8,9].
Also worth noting in Fig. 6(a) is the closeness of the
1064 nm curve and the 2128 nm curve, which shows that
o.o remains a relevant dynamical parameter outside the
high-&equency regime.

D. Light-induced states of H

0 —,

—0. 1

—0.2—

—0.3

—0.4—

0 1

Quiver Amplitude (a.u. )

FIG. 8. The energy of the ls state for ~ = oo (dash-dotted
line), the real part of the quasienergy of the dressed ls state
for cu ) 0.5 a.u. (broken lines), and that of the the 1s' state for
u ( 0.5 a.u. (solid lines), vs the quiver amplitude no. From
top to bottom, at no ——2.5 a.u. , the curves correspond to the
following frequencies: u = 0.16, 0.1713, 0.25, 0.30, 0.40, 0.49,
0.51, 0.65, 1.0, 2.0 a.u. and u = oo.

The only discrete states of the bare hydrogen atom are
bound states; atomic hydrogen has no resonance or anti-
bound states, and so light-induced states can only evolve
from shadows of bound states. In Fig. 8 we show the
real part of the 18 quasienergy of atomic hydrogen v8

the "quiver amplitude" o;0 for several different angular
&equencies u. The dash-dotted line is the quasienergy
in the high-frequency limit, lE l

(i.e. , the energy of
the ground state of the dressed Coulomb potential) [23].
The other lines represent results of full Floquet calcu-
lations performed on a basis of complex Sturmian func-
tions [7,24,25]. The broken lines pertain to frequencies
larger than the threshold &equency, utah,

——0.5 a.u. , for

one-photon ionization from the 1s state in the weak-Geld
limit, while the solid lines pertain to &equencies smaller
than uth, . There is a striking similarity between these re-
sults and those shown in Fig. 6(a) for photodetachment
&om a one-dimensional square potential well.

When ~ & uth, the binding energy can be calculated
fairly accurately from the dressed Coulomb potential,
even when u —wth, [7]. Indeed, we see that the broken
lines remain reasonably close to the dash-dotted line for
all intensities, and approach it in the high-intensity and
high-&equency limits. The energy of the dominant state
which starts as the bare 18 state increases as the inten-
sity increases, when u ) uth„while when ~ ( ruth, the
energy of this state decreases as the intensity increases
(unless the dressed ls state shifts into resonance with
another state). On the other hand, when ~ ( uth, some
of the shadow poles of the 1s pole —or, for that matter,
any bound-state pole for which Mo ) 1 in a weak field—can move upwards in energy and become dominant,
like pole 3 in Fig. 4(c). This is borne out by Fig. 8: the
solid lines begin abruptly at a nonzero intensity and cor-
respond to a light-induced state from which one-photon
ionization is possible. The Sturmian basis is unsuitable
for following the trajectory of the corresponding pole as
it moves beyond the threshold for one-photon ionization
when the intensity decreases below the appearance inten-
sity. Consequently, we have not determined the zero-field
limit of this state for the different values of the frequency.
It most likely converges towards the 18 state when u is
not much smaller than 0.5 a.u. ; but when w « 0.5 a.u.
it is possible that it reduces to another bound state after
having undergone an avoided crossing on an unphysical
sheet. Since this light-induced state behaves in much the
same way for u & 0.5 a.u. as the dressed 18 state be-
haves for u & 0.5 a.u. we refer to it as a 1s' state. In
principle, its binding energy is deGned only modulo Ru,
as is the case for any dressed state; this ambiguity was
resolved, and all the results of Fig. 8 have been put on the
same absolute scale, by making sure that the quasienergy
varied continuously across and along the curves, in both
intensity and in &equency.

The width of the 18' state is very large at its appear-
ance intensity. For example, at o.o ——2.5 a.u. , its width
is 7.8 eV for u = 0.160 a.u. , 3.8 eV for u = 0.30 a.u. , and
2.3 eV for u = 0.49 a.u. Nevertheless, its binding energy
remains close to lE l

when u —wth, . There are signif-
icant differences when u « wth„partly due to avoided
crossings, in the range of intensity we have explored.

As a consequence of the smooth variation of the
quasienergy with the intensity and the &equency, the
binding energy of the 18' state at its appearance inten-
sity is a continuous function of the frequency. The vari-
ation of this function can be visualized by interpolating
the points of origination of the solid curves in Fig. 8.
The resulting curve remains below the dotted curve for
~ & 0.35 a.u. , crosses it at u 0.35 a.u. , and increases
rapidly above it for lower &equency. Since o.o is propor-
tional to the square root of the intensity, this means that
the light-induced state appears at a significantly larger
(lower) intensity when u ) (() 0.35 a.u. than that where
Ru= lE
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IV. CONCLUSIONS APPENDIX

It is now well established, for one-electron one-
dimensional models, that the light-induced states found
in the high-&equency approximation persist when the
coupling with the field is fully taken into account. In this
respect, calculations for simple models support Muller's
and Gavrila s prediction of light-induced states in H [6].
However, correlation is likely to play an important role
in the negative ion, which evidently limits the scope of
the comparison. As for the photodetachment rate, no
firm conclusion can be drawn, either. It should be noted
that in none of the model systems investigated so far
are the widths of light-induced states narrow enough to
make their appearance readily observable in an experi-
ment (supposing for a moment that these systems were
real) .

It is possible to study the quasienergy and the wave
function of a light-induced state at intensities below
the appearance intensity by introducing shadow states
whose wave functions satisfy unphysical boundary con-
ditions. We argued in Sec. III B that the trajectory
of the quasienergy in the complex plane, as the inten-
sity decreases to zero, could be similar to that drawn
in Fig. 3(a), or, when the light-induced state originates
&om an autoionizing state, to that drawn in Fig. 3(c)
or Fig. 3(b). In fact, light-induced states other than
those predicted by the high-frequency calculations of
Muller and Gavrila may also occur in H . For exam-
ple light-induced states originating from shadow states
of the bound state of the bare system are possible. The
results reported in Sec. III C also indicate that even low-
&equency fields might produce light-induced states, at
relatively modest intensities.

In Sec. IIID we addressed the interpretation of the
ground state of the dressed Coulomb potential for pho-
ton energies smaller than the binding energy of the bare
1s state, ~Eq, ~. It has been argued that the (intensity-
dependent) ground-state energy of the dressed Coulomb
potential, E, should be in good agreement with the
quasienergy of the dressed 1s state provided the inten-
sity is so high that ~E

~

&& Ru. This proposition is in-
deed well supported by our results. In particular, there
is still agreement when hcu is slightly smaller than ~Eq,

~—although the state whose quasienergy follows E is,
in fact, a light-induced 18 state in this case.

There is a remarkable similarity between the results
described in Sec. III C for a one-dimensional finite-range
potential and those described in Sec. IIID for the three-
dimensional Coulomb potential. Clearly, the appearance
in full Floquet calculations of light-induced states asso-
ciated with the energy levels of the dressed potential is
a quite general feature at moderate and high intensities,
over a wide range of frequencies.
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shadow poles of the S matrix for laser-assisted scattering
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the well known method for finding the energy levels in
the field-&ee case. Namely, the wave function is written
in Floquet form,

@( t) aEt/—s ) aN~ty—
( )

N= —oo

(AS)

with 4(x, t) obeying Siegert boundary conditions, and
the quasienergy is determined by solving a system of
transcendental equations expressing that the harmonic
components gN (x) and their first order derivatives vary
continuously at the edges of the well. Alternatively, scat-
tering boundary conditions can be imposed if one wants
to study laser-assisted scattering of electrons by the po-
tential well [26].

The potential is given by Eq. (5). Piecewise continuous
solutions of the Schrodinger equation

d 52 d d
ih —@(x,t) = —— —ih(e/p(u)Eo cos(a t)—

dt '
2p d2;2 dx

+W(x) @(x,t) (A2)

can be written in the form of Volkov waves, e.g. ,

—i&t/h +ikx~iA:np sin ~tA~c

for ~x~ ) a, with k = [2pE/h]~r 2, or

(A3a)

—iRt/h +irca+ikmcxp sin cut (A3b)

) &M Jar M( ookM)e —'"—
M= —oo

(A4a)

for x & —a, with k~ = [2p(E+ Mhcu)/h]~~ g 0, by

) +M JN —M( —~owm)(e *" * + (—&) e™)
M= —oo

(A4b)

for ~x~ & a, with K = [2p(E + Wo)/h] ~ . As defined
in Sec. IIIA, ao ——eFo/(@~2). (We assume that k g 0
and v g 0.) However, when no g 0 (and Wo g 0) it is
not possible to connect these solutions so as to construct
a wave function that varies smoothly at x = +a at all
times, whatever the value of E. Infinitely many functions
of the form (A3) must be superposed in order to obtain
a suitable wave function @(x,t). Thus, we assert that
@~(x) is given by
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for ~x~ & a, with KM = [2p(E+. Wo+ MM)/5] ~ P 0,
and by
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) ( I) +M~IV —M( ~okM)e
M= —oo

(A4c)

for z & a. The condition that each harmonic component
is continuous and has a continuous first order derivative
at x = +a gives rise to a system of homogeneous linear
equations relating the coeKcients AM and BM to one
another. The S matrix has poles at those values of E for
which the system has a nontrivial solution.

In the present work, the indexes N and M were re-

stricted to the same finite range, and the modulus of the
(complex) eigenvalue of the matrix of the system near-
est to zero was calculated as a function of E. The value
of the modulus was less than 10 a.u. , several orders
of magnitude smaller than at the neighboring local min-
ima, at the values of E we identified with dominant or
shadow poles of the S matrix. When checked, this esti-
mate of E could always be refined in order to bring the
modulus down to zero to machine accuracy, without any

significant change in the position of the pole.
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